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Abstract

It is shown that embedding part or all of the information in the (intentional) variations of the transmission

media (end-to-end channel) can offer significant performance gains vs. traditional SISO, SIMO and MIMO

systems, at the same time with a lower complexity. This is in contrast to the traditional wireless systems

where the information is entirely embedded in the variations of a source prior to the antenna to propagate

via the channel to the destination. In particular, it is shown that using a single transmit antenna and K

receive antennas; significant savings in energy with respect to a K ×K traditional MIMO are achieved.

Similar energy savings are possible in SISO, and SIMO setups.

I. INTRODUCTION

This work introduces the advantages of varying the end-to-end channel, according to the input data (see

Fig. 1), in a wireless communications system with multi-path fading. Such information bearing channel

variations are detected at the receiver end, resulting in an equivalent modulation scheme with Additive White

Gaussian Noise (AWGN). In other words, the carrier is modulated after leaving the transmit antenna(s) by

changing the Radio Frequency (RF) properties of the environment close to the transmitter, but external to

the transmit antenna(s). This method of modulating the wave after leaving the transmit antenna(s), coined

in this article as Media-Based Modulation (MBM), offers several advantages vs. traditional methods in

which RF carrier is modulated prior to leaving the transmit antenna(s). This article refers to the traditional

methods as Source-Based Modulation (SBM), in contrast to MBM.

MBM can be realized by changing RF properties, namely permittivity, and/or permeability and/or resistiv-

ity, of the propagation environment close to the transmitter. It is well known that permittivity, permeability

and resistivity appear in the Maxwell equations and affect the corresponding solution. This in turn affects

the end-to-end channel, and consequently the magnitude and phase of the received signal will vary. Note

that in a rich scattering environment, a small perturbation in the environment close to the transmitter will

be augmented by many random reflections in the propagation path, resulting in an overall independent

end-to-end channel realization. If there are M = 2Rm choices available for such channel perturbations, the

corresponding received constellation will consist of M = 2Rm points. It is obviously possible, and indeed

desirable, to combine MBM and SBM by modulating the carrier partly prior to leaving the transmitter and

partly afterwards. If an MBM of 2Rm options is used together with an SBM of 2Rs options, the overall

constellation transmits Rs + Rm bits which are channel coded to achieve reliable transmission over the

underlying discrete input AWGN channel.
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Fig. 1: System block diagram.

The basic idea of embedding information in varying a wireless channel is not new, and indeed pre-

cedes modern systems. Polybius came up with a system of alphabetical smoke signals around 150 BC.

MachZehnder modulators, widely used for signaling over fiber, modifies the light beam after leaving the

laser. However, due to the lack of multi-path in single mode fibers, the advantages discussed here in the

context of wireless do not apply. The use of tunable parasitic elements/objects external to antenna for the

purpose of beam-forming is widely studied and practically realized in various forms. However, the objective

in classical beam-forming is “to focus/steer the energy beam, which does not realize any of the advantages

discussed here (when data is modulated by tuning such external parasitic elements/objects). There have been

some recent works on embedding data in antenna beam-patters. Alrabadi et al [1] [2] discuss embedding

phase information in orthogonal antenna patterns. However, this is motivated by reducing the number of

transmit chains and no other benefits are discussed. Bains [3] discusses using parasitic elements for data

modulation, and shows limited gains due to energy saving. However, the main features associated with

such a setup (e.g., additive properties of information over multiple receive antennas) and methods to realize

them, which are the sources of reported improvements in the current article, are not discussed. This article

establishes the benefits of MBM, and methods to realize them. A similar analogy exists in the development

of Multiple-Input Multiple-Output (MIMO) antenna systems, in the sense that the use of multiple antennas

for beam forming was known, but the main advantages of MIMO in terms of spatial diversity and/or data

multiplexing, and methods to realize them, were established in late 90s (see references [4] [5] [6] and

references therein).

Next, pros and cons of MBM vs. SBM are discussed.

II. ADVANTAGES AND DISADVANTAGES OF MBM VS. SBM

A first advantage of MBM is in the increase of the number of received constellation points without

increasing energy. To improve spectral efficiency, SBM alone should rely on using larger values for Rs,

resulting in an exponential increase in transmit energy. In contrast, Rm can be increased without directly

affecting the transmit energy. Overall, Rs and Rm are selected to achieve the desired rate with the minimum

transmit energy. Increase of Rs can be, for example, achieved by modulating the carrier phase with ±π
(changing the sign) and ±π/2 (modulating over I or Q) to achieve a symmetrical constellation.
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A second advantage of MBM is in its inherent diversity in dealing with slow fading. As the constellation

points in MBM correspond to different channel realizations, unlike SBM, deep fades do not have a persisting

effect. In other words, good and bad channel conditions contribute to a single constellation and span the

entire constellation space. As a result, the spacing between constellation points is determined by relative

values of different (low and high) complex channel gains (relative to each other). We refer to this feature as

the Constellation Diversity. As the constellation size increases, this feature essentially converts a static multi-

path fading channel into a non-fading AWGN channel with effective signal energy equal to the received

energy averaged over fading statistics. This feature, which occurs even in a SISO-MBM, is inherent and

does not involve any tradeoffs. This is in contrast to the MIMO-SBM, in which diversity over a static

fading channel can be improved only at the cost of a reduction in rate (multiplexing gain) [7].

A third advantage of MBM arises when the receiver has multiple antennas, namely in SIMO-MBM.

In a 1 ×K SIMO-SBM, the vector received over K receive antennas spans a single complex dimension.

Consequently, the effect of using multiple receive antennas is limited to energy saving which can be realized

through maximum ratio combining. In contrast, for a 1 × K SIMO-MBM, the received vector spans all

the K complex receive dimensions. As a result, the spacing between received constellation points enjoys

a scaling with the transmit energy similar to a SISO-SBM with K times the bandwidth, or similar to a

K ×K MIMO-SBM. This feature mimics the multiplexing gain feature of MIMO [7].

A fourth advantage of MBM is in the independence of the noise components over multiple receiving

antennas. Note that in both SBM and MBM, assuming transmitter uses uncorrelated code-books of equal

energy over its transmit antennas, the statistics of the energy received per receive antenna does not depend

on the number of receive antennas. This means, assuming K receive antennas and a fading channel with

a mean gain of one, E units of transmit energy results in receiving KE units of energy on the average.

