A Low Complexity Method for Fixed-rate Entropy-coded

Vector Quantization based on Integer Programming

S. Nikneshan, A. K. Khandani and E. Hons

Department of Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1
Technical Report UW-E&CE#2002-14

July 29, 2002

Abstract: This paper describes a new approach to Fixed-rate Entropy-coded Vector Quanti-
zation (FEVQ) for stationary memoryless sources where the structure of code-words are derived
from a variable-length scalar quantizer. We formulate the quantization search operation as a
zero-one integer optimization problem [1], and show that the resulting integer program can be
closely approximated by solving a simple linear program. The result is a Lagrangian formula-
tion which adjoins the constraint on the entropy (codeword length) to the distortion. Unlike
the previously known methods with a fixed Lagrangian multiplier (fixed-slope, and variable
rate output), we use an iterative algorithm to optimize the underlying objective function while
updating the Lagrange multiplier until the constraint on the overall rate is satisfied (ensured
to be fixed-rate). This results in a chain of improving solutions which moves towards the op-
timum point as fast as possible (in the sense that the changes in the objective function value
at each step is maximized). In order to achieve some packing gain, we combine the process of
Trellis Coded Quantization (TCQ) with that of FEVQ. This results in an iterative application
of the Viterbi algorithm on the underlying trellis for optimizing the Lagrangian multiplier. Nu-
merical results are presented demonstrating substantial improvement in comparison with the

alternative methods reported in the literature.

1 Introduction

Optimum fixed-rate scalar quantizers, introduced by Max [2] and Lloyd [3] (Lloyd-Max Quan-
tizer or LMQ)), minimize the average distortion for a given number of threshold points. In spite
of the gain of LM(Q) in comparison with uniform quantization, there is a big gap between the
LMQ performance and the rate distortion bound due to the lack of entropy coding.

An extension of LMQ to vector sources introduced by Linde, Buzo, and Gray in [4], performs
arbitrarily close to the rate-distortion bound as the space dimension becomes large. However,
the complexity of this method (both computational and storage) is exponential in N R (where
N is the dimension and R is the per sample rate), making it impractical even for modest values
of rate and dimension.

To improve the performance of scalar quantizers, one could use variable-length encoding
(entropy coding) of the quantizer output. The general design methodology for such an entropy-

coded quantizer is based on the minimization of the functional J = D + AH where D is the

quantization distortion, A is the Lagrange multiplier, and H is the entropy of the output.
This type of optimization problem in Information Theory was first presented by Blahut [5]
for finding the rate-distortion function. A well known method for entropy-coded quantization,
introduced in [6], is based on using a distance measure which combines the effects of entropy and
distortion by considering a linear combination of the two using fixed Lagrangian coefficients.
The quantizer design in [6] is based on a variation of the Lloyd-Max algorithm. The current
work takes advantage of a similar Lagrangian composed of a linear combination of the code-word
length and the quantization distortion. However, unlike the previously known methods with a
fixed Lagrangian, we use an iterative algorithm to update the Lagrange multiplier until certain
constraint on the overall rate is satisfied (ensured to be fixed-rate). The algorithm updates
the Lagrange multiplier such that the changes in the objective function value at each step is
maximized. This results in a chain of improving solutions which moves towards the optimum
point as fast as possible (in the sense of providing the maximum possible improvement at each
step).

To take advantage of entropy coding, while avoiding the dis-advantages associated with
conventional methods based on using variable rate codes (including error propagation and
buffering problems), one can use Fixed-rate Entropy-coded Vector Quantization (FEVQ). This
1s based on selecting a subset of points of high probability in the Cartesian product of a set of
scalar quantizers and representing its elements with binary code-words of the same length. In
this case, as some of elements are discarded from the Cartesian product space, the operations
of “nearest neighbor search” and “labeling of quantizer points (addressing)” can no loner be
achieved independently along the space dimensions. The main challenge here would be to
find methods to exploit the structure of the selected subset of points (shaped set) to reduce
the complexity of these operations. Omne can further improve the performance of FEVQ by
exploiting a high dimensional lattice which offers some extra quantization (packing) gain due
to using quantization regions which are closer to spherical (as compared to a cubes).

The pyramid vector quantizer, introduced by Fischer (for Laplacian sources) [7], is a fixed-
rate VQ in which the code-vectors are located on the intersection of a cubic lattice and a
pyramid in N-dimensional space.

