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Abstract

In this paper, a downlink communication system, in which a Base Station (BS) equipped with

M antennas communicates with N users each equipped with K receive antennas, is considered. An

efficient suboptimum algorithm is proposed for selecting a set of users in order to maximize the sum-

rate throughput of the system. For the asymptotic case when N tends to infinity, the necessary and

sufficient conditions in order to achieve the maximum sum-rate throughput, such that the difference

between the achievable sum-rate and the maximum value approaches zero, is derived. The complexity

of our algorithm is investigated in terms of the required amount of feedback from the users to the base

station, as well as the number of searches required for selecting the users. It is shown that the proposed

method is capable of achieving a large portion of the sum-rate capacity, with a very low complexity.
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I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems have proved their ability to achieve high

bit rates on a scattering wireless network [1]. In a MIMO broadcast channel, the base station

equipped with multiple antennas communicates with several multiple-antenna users. Recently,

there has been a lot of interest in characterizing the capacity region of this channel [2], [3],

[4], [5]. In [2]- [4], it has been shown that the sum-rate capacity of MIMO broadcast channels

can be achieved by applying dirty-paper coding (DPC) [6] at the transmitter. Practical schemes

for approximate implementation of DPC are proposed in [7], [8], [9], [10], [11], [12]. However,

achieving the theoretical limits promised by DPC faces many challenges.

In a network with a large number of users, the base station can increase the throughput by

selecting the best set of users to communicate with. This results in the so-called “multiuser

diversity” gain [13], [14]. However, achieving the optimum multiuser diversity gain requires an

exhaustive search over all possible combination of the users, which is not practical for large-scale

networks. To overcome this problem, references [15] and [16] propose sub-optimum methods

for user selection. These methods exploit the multiuser diversity gain, but are based on assuming

DPC at the base station.

To avoid the complexity of DPC, the simple precoding scheme of “zero-forcing beam-forming”,

which is also called “channel inversion”, is considered by some authors [17], [18], [19], [20]. In

these works, it is assumed that the users are equipped with a single antenna. Using zero-forcing

beam-forming, the downlink channel with M transmit antennas is decomposed into N ≤ M

interference-free subchannels, serving N users. Unfortunately, in cases that the number of users

is equal to the number of transmit antennas, this method does not offer a good performance [20].

However, the case of N > M is more common in practical networks. In this case, selecting
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the best set of users improves the performance of this scheme significantly [5] , [21] (multiuser

diversity gain). Due to the high complexity of selecting the best set, reference [22] proposes a

suboptimum algorithm for user selection in order to maximize the sum-rate. This algorithm is

based on using zero-forcing beam-forming at the transmitter. The complexity of this algorithm

is shown to be O(M3N).

To achieve a good performance by using zero-forcing beam-forming, the selected sub-channels

must have high gains and be nearly orthogonal to each other. As the number of users increases,

it becomes easier to satisfy these requirements. However, the exhaustive search for selecting

the best set of users is very complex. In [23], the authors propose a suboptimum algorithm for

selecting such a set of users in a downlink environment with large number of single-antenna

users. This algorithm is similar to the greedy algorithm proposed in [15], with the difference in

using an orthogonality threshold for selecting the users in each step. As a result, the channel

vectors of the selected users become nearly orthogonal to each other with considerable gains.

It has been shown that using this algorithm, the optimum sum-rate throughput of the system

is asymptotically achieved as N →∞. However, in their approach, the base station must have

perfect Channel State Information (CSI) for all users.

To avoid the huge amount of feedback required by providing perfect CSI to the base station,

reference [24] proposes a downlink transmission scheme based on random beam-forming relying

on partial CSI at the transmitter. In this scheme, the base station randomly constructs M

orthogonal beams and transmits data to the users with the maximum Signal to Interference

plus Noise Ratio (SINR) for each beam. Therefore, only the value of maximum SINR, and the

index of the beam for which the maximum SINR is achieved, are fed back to the base station

for each user. This significantly reduces the amount of feedback. Reference [24] shows that
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when the number of users tends to infinity, the optimum sum-rate throughput can be achieved.

However, for practical number of users, it does not perform well [23].

In this paper, we consider a MIMO-BC with large number of users and propose an efficient

sub-optimum algorithm that assigns the coordinates of transmission space to different users in

order to achieve the best performance in terms of the sum-rate throughput. It is assumed that the

zero-forcing beam-forming is used at the base station as the precoding scheme. The algorithm

starts by setting a threshold value. By applying Singular Value Decomposition (SVD) to all users’

channel matrices, only the eigenvectors whose corresponding singular values are above the set

threshold are considered. Then, among these candidate eigenvectors, the algorithm chooses a

set of size M which are nearly orthogonal to each other. For the asymptotic case of N → ∞,

we give the necessary and sufficient conditions for the threshold value in order to achieve the

optimum sum-rate capacity, such that the difference between the sum-rates approaches zero.

The proposed algorithm follows the same approach as that of [23], with a difference in the

user selection strategy. The main advantage of our algorithm is that the coordinates are selected

among the eigenvectors with singular values above a given threshold, and for the rest of the

eigenvectors no information is sent to the base station. Therefore, the complexity of search and

the amount of feedback required at the base station is significantly reduced. Indeed, we give the

necessary and sufficient conditions for the threshold value in order to achieve the optimum sum-

rate, such that the difference between the achievable sum-rate and the optimum value approaches

zero.

This paper is organized as follows. In section II, we introduce the system model, and describe

the proposed algorithm. Sections III and IV are devoted to analyzing the performance, in terms

of the sum-rate throughput, and the complexity of our proposed algorithm, respectively. Finally,
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section V concludes the paper.

Throughout this paper, the norm of the vectors are denoted by ‖.‖, the Hermitian operation is

denoted by (.)∗, and the determinant and the trace operations are denoted by det(.) and Tr(.),

respectively. E{.} represents the expectation, notation “ln” is used for the natural logarithm,

and the rates are expressed in nats. RH(.) represents the right hand side of the equations. For

any given functions f(N) and g(N), f(N) = O(g(N)) is equivalent to limN→∞
∣∣∣f(N)

g(N)

∣∣∣ <

∞, f(N) = o(g(N)) is equivalent to limN→∞
∣∣∣f(N)

g(N)

∣∣∣ = 0, f(N) = Ω(g(N)) is equivalent to

limN→∞
f(N)
g(N)

> 0, f(N) = ω(g(N)) is equivalent to limN→∞
f(N)
g(N)

= ∞, and f(N) = Θ(g(N))

is equivalent to limN→∞
f(N)
g(N)

= c, where 0 < c <∞.

II. SYSTEM MODEL

In this work, a MIMO-BC in which a base station equipped with M antennas communicates

with N users, each equipped with K antennas, is considered. The channel between each user

and the base station is modeled as a zero-mean circularly symmetric Gaussian matrix (Rayleigh

fading). The received vector by user k can be written as

yk = Hkx+ nk, (1)

where x ∈ CM×1 is the transmitted signal, Hk ∈ CK×M is the channel matrix from the

transmitter to the kth user (assumed to be known at the receiver side), and nk ∈ CK×1 ∼

CN (0, IK) is the noise vector at this receiver. We assume that the transmitter has an average

power constraint P , i.e. E {Tr(xx∗)} ≤ P . We consider a block fading model in which each

Hk is constant for the duration of a frame. The frame itself is assumed to be long enough to

allow communication at rates close to the capacity.
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The maximum achievable sum-rate capacity in MIMO-BC, denoted as ROpt, is equal to [2]

ROpt = E



 max

QnP
Tr(Qn)=P

log det

(
IM +

N∑
n=1

H∗
nQnHn

)

 , (2)

where Qn is the transmit covariance matrix of the nth user, and the expectation is taken over

the channel matrices H1, · · · ,HN . The capacity achieving transmission strategy is shown to

involve at least M , and at most M2 data streams in total [25]. However, experimental results

show that M data streams are adequate to achieve a significant portion of the capacity [15],

[16].

As discussed earlier, the capacity achieving strategy in a downlink environment requires

applying dirty-paper coding at the base station, which is not practical in many applications. For

this reason, it is desirable to utilize a precoding scheme with less complexity. Among the known

precoding schemes, zero-forcing beam-forming has received considerable attention, as it uses a

simple structure of channel matrix inversion. This scheme results in having M interference-free

sub-channels. Although this scheme does not yield a good performance for the case M = N

[20]1, for the case of N > M , which is more common in wireless networks, by selecting an

appropriate set of dimensions, the corresponding performance is shown to be good [23], [22],

[26]. In this work, using zero-forcing beam-forming at the base station, we propose an efficient

algorithm to find M coordinates for data transmission, focusing on maximizing the sum-rate

throughput.

III. PROPOSED ALGORITHM

As mentioned earlier, to maximize the sum-rate using zero-forcing beam-forming, the selected

eigenvectors must be nearly orthogonal to each other, and their corresponding singular values be

1The result is derived for the case of single-antenna users
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sufficiently large. The measure of orthogonality between two M × 1 vectors υ and ψ is defined

as,

z(υ,ψ) =
|υ∗ψ|2

‖υ‖2‖ψ‖2
. (3)

It is evident that the smaller is z(υ,ψ), the more orthogonal will be υ and ψ.