In the following, this feature is referred to as “K times energy harvesting. Note that 1×K SIMO-MBM

enjoys K times energy harvesting, similar to that of K ×K MIMO-SBM, and 1 ×K SIMO-SBM. The

main promise of a K × K MIMO-SBM is in providing an effect similar to that of K parallel complex

channels, with K times energy harvesting. However, the performance of K×K MIMO-SBM falls short of

such K parallel channels as the MIMO channel matrix is typically non-orthogonal, or equivalently, noise

components over information bearing dimensions are dependent. This shortcoming is resolved in 1 × K

SIMO-MBM. In other words, one unit of transmit energy in a 1×K SIMO-MBM results in receiving, on

the average, one unit of energy per receive antenna, while unlike 1×K SIMO-SBM, the energy received

over each antenna constructs a new constellation. In other words, the received energy forms a constellation

that spans the entire K complex receive dimensions. This feature mimics the information scaling of a

K×K MIMO-SBM with multiplexing gain of K. This is in contrast to a 1×K SIMO-SBM in which the

received energy spans a single complex dimension, allowing merely energy saving through receive beam

forming (multiplexing gain is limited to one, regardless of K).

A fifth advantage of MBM is in the possibility of energy saving through selecting a subset of channel

configurations, which results in a better overall performance for the given energy and spectral efficiency.

This feature is similar to the so-called multi-user diversity gain in network scheduling.



4

A first disadvantage of MBM is that the arrangement of the constellation points is random and constella-

tion points are used with equal probability, while in SBM, constellation points can be uniformly arranged,

e.g. QAM (Quadrature Amplitude Modulation) constellation, and can be used with non-uniform probabilities

to realize some shaping gain. As it will be shown later, the degradation due to the random placement of

the constellation points, and also due to using the points with equal probabilities, will be negligible as the

constellation size increases.

A second disadvantage of MBM is that the transmitter is generally, although not necessarily, assumed to

be oblivious to the details of the constellation, falling into the class of transmission with outage. As will

be shown later, the degradation due to the lack of transmit adaptation to channel will become negligible as

the constellation size increases.

A third disadvantage of MBM is that the system is Linear, Time Varying (LTV), while SBM is Linear,

Time Invariant (LTI). Unlike LTI, LTV systems can potentially expand the spectrum. Such a time varying

feature also contradicts the functionality of the traditional channel equalization techniques. On the other

hand, as the LTV nature of the system is due to the random selection (with equal probabilities) of one out

of M options for an underlying LTI channel, the power spectrum observed at any given receive point will

be equal to the average of the power spectrums of the M underlying LTI channels, times the input power

spectrum. As wireless channel can transmit a wide range of frequencies, the underlying LTI systems will

have a wide spectrum. As a result, the overall power spectrum follows the shape of the input spectrum (RF

carrier is spectrally shaped prior to transmission).

Another potential problem arises as traditional SBM systems exploit the LTI property and rely on some

form of equalization to compensate the effect of the Inter Symbol Interference (ISI). Due to ISI, the energy

associated with a single time symbol is spread over its neighbors. This means the signal over a single

dimension at the input is spread over L dimensions at the output, where L denotes the length of the

channel impulse response. In the case of SBM, the resulting L dimensional output vector spans a single

dimension, and equalization procedure should (ideally) accumulate the received energy corresponding to

any given input signal (spread over these L dimensions) into a single decision variable. In contrast to SBM,

in MBM, the L dimensional vector at the channel output corresponding to a single transmission spans an L

dimensional space, increasing the information bearing capability of any given time transmission by a factor

of L. As a result, a transmission in MBM can be followed by L zeros to flush out the channel memory and

this is achieved without sacrificing the effective dimensionality of the overall signal space (see Fig. 2). An

alterative would be to reduce the gap between successive transmissions to less than L and apply sequence

detection in time to account for the ISI. This can be achieved using a state diagram (evolving in time) with

states corresponding to previous constellation points, or a quantized version of them to reduce the size of

the state space. A more detailed analysis should include the effect of the channel impulse response for

MBM, and the specifics of the equalization method for SBM, and is beyond the scope of this article.

As mentioned above, a natural approach to deal with channel memory in MBM is to rely on time

domain methods, including sequence detection in time. However, this problem has a much simpler solution

in multi-user setups, and in particular in networks based on Orthogonal Frequency Division Multiple Access
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(OFDMA). In OFDMA, different nodes use different tones of an OFDM system, which are all synchronized

within the OFDM cyclic prefix. In this case, the channel at the transmitter side of each link can be varied

from OFDM symbol to OFDM symbol (to embed information). This means the channel is varied at the

beginning of each OFDM symbol, while it remains the same throughout the time duration of any given

OFDM symbol. As the channel remains static over any given OFDM symbol, OFDM structure remains

intact. As a result, each link can rely on a simple single tap equalizer instead of sequence detection in

time. The cost is the waste of bandwidth in sending the cyclic prefix, as is the case in any OFDM system.

However, similar to traditional OFDMA, this waste is shared among all users. The length of the cyclic

prefix is determined by the channel memory and consequently the waste remains the same, regardless of

the number of OFDM tones (relative waste can be reduced by increasing the number of tones). Such a

setup can be used as long as transmitters are separated in space, i.e., in the uplink (separate transmitters

use different OFDM tones to send to a common receiver), and in parallel interfering links (each link uses

a different OFDM tone).
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Fig. 2: Spectral shaping and impulse response.

III. SYSTEM MODEL AND RELATIVE MERITS

Figure 1 shows the setup of a 1 × K = Q/2 SIMO-MBM. For the sake of simplicity, the concept

is explained by focusing only on the MBM part of the transmission, and the combination with SBM is

straightforward. There are M = 2Rm messages, indexed by m = 1, ,M , which select one of the M
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channel realizations corresponding to channel realizations h⃗(m) with components hd(m) for d = 1, , Q,

and m = 1, ,M . Due to the normalization of fading, we have E|hd(m)|2 = 1 where E denotes statistical

averaging. AWGN vector z⃗ has independent identically distributed (i.i.d) components zd, d = 1, , Q, where

E|zd|2 = σ2z .