One class of FEV(Q) schemes are based on using a subset of points from a lattice (quantiza-

tion lattice) bounded within the Voronoi region around the origin of another lattice (shaping

lattice) [8]. This approach has been extended in [8] to the case of using the trellis diagram
of a convolutional code to construct the shaping lattice. In both cases, the selected subset
forms a group under vector addition modulo the shaping lattice. This group property is used
to facilitate the underlying operations (“nearest neighbor search” and “labeling of quantizer
points”).

Another class of schemes are based on selecting the N-D quantizer points with the lowest
additive self-information (typical set). In this case, the selected subset has a high degree of
structure which can be used to reduce the complexity. A method for exploiting this structure
based on using dynamic programming is proposed by Laroia and Farvardin in [9]. The core idea
in the schemes of [9] is to use a state diagram with the transitions corresponding to the one-D
symbols. This results in a trellis composed of N stages where N is the space dimensionality.
The states s and s+ ¢ in two successive stages are connected by a link corresponding to the
one-D symbol(s) of cost ¢. Consequently, the states in the nth stage, n=0,..., N — 1, represent
the accumulative cost over the set of the first n dimensions. The links connecting two successive
stages are assigned a metric corresponding to the one-D distortions. Then, the Viterbi algorithm
is used to find the path of the minimum overall additive distortion through the trellis. In [9],
cost is defined as a scaled version of self information where entropy coding is achieved by
discarding the states with a cost higher than a given threshold. This Scalar-Vector Quantizer
(SVQ) [9] is a vector quantizer derived from a variable-rate scalar quantizer and can achieve a
large portion of the boundary gain by selecting the code-vectors inside the typical set. However,
no granular gain is realized by SVQ as the underlying grid is rectangular.

Reference [10] uses a different approach to dynamic programming showing improvement
with respect to the schemes of [9]. The key point in [10] is to decompose the underlying
operations into the lower dimensional subspaces. This decomposition avoids the exponential
growth of the complexity. The core of the scheme, as in any problem of dynamic programming,
is a recursive relationship which is formed in a hierarchy of levels where each level involves the
Cartesian product of two lower dimensional subspaces.

The trellis coded quantizer (TCQ) introduced by Marcellin and Fischer in [11] is also derived
from a scalar quantizer and uses Ungerboeck idea of coding by set partitioning to realize a
significant quantization gain. It is based on applying the Ungerboeck notion of set partitioning

to the partitions of a scalar quantizer where a trellis structure is used to prune the expanded

number of quantization levels down to the desired encoding rate. Reference [11] studies the
quantization gain of several Ungerboeck one-dimensional trellis codes based on partitioning the
integer lattice Z into the four cosets of 4Z. Following [11], several other variations of TCQ have
been studied in the literature. Trellis Coded Vector Quantizer, studied in [12, 13], is based on
applying the coding by set partitioning idea on a vector quantizer codebook.

Entropy-coded TCQ of [14, 15] uses variable rate coding of the output. This is a gener-
alization of the method of [6] (using fixed Lagrangian') to include TCQ. The Entropy-coded
TCQ of Fischer and Wang [14] performs within 0.5 dB of the rate distortion bound. In spite
of their excellent performance, the problems associated with variable-length coding limits the
usefulness of these approaches in many practical situations.

In order to achieve some boundary gain, Laroia and Farvardin combine the idea of scalar-
vector quantizer [9] with trellis coded quantization [11] and proposed a new fixed-rate quantizer
which they called the trellis-based scalar-vector quantizer (TB-SVQ) [16]. The resulting quan-
tizer shows an excellent performance assuming error free transmission. However, as shown
in [17], TB-SVQ is a catastrophic code, and a single bit error within a block can propagate
indefinitely into other blocks. In [17], Yang and Fischer proposed a solution to this problem in
which the channel error can propagate at most two blocks.