Using Singular Value Decomposition (SVD), Hk can be written as

Hk = U kΛkV
∗
k, (4)

where Λk is a K ×M diagonal matrix containing the singular values of Hk, U k and V k are

K×K and M ×M unitary matrices, respectively. Multiplying both sides of (1) by U ∗
k,j , where

U k,j is the jth column of U k, it is easy to show that

rk,j = gk,jx+ wk,j. (5)

In the above equation, rk,j = U ∗
k,jyk, gk,j =

√
λj(k)V

∗
k,j , where V k,j is the jth column of

V k and
√
λj(k) is the jth singular value of Hk, corresponding to V k,j , and wk,j ∼ CN (0, 1)

is AWGN. This equation suggests that for selecting the dimensions with high gains, the norm

of the equivalent channel introduced by (5), namely gk,j , which is equal to
√
λj(k), can be

compared with a threshold. This threshold is set by the base station at the beginning of the

transmission. Using such a threshold reduces the amount of feedback and the size of search

space for selecting the coordinates. To satisfy the orthogonality criterion, the base station can

perform an exhaustive search for finding the “most orthogonal set”2 among the pre-selected

eigenvectors. Due to the large complexity of exhaustive search, the coordinates can be chosen

one by one. In other words, in each step the eigenvector which is the most orthogonal to the

2In general, the orthogonality of a set {hi}M
i=1 can be measured by the orthogonality defect, defined as

QM
i=1 ‖hi‖2

det(HH∗)
, where

H = [hT
1 | · · · |hT

M ]T .
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previously selected coordinates, is selected. The first coordinate is chosen as the eigenvector with

the maximum corresponding singular value. The steps of the algorithm are given in the following:

Proposed Algorithm (Algorithm 1):

1. Using SVD, each user computes the eigenvectors and singular values of its channel matrix

and sends back the singular values which are larger than a predetermined threshold t, along

with their corresponding “right” eigenvectors, to the base station. The indices of these

eigenvectors form the following set:

S0 = {(k, j)| λj(k) > t}. (6)

2. Base station selects the index in S0, corresponding to the maximum eigenvalue. Let us

define this index as (s1, d1), i.e., the d1th eigenvector of the s1th user.

3. Define

S1 = S0 − {(s1, d1)},

and

γk,j(1) = z(V s1,d1 ,V k,j), ∀(k, j) ∈ S1, (7)

where z(., .) is defined in (3). Note that as ‖V k,j‖ = ‖V s1,d1‖ = 1, z(V s1,d1 ,V k,j) =

|V ∗
s1,d1

V k,j|2.

4. For 2 ≤ m ≤M , repeat the followings:

(sm, dm) = arg min
(k,j)∈Sm−1

γk,j(m− 1)

Sm = Sm−1 − {(sm, dm)}

γk,j(m) = z(V sm,dm ,V k,j) + γk,j(m− 1), ∀(k, j) ∈ Sm. (8)
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In the above, γk,j(m−1) =
∑m−1

i=1 z(V si,di
,V k,j) is used as the measure of orthogonality between

a candidate eigenvector V k,j and the set of previously selected eigenvectors, {V si,di
}m−1

i=1 .

Since these eigenvectors are nearly orthogonal to each other by the algorithm, with a good

approximation, γk,j(m− 1) can be interpreted as the square magnitude of the projection of V k,j

over the sub-space spanned by {V si,di
}m−1

i=1 . It is obvious that the smaller is this projection, the

more orthogonal will be V k,j to this sub-space. The recursive structure of γk,j(m) facilitates its

computation at each step of the algorithm.

After selecting the dimensions, we construct the “selected coordinate matrix” as

H =
[
gT

s1,d1
| gT

s2,d2
| · · · | gT

sM ,dM

]T
. (9)

Using zero-forcing beam-forming, the transmitted vector x can be written as

x = H−1u, (10)

where u = [us1,d1 , · · · , usM ,dM
]T is the information vector. Using (5) and (10), the received

signal over the mth coordinate is equal to

rsm,dm = U ∗
sm,dm

ysm

= gsm,dm
x+ wsm,dm

= gsm,dm
H−1u+ wsm,dm

= usm,dm + wsm,dm . (11)

It can be seen that by applying zero-forcing beam-forming, the downlink channel is decomposed

to M interference-free sub-channels.
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IV. PERFORMANCE ANALYSIS

In this section, we examine the performance of our proposed algorithm in terms of the sum-rate

throughput. First, we consider the asymptotic case of N →∞.

A. Asymptotic Analysis

The sum-rate capacity of MIMO-BC has been shown to scale as M log logN , as N tends to

infinity [24]. This implies that to achieve the optimum sum-rate, the singular values corresponding

to the selected dimensions must behave like logN . In other words, the threshold value should

scale as logN . The following theorems indicates this fact with more details:

Theorem 1 The necessary condition to achieve limN→∞ROpt −RProp = 0 is having

t = logN + (M +K − 2) log logN − ρ(N), (12)

where ρ(N) satisfies

ρ(N) ∼ o(logN),

and

ρ(N) ∼ log log log logN + log[Γ(K)Γ(M)] + ω

(
1

log log logN

)
.

Proof - We show that by violating any of the above conditions, the optimum sum-rate can not

be achieved.

The necessity of ρ(N) ∼ o(logN):

It is sufficient to show that

lim
N→∞

t

logN
= 1. (13)
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For this purpose, we consider the following cases:

Case I; limN→∞ t = ∞, limN→∞
t

logN
< 1: The achievable sum-rate of the proposed method,

denoted by RProp, can be upper-bounded as

RProp ≤ E





max
PiPM

i=1 Pi=P

M∑
i=1

log(1 + Pi‖gsi,di
‖2)





= E





max
PiPM

i=1 Pi=P

M∑
i=1

log(1 + Piλdi
(si))




, (14)

where gsi,di
and λdi

(si) are defined in (5).

Since the optimum sum-rate is shown to be M log
(

P
M

logN +O(log logN)
)

[24], we have

ROpt −RProp ≥ M log

(
P

M
logN +O(log logN)

)
− E





max
PiPM

i=1 Pi=P

M∑
i=1

log(1 + Piλdi
(si))




,

= M log

(
P

M
logN +O(log logN)

)
−

E





max
PiPM

i=1 Pi=P

M∑
i=1

log(Piλdi
(si)) + log

(
1 +

1

Piλdi
(si)

)



. (15)

The right hand side of the above equation can be written as follows:

RH(15)
(a)

≥ min
PiPM

i=1 Pi=P

log

(
(P/M)M

∏M
i=1 Pi

)
+M log (logN +O(log logN))

−
M∑
i=1

E {log λdi
(si)}+O

(
1

t

)

= M log (logN +O(log logN))−
M∑
i=1

E {log λdi
(si)}+O

(
1

t

)

(b)

≥ M log (logN +O(log logN))− E
{

max
k=1,··· ,N

log λmax(Hk)

}

−(M − 1)E {log λ/λ > t}+O

(
1

t

)
, (16)
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where λmax(A) is the maximum singular value of AA∗, and λ is a random variable, denoting

an unordered eigenvalue of a K ×K Wishart matrix. (a) comes from using the approximation

log(1 + x) ∼ O(x), x ¿ 1, noting that the solution to the maximization problem (14) satisfies

Piλsi
(di) À 1, i = 1, · · · ,M . (b) results from the fact that excluding the largest maximum

singular value from the set of singular values, which are greater than t, reduces the expectation

in the second line of (16). In writing (b), we also used the fact that the eigenvectors and their

corresponding singular values of a circularly symmetric Gaussian matrix are independent. The

distribution of λ, denoting as f(λ) is derived in [1] as

f(λ) =
1

K

K−1∑
i=0

i!

(M −K + i)!
[LM−K

i (λ)]2λM−K exp(−λ), (17)

where LM−K
i (λ) is the associated Laguerre polynomial of order k [27]. Using the above equation,

it is easy to show that

E {log λ/λ > t} =

∫∞
t

log λf(λ)dλ

1− F (t)

= log t+

∫∞
t

1−F (λ)
λ

dλ

1− F (t)

∼ log t+O

(
1

t

)
. (18)

Indeed, we can write

E
{

max
k=1,··· ,N

log λmax(Hk)

}
≤ E

{
max

k=1,··· ,N
log ‖Hk‖2

}
, (19)

where ‖A‖2 denotes the Frobenius norm of matrix A. In [24], it has been shown that with

probability one,

max
k=1,··· ,N

‖Hk‖2 ∼ logN +O(log logN).

Therefore,

E
{

max
k=1,··· ,N

log λmax(Hk)

}
. log (logN +O(log logN)) (20)
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Combining (16), (18), and (20), we get

ROpt −RProp ≥ (M − 1) log
logN

t
+O

(
log logN

logN

)
+O

(
1

t

)
. (21)

Consequently, for limN→∞ t = ∞ and limN→∞
t

logN
< 1, limN→∞ROpt −RProp 6= 0.

Case II; limN→∞ t = c, where c is a constant: In this case, (16) can be written as

ROpt −RProp ≥ M log

(
P

M
logN +O(log logN)

)
−

M∑
i=1

E {log(1 + Pλdi
(si))}

≥ M log

(
P

M
logN +O(log logN)

)
− E

{
log

(
1 + P max

k=1,··· ,N
λmax(Hk)

)}

−(M − 1)E {log(1 + Pλ)/λ > t} . (22)

Similar to (20), it is easy to see that

E
{

log

(
1 + P max

k=1,··· ,N
λmax(Hk)

)}
. logP + log(logN +O(log logN)). (23)

Indeed, since E {log(1 + Pλ)} <∞, we have E {log(1 + Pλ)/λ > t} ∼ O(1). Hence,

ROpt −RProp ≥ (M − 1) log logN +O(1). (24)

As a result, limN→∞ROpt −RProp 6= 0. This completes the proof of

lim
N→∞

t

logN
< 1 ⇒ lim

N→∞
ROpt −RProp 6= 0.

Case III; limN→∞
t

logN
> 1: Let us define pk as the probability that the maximum singular

value of a randomly chosen user k is greater than t. In [16], it is shown that for a K×M matrix

A, whose entries are i.i.d Gaussian with zero mean and variance one, we have

Prob{λmax(A) > t} ∼ tM+K−2 exp(−t)
Γ(M)Γ(K)

[
1 +O

(
t−1

)]
. (25)

Therefore,

pk =
tM+K−2 exp(−t)

Γ(M)Γ(K)

[
1 +O

(
t−1

)]
, (26)
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which is independent of k, and we denote it with p. We define L as the number of users

whose maximum singular values are greater than t. Since L is a binomial random variable with

parameter p, E{L} = Np.