In this setup, although the transmitter selects the channel realization h⃗(m) to transmit message m,

transmitter is oblivious to the details of h⃗(m). On the other hand, the receiver knows h⃗(m) and can perform

signal detection, if the mutual information is sufficient. Receiver training is achieved by sending a set of

pilots over different channel realizations, enabling the receiver to measure hd(m), ∀d, ∀m. For a Raleigh

fading channel (rich scattering), hd(m) are i.i.d Gaussian, which is in accordance with the optimality of

Gaussian random coding over AWGN channels. However, as the transmitter is oblivious to the details of

h⃗(m), an outage may occur. A similar outage phenomenon exists in the case of SBM over a static fading

channel which is handled by increasing the transmit energy, or by exploiting spatial diversity offered by

using multiple antennas. However, in the case of SBM, this compensation necessitates a significant increase

in the transmit energy, or loss in the rate by exploiting spatial diversity. Due to the inherent diversity of

MBM, the issue of outage in slow fading channels will be much less problematic compared to SBM. We

have,

I(y⃗;m) = I(y⃗; h⃗(m)),

which, noting the AWGN channel, results in

I(y⃗;m) = H(y⃗)−H(z⃗) = H(y⃗)−K log2(2πeσ
2
z).

Although the maximum rate of such a transmission scheme is limited to log2M , as is the case in any

channel with a discrete constellation of size M , the rate achievable in a proper operating point prior to the

saturation can be significantly higher than its SBM counterpart.

Next, MBM and SBM are compared in terms of the slope of rate vs. energy at low SNR.

IV. SLOPE OF RATE AT LOW SNR, AND EFFECTIVE DIMENSIONALITY

Recall that MBM and SBM are preferably combined, in which case due to symmetrical phase modulation

in the underlying SBM portion, the resulting signal set will be symmetrical. Among other benfits, this results

in a constellation with zero mean. Assuming a constellation with zero mean, for low values of Signal to

Noise Ratio (SNR), we have (see appendix A):

lim
ϵ→0

I(ϵ)

ϵ
=
QG2

2

and,

E

[
lim
ϵ→0

I(ϵ)

ϵ

]
=
Q2

2

where I(ϵ) is the mutual information per real dimension (for σ2 normalized to one) as a function of a

small increase in RF energy, namely ϵ, starting from ϵ = 0 (zero RF energy), G2 is the sample second

moment of the M constellation points, Q = 2K is the number of real dimensions, and E[.] denotes

statistical expectation. Although G2 is a random variable, its variance approaches zero with 1/M . This is
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in contrast to the case of a K ×K MIMO-SBM for which the scaling of rate vs. SNR at low SNR is at

best (i.e., assuming feedback and water filling) limited to the largest eigenvalue of the channel matrix. This

means for low SNR values, a K ×K MIMO-SBM is essentially a two-dimensional channel (one complex

dimension) with an energy gain corresponding to the largest eigenvalue. For a Raleigh fading channel,

these are eigenvalues of a K × K random Wishart matrix1 for which the expected value of the largest

eigenvalue, although being increasing with K, is limited to 4 which is approached as K → ∞ [8]. In the

case of a K ×K MIMO-SBM, as SNR increases, water filling results in occupying more of the available

dimensions. See Fig. 3.
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Fig. 3: Effective dimensionality of legacy MIMO vs. media-based Modulation.

In comparing MBM vs. SBM, to have a fair comparison, one should ideally compare the outage capacity

of the two systems. However, a major benefit of MBM vs. SBM is that it changes the statistical behavior

of the end-to-end channel, and consequently that of the mutual information, and in particular reduces its

variance. This is due to the inherent diversity of MBM as each constellation point corresponds to a different

channel realization and consequently good and bad channel conditions contribute to any single transmission

(received constellation). This effect, which will be more pronounced at higher transmission rates, essentially

converts a static fading channel into an Additive White Gaussian Noise (AWGN) channel where the SNR

is determined by the received energy averaged over fading statistics. This is unlike MIMO-SBM where

diversity over a static fading channel can be improved only at the cost of a reduction in spectral efficiency.

In addition, such a fair comparison depends on the statistics of fading, and is further complicated by

the interplay between rate and diversity order in MIMO-SBM. For these reasons, although being to the

disadvantage of SIMO-MBM, the relative merits of MBM vs. SBM are studied in two different scenarios. A

first scenario, which focuses on the effect of the diversity inherent to MBM, primarily relies on SISO links

and compares SISO-MBM vs. SISO-SBM in terms of the outage capacity. A second scenario, which focuses

on the other features of MBM, compares SIMO-MBM vs. MIMO-SBM in terms of Ergodic capacity.

1Eigenvalues are in pairs of equal magnitudes corresponding to quadrature components.
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Next, the gain due to inherent constellation diversity in MBM is discussed. It is shown that the mutual

information across an AWGN channel with MBM tends to the capacity of the underlying AWGN channel

as (1/M)1/K , for M → ∞.

V. GAIN DUE TO INHERENT CONSTELLATION DIVERSITY

Assuming Raleigh fading, the components of the constellation points are random and follow an i.i.d.

Gaussian distribution. This is in agreement with random coding over an AWGN channel, however, the

constellation structure in MBM remains the same over subsequent transmissions instead of having in-

dependent realizations as is required in random coding. This causes some loss in the achievable rate as

compared to the capacity of the underlying AWGN channel, namely AWGN with an energy gain equal to the

statistical average of fading. The achievable rate is a random variable (depends on the specific constellation),

fluctuating around the capacity of the underlying AWGN channel. As the number of constellation points

increases, the variance of this random variable decreases, and the achievable rate will eventually tend to

the capacity of the underlying AWGN channel.

It is difficult to compute the mutual information across the channel shown in Fig. 1. The reason is that for

a given realization of the discrete input constellation, although the components of the constellation are i.i.d.

Gaussian (Raleigh fading), as the constellation structure remains the same, the distribution of the channel

output will not have a Gaussian distribution. In the following, a method is presented to compute, on the

average, the loss in the capacity as compared to a traditional AWGN channel for which a Gaussian random

code-book with i.i.d. Gaussian elements is used. Averaging is performed with respect to all possible discrete

random code-books, each corresponding to a different realization of the underlying M points constellation.