In this paper, we introduce a low complexity method for FEV(Q) for stationary memory-
less sources. This algorithm uses a zero-one integer optimization formulation for the nearest
neighbor search which is subsequently approximated by a simpler linear program [1]. We pro-
pose a new solution for this formulation which is less complex as compared to the solution
proposed in [1], and more importantly, unlike the method of [1], it can be easily combined
with a quantization lattice (in specific a TCQ) to achieve some packing gain. We show that
the optimum solution of the linear program results in a Lagrangian formulation adjoining the
distortion and the length of the codewords. We also show that finding the optimum solution of
the underlying linear program is equivalent to finding the optimum value for the corresponding
Lagrange multiplier. Starting from two initial points, we derive a method to find a chain of

improving solutions which moves towards the optimum point in the fastest possible way?. As

1This is based on using a distance measure which is a linear combination (with fixed coefficients) of the

codeword length and quantization distortion.
In the sense that at each step of iteration, the algorithm updates the Lagrange multiplier such that the

already mentioned, the approach can be easily mixed with trellis/lattice quantization by an
iterative application of the proposed algorithm to the trellis diagram of the underlying lattice
(using Viterbi algorithm).

The rest of paper is organized as follows: Section 2 contains a brief description of the linear
programming formulation and the approach to solve this problem. We also discuss a method to
combine the proposed approach to FEVQ with trellis quantization (TCQ). Finally, in Section 3,
we conclude the paper by presenting the numerical results and a comparison between proposed

methods with some other quantization schemes.

2 Formulation of Nearest Neighbor Search as a Linear

Program

Consider an N dimensional vector quantizer derived from N variable length scalar quantizers.
Each scalar quantizer consists of M partitions with reconstruction levels (g1, g2, ..., qar), where
g1 < g2 < ... < qu- Thereis a variable-length, binary, prefix code associated with each quantizer
partition.

There are a set of positive cost values {c(1),c(2),...,c(M)} associated with the quantizer
partitions where the constraint on the entropy is formulated as “the sum of the cost values along

different dimensions being less than a given threshold say Cax”.

A natural choice is to use
the self information associated with the quantizer partitions as their respective cost value. In
this case, the constraint on the overall cost results in selecting a subset of points of the highest
probability in the Cartesian product space. In [10, 1, 9, 16], the cost is obtained by a scaling
of the self information. In [9, 16], it is assumed that the cost values {c(1),¢(2),...,e(M)} and
Cmax are integers®. Using integer cost values is the basis behind constructing the trellis diagram
in [9, 16] which is used for “nearest neighbor search” and “labeling” of the quantizer partitions.
The method proposed here can be applied to arbitrary cost values, however, to facilitate the

addressing, the cost values are simply defined as the length of the binary codewords associated

with the partitions. This corresponds to a coarse approximation of the self-information values

changes in the objective function value is maximized.
3Note that this assumption does not result in any loss of generality because non-integer values can be

approximated (as closely as desired) by integers through applying a proper scaling and rounding of values.

and results in a loss in the achievable performance. We show that the corresponding degradation
in the performance can be reduced by merging several dimensions together and applying the
binary labels to the points in the resulting subspace. One could also define the cost values
similar to [9, 16] and use the algorithm proposed here for the “nearest neighbor search” and
the enumeration algorithm of [9] for the labeling.

To formulate the nearest neighbor search problem, the jth partition of the scalar quantizer
along the ith dimension is identified by a binary variable §;(5), ¢ =1,...,N, j = 1,..., M where
0i(y) = 0,1 and 33;6:(j) = 1,4 = 1,..., N. To select the element indexed by j, along the ith
dimension, we set d;(jo) = 1 and &;(j) = 0, j # jo. Given an input vector r = (r1,...,7y), the

quantization problem (search for the nearest neighbor) is formulated as,
N M
Minimize Y > 8:(5)di(5)

: N (1)
Subject to: ZZ&(])C(]) < Chae,
—
j=1 51(-7) = 17 \V/’I,, 51(.7) = 07 17 \V/ivjv

where d;(j) = (r; — ¢;)*. Bach of the equalities Y;0;(j) = 1,7 =1,..., N, is called an indicator
constraint.

Note that one can further reduce the complexity of the search algorithm by focusing on a
subset of quantizer points along each dimension which can potentially become a component
in the final solution. We refer to these subsets as the candidate sets corresponding to each
dimension. To explain this idea, let us assign a second set of indices to the quantizer partitions
along each dimension to index the elements within each candidate set. We assume that the
elements of each candidate set are ordered according to their distance from the corresponding
input component with the nearest point indexed by zero. Using these notations, the candidate

set for the ¢th dimension is defined as the collection of quantizer partitions satisfying,

where czl(]) and ¢&(j) are the distance and the cost for the points of the ¢ candidate set,
respectively, and m; is the cardinality of the ¢th candidate set (m; < M, M is the number of

threshold points along each dimension). This definition is justified noting that if two points «

and 3 satisty, d;(a) < d;(8) and &(a) < &(f), then « is always a better choice as compared to
(3, and consequently, 8 is not in the candidate set.