Using [28], Theorem 1, we can write

ROpt −RProp ≥ (1− p)N(R1 −RNCSI
A ), (27)

where R1 = E
{

max QnP
Tr(Qn)=P

log det
(
IM +

∑N
n=1H

∗
nQnHn

)∣∣∣∣A
}

, A is the event that L =

0, and RNCSI
A stands for the sum-rate of MIMO-BC when no CSI is available at the base station,

conditioned on A. In [29], it has been shown that

RNCSI = EHk

{
log det

[
I +

P

M
HkH

∗
k

]}
. (28)

Since limN→∞ t
log N

> 1, using (26), it can be easily shown that Np → 0. As a result, with a

similar approach as in [28], we have

RNCSI
A = EHk|A

{
log det

[
I +

P

M
HkH

∗
k

]∣∣∣∣A
}

∼ O(1). (29)

Indeed, we can write

R1 ≥ E {log(1 + Pθmax) |θmax < t}

≥ E {log(1 + Pθmax) |θmax < t, θmax > logN}Prob{θmax > logN |θmax < t}

≥ log(1 + P logN)ϑ, (30)

where θmax , maxk λmax(Hk), and ϑ , Prob{θmax > logN |θmax < t}. Using (26), ϑ can be

written as follows:

ϑ =

(
1− tM+K−2e−t(1+O(t−1))

Γ(M)Γ(K)

)N

−
(
1− [log N ]M+K−2(1+O([log N ]−1))

NΓ(M)Γ(K)

)N

(
1− tM+K−2e−t(1+O(t−1))

Γ(M)Γ(K)

)N
. (31)
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Since limN→∞ t
log N

> 1, it can be shown that ϑ ∼ 1− o( 1
N

). Substituting ϑ in (30), yields

R1 ≥ log(1 + P logN)

(
1− o

( 1

N

))
. (32)

Using the above equation and (29), the right hand side of (27) can be lower-bounded as,

RH(27) ≥ (1− p)N [log logN +O(1)]

∼ e−Np(1+O(p))[log logN +O(1)]

∼ log logN. (33)

The last line in the above equation follows from limN→∞ t
log N

> 1, which incurs Np→ 0. As

a result, ROpt −RProp 6= 0. This completes the proof for the necessity of ρ(N) ∼ o(logN).

The necessity of ρ(N) = log log log logN + log[Γ(K)Γ(M)] + ω

(
1

log log logN

)
:

Let ρ(N) = log log log logN + log[Γ(M)Γ(K)] + σ(N). Suppose that

ρ(N) � log log log logN + log[Γ(K)Γ(M)] + ω

(
1

log log logN

)
, (34)

which incurs σ(N) ∼ O
(

1
log log log N

)
, or σ(N) < 0. Using (27), we have

ROpt −RProp ≥ (1− p)N [R1 −RNCSI
A ]. (35)

Similar to (29) and (32), under the assumption of (34), it can be shown that

R1 ≥ log(1 + P logN)

(
1− o

( 1

N

))
,

RNCSI
A ∼ O(1). (36)

DRAFT



17

Using the above equations and (26), we can write

ROpt −RProp ≥
(

1− tM+K−2 exp(−t)
Γ(M)Γ(K)

[
1 +O(t−1)

])N

[log logN +O(1)]

∼
(

1− eρ(N)

NΓ(M)Γ(K)

[
1 +O

(
log logN

logN

)])N

[log logN +O(1)]

∼ exp

{
− eρ(N)

Γ(M)Γ(K)

}
[1 + o(1)] [log logN +O(1)]

∼ exp
{−eσ(N) log log logN

}
[log logN +O(1)] [1 + o(1)]

∼ M exp
{
[1− eσ(N)] log log logN

}
[1 + o(1)] . (37)

Under the assumption of (34), in the case of σ(N) = O

(
1

log log logN

)
, i.e.,

lim
N→∞

σ(N) log log logN = c <∞,

using (37), we have

ROpt −RProp ≥ exp
{
[−σ(N) +O(σ2(N))] log log logN

}
[1 + o(1)]

∼ exp {−σ(N) log log logN} [1 + o(1)] . (38)

Hence,

lim
N→∞

ROpt −RProp ≥ e−c

6= 0. (39)

Also, in the case of σ(N) < 0, using (37), we have

lim
N→∞

ROpt −RProp ≥ 1

6= 0. (40)

This completes the proof for the necessity of ρ(N) = log log log logN + log[Γ(K)Γ(M)] +

ω

(
1

log log logN

)
.

¥
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Theorem 2 The sufficient condition to achieve limN→∞ROpt −RProp = 0 is having

t = logN + (M +K − 2) log logN − ρ(N), (41)

where ρ(N) satisfies

ρ(N) ∼ o(logN),

and

ρ(N) ∼ log log log logN + ω (1) .

Proof - First, we state and prove the following lemmas:

Lemma 1- Assuming K > 1, define ΩJ as the probability of existing at least one user from

which J eigenvectors (J > 1) are selected in Algorithm 1. Setting t = logN + (M + K −

2) log logN − ρ(N), in which ρ(N) satisfies the conditions of Theorem 2, we have

ΩJ ∼ O

(
eo(log N)

NJ−1

)
. (42)

Proof- Consider the following event 3:

Ak = {λi(k) > t, i = 1, · · · J, λi(k) < t, i = J + 1, · · · , K}. (43)

We have

‖Hk‖2 = Tr{HkH
∗
k}

=
K∑

i=1

λi(k)

≥
J∑

i=1

λi(k). (44)

3We have assumed that the singular values are in the decreasing order, i.e., λ1 > λ2 > · · · > λK
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Since t = logN + o(logN), we can write

Prob{Ak} ≤ Prob{‖Hk‖2 ≥ J logN + o(logN)}, (45)

As ‖Hk‖2 has a chi-square distribution with 2MK degrees of freedom [30], the right hand side

of (45) can be written as

Prob
{‖Hk‖2 ≥ J logN + o(logN)

}
=

∫ ∞

J log N+o(log N)

xMK−1 exp(−x)
Γ(MK)

dx

=
MK−1∑
m=0

[J logN + o(logN)]m

m!
e−J log N+o(log N)

=

(
[J logN ]MK−1 + o([logN ]MK−1)

)
eo(log N)

NJ(MK − 1)!

= ΨJ
[logN ]MK−1eo(log N)

NJ
[1 + o(1)], (46)

where ΨJ = JMK−1

(MK−1)!
. Using (45), and (46), we can write ΩJ as

ΩJ = 1−
N∏

k=1

(1− Prob{Ak})

≤ 1−
[
1−ΨJ

[logN ]MK−1eo(log N)

NJ
[1 + o(1)]

]N

∼ 1− exp

{
N log

[
1−ΨJ

[logN ]MK−1eo(log N)

NJ
[1 + o(1)]

]}

∼ 1− exp

{
−ΨJ

[logN ]MK−1eo(log N)

NJ−1
[1 + o(1)]

}

∼ O

(
eo(log N)

NJ−1

)
. (47)

¥

As a result, limN→∞ ΩJ = 0, for J > 1. This implies that as N →∞, with probability one,

at most one eigenvector for each user is likely to be selected by this algorithm. This eigenvector

corresponds to the maximum singular value of that user.
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Lemma 2- Let t = logN+(M+K−2) log logN−ρ(N), in which ρ(N) satisfies the conditions

of Theorem 2, and L be the number of users being selected in the first step of Algorithm 1.

Then, as N →∞, with probability one

L ∼ eρ(N)

Γ(M)Γ(K)
[1 + o (1)] . (48)

Proof- Using (26), the probability of a randomly chosen user k being pre-selected in the first

step of Algorithm 1 can be calculated as,

p = Prob{λmax(Hk) > t}

∼ tM+K−2e−t

Γ(M)Γ(K)

(
1 +O(t−1)

)

∼ eρ(N)

NΓ(M)Γ(K)
[1 + o(1)]

∼ log log logNeq(N)

NΓ(M)Γ(K)
[1 + o(1)] , (49)

where q(N) = ρ(N)− log log log logN . Consider the following probability:

ξ = Prob {Np(1− ε) < L < Np(1 + ε)} , (50)

where ε =
√

2Γ(M)Γ(K)e
−q(N)

4 . Note that since q(N) = ω(1), we have limN→∞ ε = 0. ξ can

be computed as

ξ =

bNp(1+ε)c∑

l=dNp(1−ε)e

(
N

l

)
pl(1− p)N−l

≈ 1−Q

(
Np−Np(1− ε)√

Np(1− p)

)
−Q

(
Np(1 + ε)−Np√

Np(1− p)

)

= 1− 2Q

( √
Npε√
1− p

)

≈ 1− 2
√

1− p√
2π
√
Npε

exp

(
− Npε2

2(1− p)

)
. (51)
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Substituting p from (49), and having ε2 = 2Γ(M)Γ(K)e
−q(N)

2 , we have

ξ ∼ 1−O

(
e
−q(N)

4√
log log logN

)
exp

{
− log log logNe

q(N)
2 [1 + o(1)]

}
(52)

Thus, limN→∞ ξ = 1. Finally, using (49) and (52), with probability one we have

L ∼ Np (1 +O(ε))

∼ eρ(N)

Γ(M)Γ(K)
[1 + o (1)] . (53)

¥

Since ρ(N) = o(logN), from Lemma 2, it is evident that limN→∞ L
N

= 0. Therefore, only a

small fraction of users are pre-selected. This results in reducing the amount of feedback sent to

the base station.

As shown in Lemma 1, in the asymptotic case of N → ∞, at most one eigenvector from

each user is likely to be selected. This eigenvector corresponds to the maximum singular value

of that user’s channel matrix, and is denoted by V i,max. Hence, for the sake of simplicity of

notation, we define the measure of orthogonality between the users i and j, denoted by O(i, j),

as the orthogonality measure between V i,max and V j,max, defined in (3) as z (V i,max,V j,max).