Let us normalize the statistical average of the Raleigh fading to one, power of the AWGN to σ2z , i.e.

N(0, σ2z), and consider two ensembles of random codes.

Ensemble I: A realization of the M -points constellation; i.e. a fixed set of M points with i.i.d Gaussian

components, its extension with equal probability for the M constellation points (i.e., cartesian product of

the given constellation), and a random code selecting a subset of cardinality C in this extension. This is

equivalent to using an i.i.d uniform distribution for random coding over the given M -points constellation.

Ensemble II: An ensemble of cardinality C with i.i.d Gaussian components of variance one, i.e., N(0, 1),

over time and spatial dimensions.

Consider the collection of such random codes, each corresponding to a different realization of the M

points constellation. To average the rate over different realizations of the M points constellation, which is

equivalent to time domain average over different code-books of Ensemble I, let us consider the cartesian

product of all such code-books. Let us also consider a similar cartesian product for ensembe II. These

cartesian products are called “composite ensembles” and their elements are called “composite code-words”.

Capital vector notation in Fig. 4(a) corresponds to such composite code-words, with the corresponding per

code-book components shown in Fig. 4(b). Let us select a codebook from each of these two composite

ensembles, and for each code-word in the composite codebook from Ensemble I, find the code-word in

the composite codebook from Ensemble II that is at the minimum square distance to it. This is equivalent

to quantization using minimum mean square error criterion. Let us denote the corresponding vector of
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quantization error by N⃗q, i.e. N⃗q =
⃗̂
X − X⃗ , and its per code-book components by n⃗q, as shown in

Fig. 4(a)(b). This setup allows us to tackle the bottleneck in providing a closed form solution for the

mutual informaition, as Y⃗ , and consequenclty ⃗̂
Y , in Fig. 4 are composed of i.i.d. Gaussian elements. Two

points need to be considered:

• Quantization noise, namely N⃗q, will be dependent on X⃗ .

• Mapping from X⃗ → Y⃗ is not one-to-one, because several X⃗ may be quantized to the same Y⃗ .

As a result, elements of Y⃗ occur with non-equal probabilities, even when elements of X⃗ have

equal probabilities. Although elements of Y⃗ occur with non-equal probabilities, it does not affect

the hardening effect in the underlying Gaussian channel and ⃗̂
Y will have a uniform distribution over

a spherical region at the channel output. This means ⃗̂Y satisfies the conditions for sphere hardening

which is the basis for achieving error free transmission (see proof of AWGN capacity in [10]). This

guarantees error free transmission if the mutual information across the concatenated channel, i.e.,

from X⃗ to ⃗̂
Y , is sufficient. Indeed, including the non-equal probability of points would enable using

Maximum A Posteriori (MAP) decoding instead of Maximum Likelihood (ML), which would only

reduce the probability of error.

Noting Ergodicity, time domain average over the setup in Fig. 4(a) is replaced with statistical average

over the setup in Fig. 4(b). The following steps are taken to simplify the computation of the statistical

average over Fig. 4(b):

1) The dependency among the components of the quantization noise is ignored.

2) The combined additive noise, namely n⃗q+ z⃗, is replaced with an i.i.d Gaussian noise, with a variance

conditioned on the constellation point, h⃗.

These two steps ignore the dependency among the components of the quantization noise, and replace it with

an additive Gaussian noise with a variance conditioned on the input h⃗. As a result of these two steps, the

entropy of the total additive noise (Gaussian noise, plus quantization noise) is replaced by an upper-bound

(memory is ignored and distribution is assumed to be i.i.d. Gaussian). Note that, as the distribution of Y⃗

and ⃗̂
Y is i.i.d. Gaussian prior to (regardless of) these two steps, entropy of the channel output in Fig. 4

will be that of a Gaussian, and these two steps result in a lower bound on the mutual information (entropy

of the additive noise is upper-bounded without affecting the entropy of the output).

As long as the resulting lower bound on the mutual information between input X⃗ and output ⃗̂Y is

sufficient, reliable decoding of X⃗ would be possible. This imposes a limit on the cardinality of the input

messages, i.e.,

log2(C ) ≤ I (⃗h; ⃗̂y). (1)

Appendix B shows that, as M → ∞,

σ2
nq |⃗h

≃
(

1

M

)2/Q

→ 0, as M → ∞. (2)

As a result, the time average of the capacity of setup in Fig. 4(a), which is equal to the statistical average

of the capacity of setup in Fig. 4(b), tend to the capacity of a K×K AWGN channel with identity channel

matrix (this is the same as the capacity of K parallel AWGN channels with K times energy harvesting).
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VI. TIME SHARING, SHAPING GAIN AND SELECTION GAIN

The following question, although intuitively obvious, may arise. Given a set of constellation points and

noise power, can time sharing between two energy values improve the mutual information? This question

can be addressed in two cases, namely: (1) enhanced time-sharing, where some additional information is

embedded in the time-sharing coefficients, and (2) simple time-sharing. It is straightforward to see that

enhanced time-sharing is equivalent to embedding some information in the so-called source-code book

introduced earlier, and can indeed improve the mutual information. This is similar to legacy setups. In the

case of simple time-sharing, first it is straightforward to show that in media-based modulation, similar to

legacy systems, mutual information over AWGN channel will be function of the “ratio of signal power to

the noise power, i.e., SNR, and the curve of the mutual information vs. energy will be a monotonically

increasing concave function and as a result simple time-sharing between energy values does not increase

the mutual information.

In legacy constellations, using the constellation points with equal probability results in the loss of shaping

gain. However, in a media-based modulation, constellation points will asymptotically have a Gaussian

distribution (assuming Raleigh fading), which in turn means the shaping gain will be inherently realized in

full. In addition, in a non-adaptive setup, which is the more attractive scenario for the use of media-based

modulation, all the constellation points are independently generated with the same distribution while the

transmitter is oblivious to the actual realization. As a result, it follows that the constellation points should

be used with equal probability. Motivated by these observations, and to simplify the encoding procedure

in adaptive setups, we assume the constellation points in a media-based constellation are used with equal

probability.