The immediate problem in applying the simplex method to solve (1) is that the variables
d;(7) are restricted to be integer numbers, or more specifically 0 and 1. In the context of linear
programming, this is called a zero-one program. A general integer programming problem as well
as a general zero-one programming problem is known to be NP [18]. The available techniques
to solve a general integer programming problem can be categorized into the following two major
groups [18]: (i) cutting plane techniques, and (ii) enumerative techniques. There is also a fair
amount of research on the specific topic of zero-one programming. Fortunately, in the present
case, one can substantially reduce the search complexity using the following simple theorem [1]:
Theorem 1: There are at least one and at most two non-zero variables corresponding to each
indicator constraint?.

To solve the problem in (1), we just relax the zero-one constraint and then find the optimum
solution to the underlying linear program. Using the previous theorem, we conclude that in the
final solution of (1), at most two non-zero variables are different from unity. In case that all the
non-zero variables are equal to unity, it means that the solution of the liner program has coincide
with the solution of the integer program and no rounding is needed. Otherwise, namely in the
cases that there are two non-unity variables, we set one of such non-unity variables to zero and
the other one to unity. The selection is achieved such that the cost constraint is not violated.
It can be shown that such a selection is always possible [1]. This results in a valid, probably
slightly sub-optimum solution. In general, the resulting sub-optimality is trivial, especially for
large values of N (note that the rounding is performed over at most one coordinate).

In [1], a solution based on generalized upper bounding technique is suggested to solve the
underlying linear program. In the current article, we use an improved solution method with
a lower complexity. In addition, the proposed solution has an interpretation in terms of the
conventional Lagrangian method (where the corresponding Lagrange multiplier is iteratively
optimized). This provides a natural framework to combine the method with a trellis structure
to achieve some packing gain.

To find the optimum solution for the underlying linear program, we find a chain of improving

*A more general form of this theorem can be found in [19].

solutions each expressed in terms of a linear interpolation between two intermediate points. The
interpolation coefficients are computed such that the cost constraint is satisfied with equality.
At each iteration, one of the two points involved in the interpolation is updated in a way
that the resulting improvement in the objective function value is maximized. The updating
1s achieved by solving an LP problem which is solely subject to the indicator constraints and
has a trivial complexity. The proposed solution methodology is inspired by the Danzig-Wolf
decomposition technique [20] for solving of linear programs tailored to the structure given in
Eq. 1.

Cousider the solution x = {z;(5),i=1,---,N,j5 =1,---, M} and assume that the objective

function value and the cost associated with x are equal to,

D=3 wii)dils)
S (2)
C =3 wii)eli).

=1 i

-
Il

<
—

respectively. We look at any such solution x as providing a tradeoff between the cost value C'
and the objective function value D. The main idea is to find a linear interpolation between an
appropriate set of such xs that: (i) the cost constraint is satisfied with equality, and (ii) the
overall tradeoff between the cost value and the objective function value is optimized.

Consider a solution obtained by interpolating between two such points, say x*, x%, and
assume that we try to improve the solution by bringing a third point, say x3, into the interpo-
lation procedure. The following LP problem is used to compute the interpolation coefficients
for the selection of optimum x3,

Minimize: A1 D1 + Ao Dy 4+ A3D5

Subject to: A C1 4+ ACs 4+ A3Cs5 = Chras (3)

A+ A+ A=1

where Dy, D5, D3 and Cy, C,, C5 are the objective function and cost associated with points
x!, x%, x3, respectively. Without loss of generality, we assume that C; < Cpa.x < Co and
D; > D,. Using basic principles of linear programming, we note that as the LP problem in (3)
has two constraints, only two of the corresponding As will be non-zero. This simply means that
it suffices to use only two points for the interpolation. This will be the case even if we try to

provide an interpolation among a larger number of such points.