In other words,

O(i, j) = |V ∗
i,maxV j,max|2. (54)

Lemma 3- The probability density function of O(i, j) defined in (54) can be computed from

pO(i,j)(z) = (M − 1)(1− z)M−2. (55)

Proof- In Appendix A.
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Definition1- A set S = {hi}M
i=1, in which hi ∈ C1×M , is called ε-orthogonal if we have

z(hi,hj) < ε, for every hi 6= hj ∈ S .

Lemma 4- Let t = logN+(M+K−2) log logN−ρ(N), where ρ(N) satisfies the conditions

of Theorem 2. Then, as N → ∞, the selected coordinates by Algorithm 1 construct an ε(N)-

orthogonal set, with probability one, where ε(N) = e−
q(N)

M , and q(N) = ρ(N)−log log log logN .

Proof- After selecting the first user, s1, with largest maximum singular value, the user which

is most orthogonal to s1 is selected. In other words,

s2 = arg min
l∈S1

O(l, s1), (56)

where S1 is defined in (7). First, we show that the users s1 and s2 are with probability one ε(N)-

orthogonal to each other, or equivalently, O(s2, s1) < ε(N). To do this, consider the following

probability:

µ = Prob {O(s2, s1) < ε(N)} . (57)

Using (55), this probability can be written as

µ = Prob
{

min
l
O(l, s1) < ε(N)

}

= 1− (Prob {O(l, s1) > ε(N)})L−1

= 1−
(∫ 1

ε(N)

(M − 1)(1− z)M−2dz

)L−1

= 1− [1− ε(N)](L−1)(M−1)

= 1− exp {−(L− 1)(M − 1) log [1− ε(N)]}

= 1− exp
{−(L− 1)(M − 1)

[
ε(N) +O

(
ε2(N)

)]}
. (58)
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Defining the event D = {Np(1− ε) < L < Np(1 + ε)}, with p and ε defined in (49) and (50),

and using (52), a lower bound for µ is found as,

µ ≥ Prob{D} [
1− exp

{−(Np(1− ε)− 1)(M − 1)
[
ε(N) +O

(
ε2(N)

)]}]

∼
[
1−O

(
e
−q(N)

4√
log log logN

)
exp

{
− log log logNe

q(N)
2 [1 + o(1)]

}]
×

[
1− exp

{
− log log logNe

(M−1)q(N)
M

Γ(M − 1)Γ(K)
[1 + o(1)]

}]
. (59)

Since q(N) ∼ ω(1), the above probability approaches one as N → ∞. Therefore, with proba-

bility one users s1 and s2 are ε(N)-orthogonal to each other.

Now, assume that m users, which construct an ε(N)-orthogonal set Am, are selected up to

the mth step of Algorithm 1. We show that the selected user in the (m + 1)th step of this

algorithm, sm+1, is such that with probability one, Am+1 = Am +{sm+1} is ε(N)-orthogonal, or

equivalently, sm+1 is ε(N)-orthogonal to all users in Am. To this end, we define the following

probability:

νk,m = Prob{O(s1, k) < α,O(s2, k) < α, · · · ,O(sm, k) < α}, (60)

where α = ε(N)
M

. νk,m is the probability that a randomly selected user k is α-orthogonal to all

users in Am. This probability can be written as

νk,m = Prob {O(s1, k) < α}
m∏

i=2

κi, (61)

where κi = Prob {O(si, k) < α | O(s1, k) < α, · · · ,O(si−1, k) < α} . From (55), the first term

in the right hand side of the above equation can be written as

Prob {O(s1, k) < α} =

∫ α

0

(M − 1)(1− z)M−2dz

= 1− (1− α)M−1

∼ (M − 1)α +O(α2). (62)
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In Appendix B, it has been proved that

κi ∼ (M − i)α +O(α3/2). (63)

Hence, using (61), (62), and (63), we can write

νk,m ∼ [
(M − 1)α +O(α2)

] m∏
i=2

[
(M − i)α +O(α3/2)

]

∼ Γ(M)

Γ(M −m)
αm +O

(
αm+1/2

)

∼ Γ(M)

Γ(M −m)Mm

[
[ε(N)]m +O

(
[ε(N)](m+1/2)

)]
(64)

Now, we define ωm as the probability of existing at least one user α-orthogonal to the users in

the set Am. Noting that νk,m is the same for all k, we obtain,

ωm = 1−
L−m∏

k=1

(1− νk,m)

= 1− exp {(L−m) log (1− νk,m)}

= 1− exp
{
(L−m)

[−νk,m +O(ν2
k,m)

]}
. (65)

Similar to (59), we can compute ωm as,

ωm ∼
[
1−O

(
e
−q(N)

4√
log log logN

)
exp

{
− log log logNe

q(N)
2 [1 + o(1)]

}]
×

[
1− exp

{
− log log logNe

(M−m)q(N)
M

Γ(M −m)MmΓ(K)
[1 + o(1)]

}]
. (66)

Since m ≤M − 1, it follows that limN→∞ ωm = 1. In other words, as N tends to infinity, with

probability one there exists at least one user um+1, α-orthogonal to all users in Am.
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Consider user sm+1 which is selected in the (m+ 1)th step of Algorithm 1. Obviously, we have

m∑
j=1

O(sm+1, sj) ≤
m∑

j=1

O(um+1, sj)

≤ mα

=
mε(N)

M

≤ ε(N). (67)

Knowing the fact that O(sm+1, sj) ≥ 0, for j = 1, · · ·m, we can write

O(sm+1, sj) ≤ ε(N), j = 1, · · ·m

which means that with probability one, sm+1 is ε(N)-orthogonal to the users in the set Am, and

consequently, Am+1 is an ε(N)-orthogonal set.

Let us define Xm as the event that the set Am is ε(N)-orthogonal. We can write

Prob{XM} = Prob{X2}
M∏

m=3

Prob{Xm|Xm−1}. (68)

From (59) and (66), the above probability is lower-bounded as

Prob{XM} ≥ µ

M−1∏
m=2

ωm

≥
[
1−O

(
e
−q(N)

4√
log log logN

)
exp

{
− log log logNe

q(N)
2 [1 + o(1)]

}]M−1

×
[
1− exp

{
− log log logNe

(M−1)q(N)
M

Γ(M − 1)Γ(K)
[1 + o(1)]

}]
×

M−1∏
m=2

[
1− exp

{
− log log logNe

(M−m)q(N)
M

Γ(M −m)MmΓ(K)
[1 + o(1)]

}]

∼ 1− exp

{
− log log logNe

q(N)
M

Γ(M −m)MmΓ(K)
[1 + o(1)]

}
. (69)

Therefore, limN→∞ Prob{XM} = 1. In other words, the selected coordinates by Algorithm 1,

with probability one, construct an ε(N)-orthogonal set as N tends to infinity, which completes
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the proof of Lemma 4.

¥

As mentioned earlier, after selecting the coordinates, the “selected coordinate matrix”, H, is

constructed using (9). By applying zero-forcing beam-forming, the information vector, u, is

multiplied by H−1 to construct the transmitted signal as (10). Using (11), we can write

r = u+w, (70)

where r = [rs1,d1 , · · · , rsM ,dM
]T , u = [us1,d1 , · · · , usM ,dM

]T , and w = [ws1,d1 , · · · , wsM ,dM
]T .

Having the power constraint P for x, the sum-rate capacity can be computed as [19],

RProp = EH



 max

PmPM
m=1 γmPm≤P

M∑
m=1

log(1 + Pm)



 , γm =

[
(H∗H)−1]

m,m
, (71)

where [A]i,j denotes the entry of matrix A in the ith row and the jth column. The optimal Pm’s

in (71) can be obtained by “water-filling”. Here, we assume that Pm’s are all equal (uniform

power allocation). Thus,

Pm =
P

Tr
{
[H∗H]−1} . (72)

Consequently,

RU
Prop = EH

{
M log

(
1 +

P

Tr
{
[H∗H]−1}

)}
, (73)

where RU
Prop stands for the sum-rate achieving by the proposed method, when the power is

uniformly allocated among the coordinates.
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Having defined XM in (68) and using (69), the above equation can be written as follows:

RU
Prop = EH

{
M log

(
1 +

P

Tr
{
[H∗H]−1}

)∣∣∣∣∣XM

}
Prob{XM}+

EH

{
M log

(
1 +

P

Tr
{
[H∗H]−1}

)∣∣∣∣∣X
C
M

}
(1− Prob{XM})

≥ EH

{
M log

(
1 +

P

Tr
{
[H∗H]−1}

)∣∣∣∣∣XM

}
Prob{XM}

∼
(

1− exp

{
− log log logNe

q(N)
M

Γ(M −m)MmΓ(K)
[1 + o(1)]

})
×

EH

{
M log

(
1 +

P

Tr
{
[H∗H]−1}

)∣∣∣∣∣XM

}
, (74)

where XC
M is the complement of XM .

From Algorithm 1, it is obvious that the corresponding singular values of the selected eigen-

vectors are greater that t = logN + (M + K − 2) log logN − ρ(N). However, the following

lemma which is proved in Appendix C, states that the singular values of all selected dimensions,

with probability one, can not exceed logN + (M +K − 1) log logN :

Lemma 5- Let t = logN + (M +K − 1) log logN . Then,

η = Prob
{

max
k=1,··· ,N

λmax(Hk) > t

}
= O

(
1

logN

)
. (75)

As a result of this lemma, the singular values corresponding to the all selected dimensions

can be expressed as logN + o(logN).