If the constellation points are restricted to have equal probability, selecting a subset of them can increase
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the mutual information. The optimum solution, i.e., selecting the subset of points that maximizes the mutual

information, may be too complex. There are two relevant observations: 1) as the SNR increases a larger

subset of constellation points should be used, and 2) the slope of the mutual information vs. energy at

low SNR is determined by the sample second moments of the selected subset (see appendix, and note that

assuming a symmetrical constellation, the sample first moment will be zero). These observations motivate

selecting the subset of points with highest energy, which maximizes the slope of the rate at zero SNR.

Figure 13 shows an example for the gains achievable through such selection, including a comparison

between optimum selection and selection with the highest sample second moment which is seen to perform

very close to optimum. As very low SNR, the slope of the mutual information vs. energy will scale with

the maximum norm of the constellation points. Appendix B contains mathematical derivations regarding

this gain, which analogous to the multi-user diversity gain (scheduling gain) which is known to scale with

logarithm of the cardinality.

VII. EQUALIZATION

In legacy systems, where channel is fixed and linear, optimum equalization over an AWGN channel

entails orthogonalization of the channel (using the channel input eigen-functions) and performing water

filling according to the eigenvalues. This converts the channel into a set of parallel sub-channels with

gains equal to the respective eigenvalues [9]. For a band-limited frequency flat channel of gain G, the

corresponding eigenvalues will be all equal to G. In this case, the optimum receiver will be a matched

filter with a sinc-function impulse response. In applying media-based modulation over such a channel, the

value of G, which represents the constellation point, varies from symbol-to-symbol according to the input

data. This means for all channel configurations (constellation points) the optimum receiver is the same

sinc-function. As a result, a simple matched filter receiver will be optimum regardless of the particular

constellation point. This desirable feature (frequency flat channel), which simplifies the task of equalization

in media-based modulation, is a valid model for narrow-band channels. This makes Orthogonal Frequency

Division Multiple Access (OFDMA), where narrow-band orthogonal sub-channels (tones) are allocated to

separate (in space) transmitters, is a proper candidate to realize media-based modulation with a simple

channel equalizer. Note that the only requirement is that the transmitting nodes, each occupying a small

number of adjacent narrow band tones, be sufficiently separated in space. Examples include: i) interfering

links (separate transmitter/receiver pairs) operating over non-overlapping narrow-band sub-channels (a group

of adjacent tones), and ii) uplink transmission where distant transmitters use non-overlapping sub-channels

to communicate to a common receiver. It should be added that in OFDM/OFDMA transmission, the cyclic

prefix added in time results in a waste of bandwidth and possibly waste of transmit energy. Indeed, if the

OFDM is composed of N tones and a cyclic prefix of length CP , the receiver structure extracts N time

samples from the received N +CP samples for the Fast Fourier Transform (FFT). In this case, if the if the

length of the channel impulse response is less than CP , the receiver will have flexibility where to select

the N FFT samples, resulting in several versions of the received signal with dependent noise. The loss is

energy due to the transmission of the cyclic prefix can be partially compensated by coherent combining

over such replicas of the transmitted signal. All these arguments are valid for the case of using OFDMA for
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media-based modulation. Note that in using MBM with OFDMA, the channel is kept the same throughput

each OFDM symbol, and is changed from OFDM symbol to OFDM symbol.

Next we discuss how to reduce the waste of bandwidth in the case of point-to-point OFDM.

A. OFDM with repetition coding across tones

First of all, if the channel is kept constant during each OFDM symbol (changed from OFDM symbol

to OFDM symbol), transmitter can modulate data in different tones using conventional SBM, with the

particular channel impulse response selected by the MBM part modulating all the tones. In this case,

the SBM over different tones can act as redundancy where the constellation points in different tones are

scrambled to increase the minimum distance. Such a setup will perform better than simple repeation coding

with maximum ratio combining. This essentially recovers the loss in bandwidth, by using the additional

transmissions as channel coding redundancy.

B. OFDM with up-sampling

Advantages of OFDM come at the price of a loss in bandwidth and energy efficiency due to the

transmission of cyclic prefix. A solution for using OFDM with MBM is to reduce the number of tones.

However, as the number of OFDM tones reduces, this waste will relatively increase. A partial solution to

this problem is to use a larger sampling rate and modulating a small number of tones in the bandwidth

of interest, while the rest of the band is left empty to avoid interference to units operating over adjacent

frequency bands.

On the other hand, if the channel is wideband, the entire channel impulse response varies according to

the input data and above simple equalization is not optimum any longer. For such cases (single carrier

transmission over wide-band channels), receivers of legacy systems rely on methods such as channel

inversion, decision feedback or sequence estimation using probability propagation. Among these, channel

inversion is not applicable to the case of media-based modulation, as the channel is changing with time.

In this case, one can still rely on sequence estimation. This can be achieved, for example, by using a state

diagram to capture the collective effect of the sequence of impulse responses on consecutive time samples,

and thereby track the sequence of transmitted symbols. In particular, methods based on iterative decoding

using probability propagation between such a soft output sequence estimator and a soft output channel

decoder can be applied.

VIII. TRAINING AND TRACKING

Legacy modulation schemes are sensitive to and suffer from non-idealities such as: (1) I/Q imbalance,

(2) non-linear amplification, and (3) limited PA efficiency. Most of these shortcomings disappear in the case

of media-based modulation. On the other hand, in media-based modulation, one should rely on a training

phase with a complexity that grows linearly with the number of constellation points. As mentioned earlier,

two bits of information can be embedded in the carrier sign change and exchanging the role of I and Q.

This feature can be used to reduce the number of training symbols by a factor of 22K , where K is the
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number of receive antennas. The small variations (in time) in the structure of the received constellation can

be tracked and adjusted using decision feedback, in conjunction with occasional retransmission of training

phase. In this case, it will be sufficient to retransmit only a subset of constellation points in subsequent

phases of training and rely on interpolation to estimate the changes in the rest of constellation points.