To compute the conditional probability EH

{
M log

(
1 + P

Tr{[H∗H]−1}
)∣∣∣∣XM

}
, we define B =

HH∗. Conditioned on XM , i.e., having ε(N)-orthogonality among the selected dimensions, using

(9), and the results of Lemma 4 and Lemma 5, we can write

Bii = ‖gsi,di
‖2 ∼ logN + f(N), (76)
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and

|Bij| =
√
‖gsi,di

‖2‖gsj ,dj
‖2z

(
V si,di

,V sj ,dj

)

∼
√
O(logN)×O(logN)×O (ε(N))

∼ O(ε(N) logN), (77)

where f(N) ∼ o(logN). In Appendix D it has been shown that any diagonal element of B−1

can be expressed as [logN ]−1 +O
(

h(N)
log N

)
, where

h(N) , max

(
f(N)

logN
, ε(N)

)
∼ o(1). (78)

Having this, and using the fact that Tr
{
[H∗H]−1} = Tr

{B−1
}

, we can write

EH

{
M log

(
1 +

P

Tr
{
[H∗H]−1}

)∣∣∣∣∣XM

}
= EB

{
M log

(
1 +

P

Tr
{B−1

}
)∣∣∣∣∣XM

}

∼ M log


1 +

P

M [logN ]−1 +O
(

h(N)
log N

)



∼ M log

(
1 +

P

M [logN ]−1 [1 +O (h(N))]

)

∼ M log

(
P

M
logN +O(h(N) logN)

)
. (79)

From (74) and (79), we have

RU
Prop ≥M log

(
P

M
logN +O(h(N) logN)

) (
1− exp

{
− log log logNe

q(N)
M

Γ(M −m)MmΓ(K)
[1 + o(1)]

})
.

(80)

Since adaptive power allocation (using “water-filling”) results in higher sum-rate than that of

uniform power allocation, we have RProp ≥ RU
Prop. Having the fact that [24]

ROpt ∼M log

(
P

M
logN +O(log logN)

)
, (81)
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and using (80), we have

ROpt −RProp ≤ M log

(
P

M
logN + g1(N)

)
−M log

(
P

M
logN + g2(N)

)
(1− g3(N))

= M log

(
1 +

Mg1(N)

P logN

)
−M log

(
1 +

Mg2(N)

P logN

)
+

Mg3(N) log

(
P

M
logN + g2(N)

)
, (82)

where g1(N) ∼ O(log logN), g2(N) ∼ O (h(N) logN), and

g3(N) ∼ exp

{
− log log logNe

q(N)
M

Γ(M −m)MmΓ(K)
[1 + o(1)]

}
∼ o

(
1

log logN

)
. (83)

From (78) and (83), and Using the approximation log(1 + x) ≈ x, for x¿ 1, and we can write

ROpt −RProp ∼ M

(
M [g1(N)− g2(N)]

P logN

)
+Mg3(N) log

(
P

M
logN + g1(N)

)

∼ o(1). (84)

Consequently,

lim
N→∞

ROpt −RProp = 0, (85)

which completes the proof of Theorem 2.

¥

Theorem 2 implies that using Algorithm 1, and applying zero-forcing beam-forming at the

base station, the same performance as when the optimum user selection algorithm and optimum

precoding scheme is utilized, can asymptotically be achieved.

Remark 1- Although in the proof of Theorem 2, we showed that limN→∞ROpt−RProp = 0,

it is interesting to minimize the order of difference.
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Rewriting (84), we get

ROpt −RProp ∼ O (%(N)) + exp

{
− log log logNe1/ε(N)

Γ(M −m)MmΓ(K)
[1 + o(1)]

}
O(log logN),

(86)

where %(N) = max
(
h(N), log log N

log N

)
, and h(N) is defined in (78). Hence, in order to minimize

the order of difference, we must have h(N) = O
(

log log N
log N

)
, which incurs ε(N) = O

(
log log N

log N

)

and f(N) = O(log logN). As a result,

q(N) = −M log ε(N)

= M log logN −M log log logN + ψ(N), (87)

where ψ(N) is an arbitrary function with the condition limN→∞ ψ(N) = c > 0. Hence, using

the definition of q(N) in Lemma 4, we can write

t = logN + (K − 2) log logN +M log log logN − log log log logN − ψ(N). (88)

Also, to guarantee f(N) = O(log logN), we must have

t = logN +O(log logN), (89)

which means ψ(N) ∼ O(log logN). Having these conditions on t, we can guarantee ROpt −

RProp ∼ O
(

log log N
log N

)
.

Remark 2- It is important to note that satisfying limN→∞ROpt −RProp = 0, is much more

challenging than that of limN→∞
RProp

ROpt
= 1. The following lemma, which is proved in Appendix

E, clarifies this fact:
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Lemma 6- Suppose that in Algorithm 1, t = logN , and the coordinates are chosen randomly

among the pre-selected eigenvectors. Then,

lim
N→∞

RProp

ROpt

= 1. (90)

The above lemma states that to satisfy limN→∞
RProp

ROpt
= 1, the orthogonality among the

coordinates is not a necessary condition.

B. Comparison with other Downlink Strategies

In this section, we compare the performance of our proposed scheme with some other downlink

strategies in terms of sum-rate capacity. To have a good measure for comparison, we give the

following definition:

Definition 2- For a MIMO-BC in which a base station, and average power constraint P

communicating to N users, using strategy S, the multiplexing gain is defined as 4

rS = lim
P→∞

RS(P,N)

logP
, (91)

and the multiuser diversity gain is defined as

dS = lim
N→∞

RS(P,N)

rS log logN
, (92)

where RS(P,N) is the achievable sum-rate.

Lemma 7- Using the proposed algorithm, and applying zero-forcing beam-forming, we can

achieve r = M , and d = 1, which are the maximum achievable values in a MIMO-BC.

Proof- Appendix F.

4More precisely, as in [31], r is the maximum achievable multiplexing gain when diversity gain approaches zero.
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1) Time Division Multiple Access (TDMA): In this scheme, the base station only serves one

user in each time slot. Hence, to achieve the maximum sum-rate, the user which has the maximum

single-user capacity should be served. Because of its simplicity, this strategy is widely used in

the downlink of the cellular networks. The achievable sum-rate of this scheme can be written as

RTDMA = E



max

k
max
Qk

Tr{Qk}=P

log det [IK×K +HkQkH
∗
k]



 , (93)

where Qk is obtained by “water-filling”. Using (91) and (92), and the result of Lemma 1 in

[32], the multiplexing gain and multiuser diversity gain for this scheme can be obtained as,

rTDMA = lim
P→∞

RTDMA(P,N)

logP

= lim
P→∞

E
{

maxk

(∑min(M,K)
i=1 log

(
Pλi(k)

min(M,K)

))}

logP

= min(M,K), (94)

and,

dTDMA = lim
N→∞

RTDMA(P,N)

min(M,K) log logN

= 1. (95)

Hence, this scheme achieves the full multiuser diversity gain, while achieving the full multiplex-

ing gain only in the case of K ≥M .

Although this method has been shown to be optimal for single-antenna broadcast channel

(M = 1) [33], for the case of M > K ≥ 1, as a result of losing the multiplexing gain,

this method is no longer optimum 5.

5For the case of K ≥ M , this scheme is not optimal either. This fact will be discussed in more details later.
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From the proof of the Lemma 1 in [32], it can be observed that the upper and lower bounds for

RTDMA have the same behavior asymptotically almost surely, when N →∞. In other words6,

K log

(
1 +

P

K
max

k
λmin(H

′
kH

′
k
∗
)

)
∼ K log

(
1 +

P

K2
max

k
Tr(HkH

∗
k)

)

∼ K log(1 +
P

K2
logN), (96)

where H ′
k (K×K) is a truncated version of Hk by omitting the M −K columns of Hk. From

(96), and having the fact that λmin(H
′
kH

′
k
∗
) ≤ λmin(HkHk

∗), the following observations can

be obtained:

Observation 1- For the user which maximizes the single-user capacity in (93), (l), all the

eigenvalues should be of the same order. In other words,

λj(H lH
∗
l ) ∼

logN

K
+O(log logN), j = 1, · · · , K. (97)

As a result of this, H lH
∗
l tends to the identity matrix.

Observation 2- The user with maximum single-user capacity has the maximum λmin, asymp-

totically.

For the case of K ≥ M , similar to (96), the asymptotic sum-rate capacity can be computed

as

RTDMA ∼ M log

(
P

M2
logN

)
. (98)

In this case, it can be easily shown that limN→∞
RTDMA

ROpt
= 1. In other words, the optimum

sum-rate can asymptotically be achieved. However, the selected dimensions by TDMA belong

to the same user and have the asymptotic behavior of log N
M

, while in our proposed method the

6It is assumed that K ≤ M .

DRAFT



34

selected dimensions belong to different users with the asymptotic behvior of logN . Moreover,

we have

ROpt −RTDMA ∼ M log

(
1 +

P

M
logN

)
−M log

(
1 +

P

M2
logN

)

∼ M logM. (99)

As can be observed from figure 2, this gap affects the performance significantly, especially when

M is large.

2) Random Selection: In this method, the base station randomly selects M users for trans-

mission. This results in having fairness in the system. This strategy can also be regarded as

Round-Robin scheduling algorithm, when the users are randomly divided into groups of size M ,

and the base station serves one group in each time slot.

In Appendix G, it is shown that using multiple dimensions for transmission results in having

multiplexing gain equal to M . However, because of random selection of the users, this scheme

does not provide multiuser diversity gain. More precisely,

dRS = lim
N→∞

RRS(P,N)

M log logN

= lim
N→∞

EH1,··· ,HM

{
max QmP

Tr(Qm)=P

log det
(
IM +

∑M
m=1H

∗
mQmHm

)}

M log logN

= lim
N→∞

O(1)

M log logN

= 0. (100)

As a result of lacking multiuser diversity gain, this scheme shows a weak performance especially

for large number of users. (Figure 2)
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C. Simulation Results

So far, we have shown that as N tends to infinity, our scheme achieves the optimum sum-rate

which scales like M log
(

P
M

logN
)
. In this section, simulation results are provided to examine

the performance of our proposed scheme in practical networks with finite number of users.

Figure 1 shows the optimum threshold (computed by exhaustive search) as a function of the

number of users for M = 2, K = 1, and M = 4, K = 1. These curves show that the optimum

threshold for each N , lies between logN − log logN , and logN .

Figures 2 presents the plots of the corresponding sum-rate versus the number of users for

different number of transmit and receive antennas. The Signal to Noise Ratio (SNR), which is

equal to the transmitted power P , is fixed to 10 dB in all curves. For comparison, the plots of

sum-rate when using TDMA and Random Selection algorithms, as well as the optimum scheme

of dirty-paper coding are also given. For Random Selection algorithm, it is assumed that the

optimum precoding scheme of dirty-paper coding is used.

Figure 3 depicts the plots of sum-rate capacity versus SNR (P ), for M = 2, K = 1 and

M = 4, K = 1. The number of users is fixed to 100 in both curves. It can be observed that the

sum-rate achieving by the proposed scheme shows a linear increase with logP in high SNRs

with the slope equal to M . This confirms achieving the multiplexing gain of M by the proposed

scheme.

V. COMPLEXITY ANALYSIS

A. Amount of Feedback

As can be observed in the proposed algorithm, only the eigenvectors that belong to S0, defined

in (6), must be sent back to the base station, along with their corresponding singular values. For
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Fig. 1. Optimum threshold versus the number of users.

the asymptotic case of N → ∞, from Lemma 2, we conclude that the cardinality of S0 scales

as eρ(N)

Γ(M)Γ(K)
. Assuming that for each eigenvector and its singular value 2M real values must be

fed back, the total number of real values required at the base station is asymptotically equal to

2Meρ(N)

Γ(M)Γ(K)
.

From Theorem 1, we observe that to achieve the optimum sum-rate, i.e., limN→∞ROpt −

RProp = 0, the following condition must be satisfied:

ρ(N) ∼ log log log logN + log[Γ(K)Γ(M)] + ω

(
1

log log logN

)
. (101)

As a result,

NProp ∼ 2M log log logN + ω(1), (102)

where NProp stands for the amount of feedback (in terms of the total number of real values

required at the base station) in the proposed method. From the above equation, it follows that

the minimum amount of feedback required to achieve the optimum performance is lower-bounded

by log log logN , in the proposed algorithm. However, in [28], it has been shown that the same
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Fig. 2. Sum-rate capacity versus the number of users, P = 10dB.

result holds for any other strategies.

In order to guarantee limN→∞ROpt −RProp = 0 in the proposed scheme, using Theorem 2,

the following condition must be satisfied:

NProp ∼ ω(log log logN). (103)
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Note that the computation of γk,j’s in Algorithm 1 (eq. (8)) can be performed in the mobile

sides, which reduces the amount of feedback further. This idea is described in details as the

following algorithm:

Algorithm 2 (Modified version of Algorithm 1):

1. Set the thresholds t and β.

2. Define

S0 = {(k, j)| λj(k) > t}.

For all (k, j) ∈ S0, send λj(k) to the base station.

3. Let (s1, d1) = arg max(k,j)∈S0 λj(k). Base station informs the user s1 to feed back the

eigenvector corresponding to its maximum singular value and after receiving it, sends these

information to all the users in S0 − {(s1, d1)}.

4. Define γk,j(0) = 0 for all (k, j) ∈ S0. For m = 1 to M−1 the following steps are repeated:

– Define Sm =
{
(k, j)|(k, j) ∈ Sm−1, |V ∗

sm,dm
V k,j|2 < β

}
and γk,j(m) =

DRAFT



39

|V ∗
sm,dm

V k,j|2 + γk,j(m − 1), for all (k, j) ∈ Sm. All users in Sm feed back their

corresponding γk,j(m) to the base station.

– Select (sm+1, dm+1) = arg min(k,j)∈Sm γk,j(m). Base station inform the user sm

to feedback its dmth eigenvector, and after receiving, sends it to all users in Sm −

−{(sm, dm)}.

For the asymptotic case of N →∞, having t = logN+(M+K−2) log logN−log log log logN−

q(N) and β = e−
q(N)

M , and using equations (53) and (64), we have

NProp =
M−1∑
m=0

|Sm|+ 2M2

∼
M−1∑
m=0

L× Prob {k ∈ Sm|k ∈ S0}+ 2M2

∼ L+ L

M−1∑
m=1

O(e−
mq(N)

M ) + 2M2

∼ L
[
1 +O

(
e−

q(N)
M

)]

∼ eρ(N)

Γ(M)Γ(K)
. (104)

Figure 4 depicts the plots of the required amount of feedback versus the number of users for

M = 2, K = 1 and M = 4, K = 1, when Algorithm 1 and Algorithm 2 are used. The measure

for the amount of feedback is defined as the number of real components per user that should

be sent to the base station. In these curves, the optimum values for the thresholds (t and β) are

found by exhaustive search.

B. Search Complexity

Since at the first step of the algorithm, only a fraction of eigenvectors are pre-selected, the size

of the search space for next steps is decreased from NK to L. As can be observed, at the mth

step of the algorithm, the base station searches for the dimension with the smallest γk,j(m− 1)
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Fig. 4. Amount of feedback

among Sm−1, which requires L −m + 1 searches. Therefore, the total number of searches for

selecting the desired set is equal to
∑M

m=1(L−m+ 1) = ML− M(M−1)
2

, which is linear in L.

Again, we can restrict our search space if the modified algorithm stated in the previous section

is used.

As mentioned earlier, the best M eigenvectors for maximizing the sum-rate capacity can be

found by exhaustive search. In this case, the size of the search space is equal to
(

NK
M

)
.

In the asymptotic case of N → ∞, the total number of searches is Θ(eρ(N)) ∼ o(N) for

the proposed algorithm, which is much less than that of exhaustive search (Θ(NM)). Therefore,

using our algorithm the complexity of search at the base station is decreased significantly.

VI. CONCLUSION

In this paper, we have considered a downlink communication system, in which a base station

equipped with M transmit antennas communicates with N users, each equipped with K receive

antennas. We have proposed an efficient suboptimum algorithm for selecting a set of users in

order to maximize the sum-rate throughput of the system, using zero-forcing beam-forming at the
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base station. For the asymptotic case of N →∞, we have derived the necessary and sufficient

conditions to achieve the optimum sum-rate capacity, such that limN→∞ROpt − RProp = 0.

We have also investigated the complexity of our scheme in terms of the required amount of

feedback from the users to the base station, as well as the number of searches needed for selecting

the coordinates. The proposed algorithm is compared with some other downlink strategies like

TDMA and Random Selection algorithms.

APPENDIX A; PROOF OF LEMMA 3

In this appendix, we derive the probability density function of O(i, j) = |V ∗
i,maxV j,max|2. For

simplicity of notation, V i,max is denoted by φi, and V j,max is denoted by φj . Since φi and

φj are the eigenvectors of two independent matrices whose entries are independent CN (0, 1), it

follows from [34] that φi and φj are independent isotropically distributed unit vectors in CM ,

with the following probability density function:

pφi
(φ) = pφj

(φ) =
Γ(M)

πM
δ(φ∗φ− 1). (105)

Indeed, this probability density function does not change by multiplying any M ×M unitary

matrix Θ, i.e.,

pΘφi
(φ) = pφi

(φ). (106)
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Now, define u = φ∗iφj , and let Θ be a unitary matrix whose first row is equal to φi. We can

write

u = φ∗i Θ
∗Θφj

= [Θφi]
∗Θφj

= [1 0 · · · 0]φ
′
j

= φ
′
j(1), (107)

where φ
′
j = Θφj , and φ

′
j(1) is the first element of φ

′
j . Since Θ is unitary, φj and φ

′
j have the

same pdf. Hence, the probability density function of φ
′
j(1) is the same as that of φj(1), and can

be computed as [34]

pu(u) = pφj(1)(u) =
M − 1

π

(
1− |u|2)M−2

. (108)

Using the above equation, the probability density function of O(i, j) = |u|2 will be equal to

pO(i,j)(z) = p|u|2(z)

=
p|u|(

√
z)

2
√
z

=
2π
√
zpu(

√
z)

2
√
z

= (M − 1)(1− z)M−2. (109)

APPENDIX B; PROOF OF (63)

Since the selected vectors
{
V sj ,max

}i−1

j=1
are nearly orthogonal to each other, they form a basis

for the sub-space spanned by them. We call this sub-space P i−1. In the following, we denote

V k,max, the eigenvector corresponding to the maximum singular value of user k, by φk for the

simplicity of notation.
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Any vector v ∈ CM can be represented as

v = v⊥ +
i−1∑
j=1

〈
φsj

,v
〉
φsj

, (110)

where v⊥ is the project of v on the null space of P i−1, denoted by P⊥
i−1, and

〈
φsj

,v
〉

= φ∗sj
v.