IX. NUMERICAL RESULTS

Figure 4 primarily shows the effect of the constellation diversity and captures the relative performance of

MBM vs. SBM in terms of outage behavior. Figure 5 shows the relative performance of MBM vs. SBM in

terms of Ergodic capacity for SBM. This captures the effect of noise independence over receive dimensions

for MBM. Figure 9 shows capacity of a 256 QAM in comparison with a random MBM constellation with

256 points. As seen in Fig. 9, the mutual information of a constellation with 256 points is relatively close

to that of 256QAM constellation, with minor fluctuations (see the example shown in the sub-figure for a

particular SNR of 15dB). Sub-figure in Fig. 9 shows that subject to about one dB of energy over-budgeting

(as compared to AWGN), the SISO-MBM will have a reliable performance, but the SISO-SBM requires

30dB to 50dB over-budgeting of SNR relative to the benchmark corresponding to AWGN channel. Figur 13

shows the effect of selecting a subset of a set of random points to maximize the mutual information subject

to equal probability for the selected points (selection gain). As seen, a simple rule based on selecting a

subset of points with highest sample energy achieves a performance close to the best selection.

Fig. 5: Outage capacity of SISO-SMB vs. SISO-MBM.

X. CANDIDATES FOR RF CHANNEL PERTURBATION

Traditional RF beam forming schemes aim at concentrating energy in certain directions to increase

received SNR. On the other hand, in MBM, the aim is to cause random variations in the received signal,
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Fig. 6: Outage capacity of SIMO-SMB vs. SIMO-MBM for two antennas.

Fig. 7: Outage capacity of SIMO-SMB vs. SIMO-MBM for four antennas.
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Fig. 8: Outage capacity of SIMO-SMB vs. SIMO-MBM for four antennas.

Fig. 9: Random SISO-MBM constellation vs. regular Quadrature Amplitude Modulation (QAM).



16

Fig. 10: Ergodic capacity of SIMO-SBM vs. SIMO-MBM for two antennas.

Fig. 11: Ergodic capacity of SIMO-SBM vs. SIMO-MBM for four antennas.
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Fig. 12: Ergodic capacity of SIMO-SBM vs. SIMO-MBM for eight antennas.

Fig. 13: Selection gain in a 256 points constellation.
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without the need to know and/or control the imposed variations, neither to focus the energy. This objective

is easier to realize as compared to traditional RF beam forming. In spite of these differences, many of

the techniques developed for RF beam forming are applicable to MBM, including: Methods for changing

property of a wave-guide by surface plasma generated through light sources, or leaky wave antenna (based

on a waveguide with tunable surface leakage). Creating surface plasma in an external to antenna parasitic

object, e.g. using light intensity to change plasma depth causing a tunable impendence surface. Tunable

impedance surface as an external to antenna parasitic element, e.g. by changing the permeability of ferrite

via a current-carrying coil) changing the permittivity of ferroelectric material via a bias voltage, using

meta-material as a parasitic object with changeable refraction index. Figures 141516 show examples for

the practical realization of MBM. Figure 17 shows more details for oractical realization of an RF mirror

using a periodic switched structure. Figure 17 shows examples of corresponding antenna patterns (simulated

using HFSS). Figure 18 shows examples for the realization of MBM constellation. Figure 20 shows the

indoor simulation environment for the MBM constellation in Fig. 19. Simulation are performed using HFSS

(Fig. 18) and Remcom Wireless Insite (Figs. 20 to 22).

Main radiating antenna 

Parasitic elements with  
Adjustable resonance  

frequency. 
 

Varactor, or switched  
Capacitor, which adjusts  

the resonance frequency of 
the parasitic element. 

Fig. 14: Example of a cylindrical structure with tunable parasitic elements surrounding a main transmit antenna.

Surfaces with 

controllable  

RF property, e.g.,  

one-off RF mirror  

Antenna sending a  

fixed/shaped carrier 

Fig. 15: Example of a cylindrical structure with on-off RF mirrors surrounding a main transmit antenna.
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Fig. 20: Examples of constellation points corresponding to the periodic switched structure in Fig. 17 and propagation

environments in Fig. 20 (constellation is made symmterical).
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Fig. 21: Two other examples of constellation points corresponding to the periodic switched structure in Fig. 17 (raw

constellation points).
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Indoor (residential building with dry-walls)   Outdoor Model (down-town Ottawa) 

Fig. 22: Indoor/Outdoor Propagation environments corresponding to the MBM constellation points shown in Fig. 21

.

APPENDIX A

SLOPE OF RATE VS. SNR AT SNR→ 0

Let us consider a single antenna transmitting a signal at power ϵ = α/Q, i.e., total receive power over

Q = 2K receive dimensions is α. We have,
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1

M
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where,
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(
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.

Using G1 and G2 to represent the first and the second sample moments of the set of M constellation points,

i.e.,

G1 ≡
1

M

M∑
i=1

h⃗i and G2 ≡
1

M

M∑
i=1

h⃗ih⃗
t
i

we obtain,
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This result in,
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)
If we spend ϵ = α/Q unit of power in transmitter then we have α = ϵQ unit of power in receiver. Thus:
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APPENDIX B

MUTUAL INFORMATION OF A FINITE RANDOM CONSTELLATION WITH I.I.D. GAUSSIAN POINTS

Consider the random coding scheme in Fig. 4, which selects the constellation points, h⃗(m), m =

1, . . . ,M , with equal probability. We have,

y⃗ = h⃗+ z⃗. (3)

Let us consider,
⃗̂y = h⃗+ n⃗q + z⃗ (4)
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where h⃗ + n⃗q, and consequently, ⃗̂y, has a Gaussian distribution. Using data processing theorem [9], we

have:

I (⃗h; y⃗) ≥ I (⃗h; ⃗̂y) (5)

I (⃗h; ⃗̂y) = h(⃗̂y)− h(⃗̂y | h⃗) (6)

= h(⃗̂y)− h(n⃗q + z⃗ | h⃗)

=
1

2
log(2πeσ2⃗̂y)− h(n⃗q + z⃗ | h⃗)

To obtain a computable lower bound on the capacity, the entropy of the combined additive noise, i.e.,

n⃗q + z⃗, is upper-bounded by the entropy of an i.i.d. Gaussian noise of the same conditional variance. This

results in,

E
h⃗

[
I (⃗h; ⃗̂y)|⃗h

]
≥ Q

2
log
(
2πeσ2ŷ

)
−QE

h⃗

[
1

2
log
(
2πeσ2z + 2πeσ2nq

)
| h⃗
]

(7)

where σ2ŷ = 1+σ2z (signal power is normalized to one) and σ2nq
is the variance of the quantization noise per

dimension. Inequality 7 holds since entropy of n⃗q+ z⃗ is bounded by the entropy of an i.i.d. Gaussian vector

of the same variance. Noting convexity of the log function, we can further extend the chain of inequalities

using,

E
h⃗

[
1

2
log
(
2πeσ2z + 2πeσ2nq

)
| h⃗
]
≥ E

h⃗

[
1

2
log
(
2πeσ2z + 2πeσ2

nq |⃗h

)]
. (8)

For a given h⃗, let us use the notaion g⃗ to refer to the Gaussian vector at the minimum distance to h⃗, i.e.,

h⃗ is quantized to g⃗. We have,

σ2
nq |⃗h

=
1

Q
E
[
n⃗2q | h⃗

]
=

1

Q

∫
g⃗∈RQ

||⃗h− g⃗||
2
fG⃗|H⃗(g⃗ | h⃗)dg⃗ =

1

Q

∫
g⃗∈RQ

||⃗h− g⃗||2
fG⃗,H⃗(g⃗, h⃗)

fH⃗ (⃗h)
dg⃗. (9)

where fH⃗( .⃗ ), fG⃗,H⃗( .⃗ , .⃗ ) and fG⃗|H⃗( .⃗ | .⃗ ) are the marginal, conditional and joint distribution of h⃗ and g⃗,

respectively. Distributions fH⃗ (⃗h) and fG⃗(g⃗) will be subsequently replaced with N(⃗h) and N(g⃗) to denote

i.i.d. Gaussian.

Note that, by using the time average of mutual information in setup of Fig. 4(a), which is replaced

with the statistical average over the setup of Fig. 4(b), and using step above, power of quantization noise

is averaged over all possible realizations of the constellation. This results in simplifying the solution, by

avergaing over different realizations of the M -points constellation.

For the sake of clarity, let us explicitly include the index of the selected constellation point as a random

variable, resulting in,

σ2
nq |⃗h

=
1

Q

∫
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||⃗h− g⃗||2
∑M
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fH⃗ (⃗h)
dg⃗ (10)
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where index ǐ ∈ {1, ...,M} is used to reflect that the corresponding terms are all equal to each other,

fG⃗,H⃗,I(g⃗, h⃗, i) is the joint distrubtuion of the event: ith message is mapped to the constellation point h⃗,

which is qunantized to g⃗.

Note that the event,

{G⃗ = g⃗, H⃗ = h⃗, I = ǐ} (11)

is equivalent to:

{G⃗ = g⃗, h⃗(̌i) = h⃗, h⃗(j) /∈ SQ(g⃗, ||⃗h− g⃗||), ∀j ̸= ǐ}, (12)

where,

SQ(o⃗, r) = {x⃗ ∈ RQ : ||x⃗− o⃗|| ≤ r} (13)

is a sphere of radius r centered at o⃗. Note that 12 captures the operation of quantization. Using N( .⃗ )

to show the joint density of a Gaussian vector with zero mean and unit variance, we can rewrite (10) as

follows:

M

Q

∫
g⃗∈RQ

||⃗h− g⃗||
2N(⃗h)N(g⃗)

(
1− P(g⃗, h⃗)

)M−1

N(⃗h)
dg⃗ (14)

where P(g⃗, h⃗) is the probability of event {h⃗ ∈ SQ(g⃗, ||⃗h − g⃗||)} which is the probability that a Gaussian

point falls in a Q-dimensional hyper-sphere, SQ, centered around g⃗ with radius r = ||⃗h− g⃗||. This means,

P(g⃗, h⃗) =
∫

x⃗∈SQ(g⃗,||⃗h−g⃗||)

N(x⃗)dx⃗ (15)

Applying the inequality ln(A) ≤ A− 1, ∀A > 0 to 14, results in

M

Q
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2
N(g⃗)

(
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−(M − 1)P(g⃗, h⃗)

]
dg⃗ (16)

The leading asymptotic behaviour of the integral in 16 is obtained by following Laplace method. Consider

integrals of general form:

S(M) =

∫ b

a
ψ(x) exp [Mϕ(x)] dx (17)

If the real continuous function ϕ(x) has its maximum in the interval a ≤ x ≤ b at an intermediate point

x = c, then it is only the immediate neighbour of x = c that contributes to asymptotic expansion of S(M).

In our case,

S(M) =
M

Q

∫
g⃗∈RQ

N(g⃗)||⃗h− g⃗||
2
exp

[
−(M − 1)P(g⃗, h⃗)

]
dg⃗.
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On the other hand, ϕ( . ) = −P(g⃗, h⃗) is maximized at g⃗ = h⃗. For this reason, for large values of M , the

leading asymptotic behavior of the intergral is governed by values of g⃗ within a small sphere, say of radious

r0, around h⃗. To find the first order term of the asymptotic behaviour, we may approximate the integral as,

S(M) ≃ M

Q

∫
g⃗∈SQ (⃗h,r0)

N(g⃗)||⃗h− g⃗||
2
exp

[
−(M − 1)P(g⃗, h⃗)

]
dg⃗ (18)

where r0 is small enough such that P(g⃗, h⃗), i.e., the integration of Gaussian distribution over hyper-sphere

SQ(⃗h, r0), can be approximated with N(⃗h) times the corresponding volume. On the other hand, due to

spherical symmetry of multivariate Gaussian distribution, σ2
nq |⃗h

only depends on norm ||⃗h||, hence it only

suffices to compute the conditional variance for points of the form h⃗ = ||⃗h||√
Q
(1, ..., 1)Q, where (1, ..., 1)Q is

the all-one vector of size Q. Therefore,

S(M) ≃M
Q

∫
g⃗∈RQ

N(⃗h)

(g1 − ||⃗h||√
Q

)2

+ ...+

(
gQ − ||⃗h||√

Q

)2


exp

−(M − 1)N(⃗h)
πQ/2

Γ(Q/2 + 1)

(g1 − ||⃗h||√
Q

)2

...+

(
gQ − ||⃗h||√

Q

)2
Q/2

 dg1...dgQ

Hence,

lim
M→∞

M

Q

∫
g⃗∈RQ

N(g⃗)||⃗h− g⃗||
2
exp

[
−(M − 1)P(g⃗, h⃗)

]
dg⃗

≃M
Q

∫
g⃗∈RQ

N(⃗h)