Defining the event Ci = {O(s1, k) < α, · · · ,O(si−1, k) < α} 7, the conditional probability in

(63) can be written as

κi = Prob {O(si, k) < α| Ci} . (111)

Using (54), we can write Ci by

Ci =
{
|φ∗s1

φk|2 < α, · · · , |φ∗si−1
φk|2 < α

}
. (112)

Hence, (111) can be expressed as

κi = Prob
{
|φ∗si

φk|2 < α
∣∣∣ |φ∗s1

φk|2 < α, · · · , |φ∗si−1
φk|2 < α

}
. (113)

Using (110), we can write φk as

φk = φ⊥k +
i−1∑
j=1

〈
φsj

,φk

〉
φsj

, (114)

and φsi
as

φsi
= φ⊥si

+
i−1∑
j=1

〈
φsj

,φsi

〉
φsj

. (115)

Hence, |φ∗si
φk|2 can be computed as,

|φ∗si
φk|2 =

∣∣∣
〈
φ⊥si

,φ⊥k
〉

+
i−1∑
j=1

〈
φsi

,φsj

〉〈
φsj

,φk

〉
+

i−1∑
j=1

i−1∑

l=1
l 6=j

〈
φsi

,φsj

〉 〈
φsl

,φk

〉 〈
φsj

,φsl

〉 ∣∣∣
2

. (116)

7Recall the definition of α which is ε(N)
M

.
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Defining

u1 =
〈
φ⊥si

,φ⊥k
〉
,

u2 =
i−1∑
j=1

〈
φsi

,φsj

〉〈
φsj

,φk

〉
,

u3 =
i−1∑
j=1

i−1∑

l=1
l 6=j

〈
φsi

,φsj

〉 〈
φsl

,φk

〉 〈
φsj

,φsl

〉
, (117)

we have

|φ∗si
φk|2 = |u1|2 + |u2|2 + |u3|2 + 2<{u1u

∗
2}+ 2<{u2u

∗
3}+ 2<{u1u

∗
3}, (118)

where <{x} denotes the real part of x. An upper bound for |φ∗si
φk|2 is given by

|φ∗si
φk|2 < |u1|2 + |u2|2 + |u3|2 + 2|u1|(|u2|+ |u3|) + 2|u2||u3|. (119)

Having the facts that ‖φ⊥k ‖2 < ‖φk‖2 = 1, and ‖φ⊥si
‖2 < ‖φsi

‖2 = 1, we can write

|φ∗si
φk|2 <

|u1|2
‖φ⊥k ‖2‖φ⊥si

‖2
+ 2

|u1|
‖φ⊥k ‖‖φ⊥si

‖(|u2|+ |u3|) + (|u2|+ |u3|)2

= O (
φ⊥k ,φ

⊥
si

)
+ 2

√
O (
φ⊥k ,φ

⊥
si

)
(|u2|+ |u3|) + (|u2|+ |u3|)2

=

(√
O (
φ⊥k ,φ

⊥
si

)
+ |u2|+ |u3|

)2

. (120)

Also, a lower bound for |φ∗si
φk|2 can be given as

|φ∗si
φk|2 > |u1|2 − 2|u1|(|u2|+ |u3|)− 2|u2||u3|

> O (
φ⊥k ,φ

⊥
si

) ‖φ⊥k ‖2‖φ⊥si
‖2 − 2

√
O (
φ⊥k ,φ

⊥
si

)
(|u2|+ |u3|)‖φ⊥k ‖‖φ⊥si

‖ − 2|u2||u3|

> O (
φ⊥k ,φ

⊥
si

) ‖φ⊥k ‖2‖φ⊥si
‖2 − 2

√
O (
φ⊥k ,φ

⊥
si

)
(|u2|+ |u3|)− 2|u2||u3|. (121)

Using (114) and (115), we have

‖φ⊥k ‖2 = 1−
i−1∑
j=1

|φ∗sj
φk|2 +

i−1∑
j=1

i−1∑

l=1
l 6=j

〈
φk,φsj

〉〈
φsj

,φsl

〉 〈
φsl

,φk

〉
, (122)
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and

‖φ⊥si
‖2 = 1−

i−1∑
j=1

|φ∗sj
φsi
|2 +

i−1∑
j=1

i−1∑

l=1
l 6=j

〈
φsi

,φsj

〉〈
φsj

,φsl

〉 〈
φsl

,φsi

〉
. (123)

Conditioned on Ci, and knowing that the set {φsj
}i

j=1 is ε(N)-orthogonal (or equivalently, Mα-

orthogonal, i.e., |φ∗sj
φsl
|2 < Mα, j, l = 1, · · · , i), from (117) we conclude the followings:

|u2| < (i− 1)
√
Mα,

|u3| < (i− 1)(i− 2)Mα3/2,

‖φ⊥k ‖2 > 1− (i− 1)α− (i− 1)(i− 2)
√
Mα3/2,

‖φ⊥si
‖2 > 1− (i− 1)Mα− (i− 1)(i− 2)M3/2α3/2. (124)

Therefore, using (120), (121), and (124) the upper bound and lower bound for |φ∗si
φk|2 can be

rewritten as

|φ∗si
φk|2 <

(√
O (
φ⊥k ,φ

⊥
si

)
+ (i− 1)

√
Mα + (i− 1)(i− 2)Mα3/2

)2

, (125)

and

|φ∗si
φk|2 > A.O (

φ⊥k ,φ
⊥
si

)− 2B
√
O (
φ⊥k ,φ

⊥
si

)− C, (126)

where A =
(
1− (i− 1)α− (i− 1)(i− 2)

√
Mα3/2

)(
1− (i− 1)Mα− (i− 1)(i− 2)M

√
Mα3/2

)
,

B = (i− 1)
√
Mα + (i− 1)(i− 2)Mα3/2, and C = 2(i− 1)2(i− 2)M3/2α5/2.

Using (111), (125), and (126) we have

κi > Prob

{[√
O (
φ⊥k ,φ

⊥
si

)
+ (i− 1)

√
Mα + (i− 1)(i− 2)Mα3/2

]2

< α

}

= Prob
{
O (
φ⊥k ,φ

⊥
si

)
<

[√
α− (i− 1)

√
Mα + (i− 1)(i− 2)Mα3/2

]2
}

= Prob
{
O (
φ⊥k ,φ

⊥
si

)
< α− 2(i− 1)

√
Mα3/2 +O(α2)

}
, (127)
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and

κi < Prob
{
A.O (

φ⊥k ,φ
⊥
si

)− 2B
√
O (
φ⊥k ,φ

⊥
si

)− C < α

}

= Prob

{√
O (
φ⊥k ,φ

⊥
si

)
<
B +

√
B2 + A(C + α)

A

}

= Prob
{√

O (
φ⊥k ,φ

⊥
si

)
<
√
α + (i− 1)

√
Mα +O(α3/2)

}

= Prob
{
O (
φ⊥k ,φ

⊥
si

)
< α + 2(i− 1)

√
Mα3/2 +O(α2)

}
. (128)

Since φ⊥k and φ⊥si
are the projections of φk and φsi

over P⊥
i−1, a (M − i + 1)-dimensional

subspace of CM×1, φ⊥k
‖φ⊥k ‖

, and
φ⊥si

‖φ⊥si
‖ , can be considered as uniformly distributed unit vectors in

P⊥
i−1. Therefore, using Lemma 3, the probability density function for O (

φ⊥k ,φ
⊥
si

)
can be given

as

pO(φ⊥k ,φ⊥si)
(z) = (M − i)(1− z)M−i−1. (129)

Having (129), and using (127) and (128) we can write

κi <

∫ α+2(i−1)
√

Mα3/2+O(α2)

0

(M − i)(1− z)M−i−1dz

= 1−
[
1− α− 2(i− 1)

√
Mα3/2 +O(α2)

]M−i

∼ (M − i)α+ 2(M − i)(i− 1)
√
Mα3/2 +O(α2), (130)

and

κi >

∫ α−2(i−1)
√

Mα3/2+O(α2)

0

(M − i)(1− z)M−i−1dz

= 1−
[
1− α+ 2(i− 1)

√
Mα3/2 +O(α2)

]M−i

∼ (M − i)α− 2(M − i)(i− 1)
√
Mα3/2 +O(α2). (131)

From (130) and (131) we conclude

κi ∼ (M − i)α +O(α3/2). (132)
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Let us define

p = Prob {λmax(Hk) > t} , (133)

where t = logN + (M +K − 1) log logN . Using (25), the above probability probability can be

written as

p =
tM+K−2 exp(−t)

Γ(M)Γ(K)

[
1 +O(t−1)

]

=
[logN + (M +K − 1) log logN ]M+K−2 +O

(
[logN ]M+K−3

)

Γ(M)Γ(K)elog N+(M+K−1) log log N

∼ 1

N logNΓ(M)Γ(K)
+O

(
log logN

N [logN ]2

)
. (134)

Using the above equation, the probability in (75) can be computed as,

η = 1− (1− p)N

∼ 1− exp
(−Np+O(Np2)

)

∼ 1− exp

[
− 1

Γ(M)Γ(K) logN
+O

(
log logN

[logN ]2

)]

∼ 1−
[
1− 1

Γ(M)Γ(K) logN
+O

(
log logN

[logN ]2

)]

∼ O

(
1

logN

)
. (135)

APPENDIX D

We observed that B = HH∗ is an M × M matrix whose diagonal elements behave like

logN + f(N), where f(N) ∼ o(logN), and its non-diagonal elements scale as O(ε(N) logN).

For simplicity of notation, we define θ(N) = logN + f(N) and ϕ(N) = O(ε(N) logN).

Let us define Am as a m ×m matrix whose diagonal elements scale like θ(N), and, its non-

diagonal elements scale like ϕ(N). Hence, all diagonal elements of B−1 can be written as

DRAFT



48

detAM−1

detAM

.

It can be easily shown that

detAm = [θ(N)]m +O([θ(N)]m−2[ϕ(N)]2)

= [logN ]m +O ([logN ]mh(N)) , m = 2, · · · ,M. (136)

where h(N) = max
(

f(N)
log N

, ε(N)
)
∼ o(1). Consequently, we can write any diagonal element of

B−1 as

[B−1]ii =
[logN ]M−1 +O

(
[logN ]M−1h(N)

)

[logN ]M +O ([logN ]Mh(N))

= [logN ]−1 +O
(
h(N)[logN ]−1

)
. (137)

APPENDIX E; PROOF OF LEMMA 6

For the proposed method, we have seen that the achievable sum-rate can be lower-bounded

as

RProp ≥ EH

{
M log

(
1 +

P

Tr
{
[H∗H]−1}

)}

≥ M logP −MEH
{
log

(
Tr

{
[H∗H]−1})}

. (138)

where H is the “ selection coordinate matrix”, defined in (9).