(g1 − ||⃗h||√
Q

)2

+ ...+

(
gQ − ||⃗h||√

Q

)2


exp

−(M − 1)N(⃗h)
πQ/2

Γ(Q/2 + 1)

(g1 − ||⃗h||√
Q

)2

...+

(
gQ − ||⃗h||√

Q

)2
Q/2

 dg1...dgQ (19)

The integral in (19) can be computed using change of variables:

M

Q

∫
r∈R

N(⃗h)r2 exp

[
−(M − 1)N(⃗h)

πQ/2

Γ(Q/2 + 1)
rQ
]

πQ/2

Γ(Q/2 + 1)
drQ

=
M

Q

∫
s∈R

N(⃗h)

[
sΓ(Q/2 + 1)

πQ/2

]2/Q
exp

[
−(M − 1)N(⃗h)s

]
ds

=
2Γ(2/Q+ 1)

Q

[
Γ(Q/2 + 1)

M

]2/Q
exp

(
||⃗h||2

Q

)
. (20)

Finally, we obtain:

σ2
nq |⃗h

≃ 2Γ(2/Q+ 1)

Q

[
Γ(Q/2 + 1)

M

]2/Q
exp

(
||⃗h||2

Q

)
. (21)

This means

σ2
nq |⃗h

≃
(

1

M

)2/Q

→ 0, as M → ∞.

Figure (23) shows an example for the accuracy of the expressions computed above.
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Fig. 23: An example for the accuracy of the capacity exressions presented in Appendix B. Curve specified as

“Simulation of the analytical bound” correspond to using monte-carlo simulaiton for cimpute the integral in (9),

and the curve specified as “Simplified analytical bound” corresponds to using (21).

APPENDIX C

MAXIMUM SQUARE NORM, AND SELECTION GAIN AT LOW SNR VALUES

Let X1:M , X2:M , ..., XM :M be order statistics obtained from samples X1, ..., XM . It is well known that

for any continuous Cumulative Distribution Function F (x), the s’th order statistic of M random variables,

Xs:M = F−1(Us:M ) (22)

where Us:M is the s’th order statistic of standard uniform distribution. By expanding F−1(Us:M ) in Taylor

expansion around E[Us:M ] = s
M+1 and then taking expected values of both side, the following expansion

for expected value of the s’th order statistic of M random variables is obtained:

E[Xs:M ] ≃ F−1(ps) +
psqs

2(M + 2)
D2(ps)+

psqs

(M + 2)2
[
1/3(qs − ps)D

3(ps) + 1/8(qsps)D
4(ps)

]
(23)

where Di = (F−1)i represents the i’th order derivative of F−1 and ps = 1−qs = s
M+1 . For a large sample

the expected value of s’th order statistic can be approximated by the first term in (23),

E[Xs:M ] ≃ F−1

(
s

M + 1

)
(24)
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In case of M points generated i.i.d according to Gaussian distribution, the square norm has a chi-squared

distribution and cumulative distribution function can be expressed in terms of lower incomplete gamma

function as,

F (||⃗h||2;Q) = 1− Γ(Q/2, ||⃗h||2/2)
Γ(Q/2)

(25)

where Q is the number of dimensions. For large enough ||⃗h||2, equation 25 can be approximated as,

F (||⃗h||2;Q) ≃ 1− (||⃗h||2)Q/2−1e−||⃗h||2

Γ(Q/2)
(26)

Hence, for s close enough to M , the quantile function which is the inverse of CDF is written in terms

of Lambert W-function, W−1. Consequently, expected of value of s’th order statistic for square norm of

Gaussian random variables is approximated as follows:

E[||⃗h||2s:M ] ≃ −2(Q/2− 1)W−1

(
−1

Q/2− 1

[
Γ(Q/2)

(
1− s

M + 1

)] 1

Q/2−1

)

≃ −2(Q/2− 1)

(
ln

[
−1

Q/2− 1

(
Γ(Q/2)

[
1− s

M + 1

]) 1

Q/2−1

])

− ln

(
− ln

[
−1

Q/2− 1

(
Γ(Q/2)

[
1− s

M + 1

]) 1

Q/2−1

.

])
(27)

Therefore,

E[||⃗h||2s:M ] ≃ 2

[
(Q/2− 1) ln(Q/2− 1) + ln

(
M + 1

Γ(Q/2)(M + 1− s)

)]
+ (Q/2− 1) ln

(
− ln

(
−1

Q/2− 1

[
Γ(Q/2)(1− s

M + 1
)

] 1

Q/2−1

))
(28)

The leading asymptotic behaviour for the expected value of the maximum square norm of M independent

Gaussian random can be obtained by replacing s by M in 28:

E
[
max

(
||⃗h(1)||2, ..., ||⃗h(M)||2

)]
= E[||⃗h||2M :M ] ≃

2

(
(Q/2− 1) ln(Q/2− 1) + ln

[
M + 1

Γ(Q/2)

])
+ (Q/2− 1) ln

(
− ln

[
− Γ(Q/2)

(M + 1)(Q/2− 1)

] 1

Q/2−1

)
(29)

Finally,

E
[
max

(
||⃗h(1)||2, ..., ||⃗h(M)||2

)]
= E[||⃗h||2M :M ] ≃

2

(
(Q/2− 1) ln(Q/2− 1) + ln

[
M + 1

Γ(Q/2)

])
+ (Q/2− 1) ln

(
ln

[
(M + 1)(Q/2− 1)

Γ(Q/2)

] 1

Q/2−1

)
(30)

Ignoring the ln ln(.) term, we obtain:

E
[
max

(
||⃗h(1)||2, ..., ||⃗h(M)||2

)]
≃ H(Q) + ln(M + 1),



29

where

H(Q) = 2 [(Q/2− 1) ln(Q/2− 1)− ln Γ(Q/2)] .

Table (I) shows the values of the offset term, H(Q), for different values of Q. We have H(Q) ≃ K = 2Q

for large K.

K = 2Q 2 4 8 16 32 64

H(Q) 0 1.5 5 12.7 28.4 60

TABLE I: Example for the values of H(Q) as a function of K = 2Q, K is the number of receive antennas.

Figure (24) shows examples for the accuracy of the expressions computed above.
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Fig. 24: An example for the accuracy of the capacity exressions presented in Appendix B.