In [35], it has been shown that

‖bi‖2‖ai‖2 ≤ δ(B), i = 1, · · · ,M, (139)

where bi, i = 1, · · · ,M , are the columns of B, a M ×M matrix with the orthogonality defect

δ(B), and ai, i = 1, · · · ,M , are the columns of A = (B−1)∗. Similarly, we can write

‖bi‖2‖ai‖2 ≤ δ(A), i = 1, · · · ,M. (140)

DRAFT



49

Defining B = H−1, and using the above equation, we can write

Tr
(
[HH∗]−1) =

M∑
i=1

‖bi‖2

≤
M∑
i=1

δ(H∗)
‖ai‖2

, (141)

where ai, is the ith column of H∗, which is equal to g∗si
. Having the fact that ‖gsi

‖2 ≥ t (by

the algorithm), we can rewrite (141) as

Tr
(
[HH∗]−1) ≤ Mδ (H∗)

t
. (142)

Defining X(H) = log Tr
(
[HH∗]−1), Y (H) = log

Mδ (H∗)
t

, Z(H) = log δ(H∗), and FW (.)

as the CDF of the random variable W , we have

E {X(H)} ≤ E {Y (H)}

= log
M

t
+ E{Z(H)}

= log
M

t
+

∫ ∞

0

zfZ(H)(z)dz

= log
M

t
+

∫ ∞

0

[
1− FZ(H)(z)

]
dz

= log
M

t
+

∫ ∞

1

[
1− Fδ(H∗)(e

z)
]
dz. (143)

It can be easily shown that δ(H∗) = δ(Ψ), where Ψ = [Ψ1| · · · |ΨM ] is the matrix consisting

of the normalized columns of H∗, i.e., Ψi =
H∗

i

‖H∗
i‖ , i = 1, · · · ,M . Since the rows of H are

chosen randomly among the pre-selected eigenvectors, and due to the fact that the eigenvalues

of a zero-mean circularly symmetric Gaussian matrix are independent of their corresponding

eigenvectors, Ψ can be considered as a M ×M matrix whose column are M randomly selected
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unit vectors. We have

δ(Ψ) =
1

| det(Ψ)|2

=
1∏M−1

i=1 γi

, (144)

where γi is the square norm of the project of Ψi+1 over the sub-space spanned by {Ψj}i
j=1, P i.

Now, consider Φ1, · · · ,ΦM , to be an orthonormal basis for the M -dimensional space, where

{Φj}i
j=1 are a basis for P i. Therefore, Ψi+1 can be represented as (ψ1,i+1, · · · , ψi,i+1, 0, · · · , 0),

where ψj,i+1 is the project of Ψi+1 over Φj . In [34], the joint probability density function of

Ψ
(i)
i+1 = (ψ1,i+1, · · · , ψi,i+1) is given as,

p
Ψ

(i)
i+1

(ψ) =
Γ(M)

πiΓ(M − i)

(
1− ‖ψ‖2

)M−i−1
. (145)

Using the above equation, the probability density function of γi = ‖Ψ(i)
i+1‖2 can be written as

pγi
(z) =

Γ(M)

Γ(i)Γ(M − i)
zi−1(1− z)M−i−1, (146)

which corresponds to the Beta distribution with parameters (i,M − i).

Using (144), (146), and independence of γi’s [19], we have

Prob {δ(Ψ) > r} ≤ Prob
{

min
i
γi < r−

1
M−1

}

= 1−
M−1∏
i=1

[
1− Ii,M−i

(
r−

1
M−1

)]
, r ≥ 1, (147)

where Ir,s(.) denotes the Incomplete Beta Function, with parameters (r, s). In [36], it has been

shown that

Ir,s(x) =
Γ(r + s)xr(1− x)s−1

Γ(r + 1)Γ(s)
+ Ir+1,s−1(x), ∀r, s ∈ Z+, (148)

which incurs that

Ir,s(x) ≥ Ir+1,s−1(x), ∀x ∈ [0, 1]. (149)
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Consequently,

Ii,M−i(x) ≤ I1,M−1(x)

= 1− (1− x)M−1, i = 1, · · · ,M − 1. (150)

Using (150) and (147), we can write,

Prob {δ(Ψ) > r} ≤ 1−
(
1− M−1

√
1/r

)(M−1)2

. (151)

Combining (143) and (151), we have

E{X(H)} ≤ log
M

t
+

∫ ∞

1

[
1−

(
1− e

−r
M−1

)(M−1)2
]
dr

= log
M

t
+

(M−1)2∑
m=1

(
(M − 1)2

m

)
(−1)m+1

∫ ∞

1

e−
mr

M−1dr

= log
M

t
+

(M−1)2∑
m=1

(
(M − 1)2

m

)
(−1)m+1M − 1

m
e
−m

M−1

= log
M

t
+ (M − 1)

(M−1)2∑
m=1

1−
(
1− e−

1
M−1

)m

m

≤ log
M

t
+ (M − 1)

(M−1)2∑
m=1

1

m

≤ log
M

t
+ (M − 1)[2 log(M − 1) + 1]. (152)

Substituting (152) into (138) and having t = logN , we get

RProp ≥M log

(
P

M
logN

)
−M(M − 1)[2 log(M − 1) + 1]. (153)

As a result,

lim
N→∞

RProp

ROpt

= 1. (154)
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APPENDIX F; PROOF OF LEMMA 7

Achievability of the maximum multiplexing gain

Using (138), the multiplexing gain achieved by the proposed method, denoted by rProp, can

be lower-bounded as

rProp ≥ lim
P→∞

M logP −MEH
{
log

(
Tr

{
[H∗H]−1})}

logP

= M −M lim
P→∞

EH
{
log Tr

{
[HH∗]−1}}

logP
. (155)

Following the proof of Lemma 6 in Appendix E, and using equations (143), and (152), and

the union bound for the probability, we have

EH
{
log Tr

{
[HH∗]−1}} ≤ log

M

t
+

(
L

M

) ∫ ∞

1

[
1−

(
1− e

−r
M−1

)(M−1)2
]
dr

≤ log
M

t
+ (M − 1)[2 log(M − 1) + 1]

(
L

M

)
, (156)

where L is the number of preselected eigenvectors in the first step of Algorithm 1. Since L ≤

NK, we have EH
{
log Tr

{
[HH∗]−1}}

< ∞, the second term in (155) approaches zero, and

as a result rProp ≥M .

For the optimum strategy, the sum-rate can be upper-bounded as [37],

ROpt ≤ME‖H‖max

{
log

(
1 +

P

M
‖H‖2

max

)}
, (157)

where ‖H‖2
max is the maximum Frobinous norm of all channel matrices. This random variable

can be considered as the maximum of N χ2(2MK) random variables which has the pdf of the

form

p‖H‖2max
(x) = N

xMK−1 exp(−x)
Γ(MK)

γ(x,MK)N−1, (158)
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where γ(x,MK) =
∫∞

x
uMK exp(−u)

Γ(MK)
du. So, using (157) and (158), we can write the upper bound

for the sum-rate as

ROpt ≤ M

∫ ∞

0

log(1 +
P

M
x)N

xMK−1 exp(−x)
Γ(MK)

γ(x,MK)N−1dx. (159)

Thus, using the above equation, we have

rOpt = lim
P→∞

ROpt

logP

≤
M logP +

∫∞
0
M log(

x

M
)N

xMK−1 exp(−x)
Γ(MK)

γ(x,MK)N−1dx

logP

= M. (160)

Since for any values of P and N , ROpt(P,N) is the maximum achievable sum-rate , rOpt will

be the maximum achievable multiplexing gain in MIMO-BC. Hence, using the above equation

and having the fact that rProp ≥ M , we conclude rOpt = rProp = M Therefore, the proposed

method achieves the maximum multiplexing gain in MIMO-BC.

Achievability of the optimum multiuser diversity gain

In the proof of theorem 2, we observed that the sum-rate achieved by the proposed strategy,

as well as the optimum one, scales like M log
(

P
M

logN
)
. Hence, using (162) the multiuser

diversity gain for the optimal scheme, denoted by dOpt is equal to

dOpt = lim
N→∞

ROpt

rOpt log logN

= lim
N→∞

M log

(
P

M
logN

)

M log logN

= 1. (161)
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and for the proposed method,

dProp = lim
N→∞

RProp

rProp log logN

= lim
N→∞

M log

(
P

M
logN

)

M log logN

= 1. (162)

Therefore, the proposed method achieves the maximum multiuser diversity gain in MIMO-BC.

This, completes the proof of Lemma 7.

APPENDIX G; MULTIPLEXING GAIN IN RANDOM SELECTION METHOD

In this appendix, we prove that the Random selection strategy achieves the maximum multiplex-

ing gain, i.e., rRS = M . For this purpose, we consider the the precoding scheme of zero-forcing

beam-forming. We assume that the coordinates are chosen randomly among the eigenvectors

corresponding to the maximum singular value of each user’s channel matrix. Therefore, similar

to (155), we have

rZFBF
RS ≥ M −M lim

P→∞
EH

{
log Tr

{
[H∗H]−1}}

logP
, (163)

where H =
[
gT

s1,max

∣∣ gT
s2,max

∣∣ · · ·
∣∣ gT

sM ,max

]T , and the users s1, · · · , sM are selected randomly.

Defining B = H−1, similar to (141), we can write

Tr
{
[HH∗]−1} ≤

M∑
i=1

δ(H∗)
‖ai‖2

, (164)

where ai is the ith column of H∗, which is equal to gsi
. Noting that ‖gsi

‖2 = λmax(Hsi
), we

have

Tr
{
[HH∗]−1} ≤

M∑
i=1

δ(H∗)
λmax(Hsi

)

≤
M∑
i=1

Mδ(H∗)
‖Hsi

‖2
. (165)

DRAFT



55

Using (143), (152), and (165) we can write

EH
{
log Tr

{
[H∗H]−1}} ≤ E

{
log

(
M∑
i=1

Mδ(H∗)
‖Hsi

‖2

)}

= logM + E {log δ(H∗)}+ E

{
log

(
M∑
i=1

1

‖Hsi
‖2

)}

≤ logM + (M − 1)[2 log(M − 1) + 1] + log

[
ME

{
1

‖Hsi
‖2

}]

≤ M [2 log(M − 1) + 1] + log

[∫ ∞

0

x−1.
xMK−1 exp(−x)

Γ(MK)
dx

]

= M [2 log(M − 1) + 1]− log(MK − 1). (166)

Using (163) and (166), and noting that rZFBF
RS ≤ rRS ≤M , we conclude rRS = M .
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