For a given value of A3, the LP problem in (3) is equivalent to:

Minimize:)\1 _Dl +)\2 _D2 +)\3D3
Subject to: ACq + AoCs = Chrrae — A3Cs (4)
A+ A =1-A

Solving for A;, Az, we obtain,

—CMaz + A3Cs5 + (1 — A3)Cs

A = d 5
1 C,— C, an (5)
CM(m: -)\303 - (]- -)\3)01
Ay =)
2 G — Cs (6)

Substituting in (3) results in,

AD1+ XDy + A3Ds = A3(Ds + 71C3 + 7o)
(02 - CM(m:)-Dl + (CMaa: - Cl)D2

Cy—Cy
where,
_Dl — _D2 01D2 — C2.D]_
= = d == - 7
i C, — G, an o . —C. (7)

The term [(Cy — Cpraz) D1+ (Cagaz — C1)D2]/(C2 — C1) in (7) is the best value of the objective
function obtained by interpolating between only x! and x*. The optimum x® is selected to
minimize the effect of the related term in (7). This results in the following LP problem for the

selection of x3:

Minimize: Ds+ mCs5 = Z Z) + me(g)] 5 (5) (8)
=1 j5=1

Subject to: Indicator constraints

where z7(j) are the component of x*>. Note that the LP in (8) is decomposable, and conse-
quently, has a trivial complexity. The corresponding solution is simply obtained by selecting the
quantization partition along each dimension which minimizes the term d;(j) 4+ m1¢(j), namely
the linear combination of the distance and cost obtained using the Lagrange multiplier 7;.

If the minimum value of (8) satisfies (D3 + 71C5)min + 72 < 0, it means that the inclusion of
x3 results in a decrease in the objective function value in which case the iteration will continue.
Then, one of the two points x! or x? is updated. In this update, x® will replace x!, if C3 < Ciax
and it will replace x?, if C3 > Ciax (if C3 > Chpax, the optimum solution is found and we stop).
Note that in this manner, we always have C; < Ciax < Cy and Dy > D,. After this, the whole

procedure is repeated for the resulting two points until it merges to a stationary condition
which considering the linearity of the function will be the global optimum solution of the linear
program.

In summary, given the points x', x?, the algorithm computes the value of 7; using (2), (7)
and then finds the optimum solution of (8). Then, one of the two points x' or x* is updated
(replaced by x3) and the procedure is repeated until no further change in the value of m;
in two subsequent iterations is observed. In the following, we prove some properties of the
interpolation approach.

Theorem 2: If x' and x? are the two interpolating points in the last iteration of the
algorithm, then the interpolation between these two points results in one of them.

Proof: Assume the interpolation between x!' and x? results in in a new point, say x>, which

is different from x! and x2. This requires,
Ds + mCs < Dy + mCs = Dy + mCy,
where by a direct substitution, we obtain,
D3 4+ mC5 + w5 < 0,

meaning that the convergence conditions is not satisfied and the inclusion of x® results in a
decrease in the objective function value. This contradicts the assumption that we are in final
iteration.

Theorem 3: If x' and x? are the two interpolating points in the last iteration of the
interpolation procedure, then x! and x? differ in at most one co-ordinate.

Proof: Proof follows using basic principles of linear programming as reflected in Theorem 1.
According to Theorem 1, the algorithm ends with either all the components of the final solution
being zero-one, or it will have two non-zero components along a single co-ordinate which should
add to one. This second case can be interpreted as having an interpolation between two integer
solutions, one satisfying the cost constraint and the other one violating it. This means that the

two points involved in the interpolation procedure differ at most along one co-ordinate.

10

2.1 Linear Programming Approach to Fixed-rate Entropy-coded Trel-

lis Quantization

Consider an N-dimensional TCQ (N as a block length) with v = 2 states. The corresponding
scalar quantizer is specified by an alphabet (set of quantization levels) Q@ = {q1,¢2, -, q2n}
where M = 2™. The quantizer points are partitioned into 4 subsets, S;, [= 1,2,---,4, where
each subset consists of M/2 points [11]. Assume that there is a variable-length, binary, prefix
code associated with each subset®. The proposed entropy-coded trellis-coded quantizer uses a
proper Lagrange multiplier to adjoin the distortion to the code-word length and searches the
trellis (using Viterbi algorithm) for a path minimizing this quantity. The branch metric for
the Viterbi decoder is the sum of two terms, one term is the squared error between the current
input and its closest codeword in the subset associated with that branch, and the other term
1s the Lagrange multiplier times the length of the corresponding codeword.

Similar to the previous case, the algorithm finds a chain of improving solutions each ex-
pressed in terms of the linear interpolation between two intermediate points. Starting with two
points, say x!, and x?, we try to improve the solution by bringing a third point, say x>, into the
interpolation procedure. By following a procedure similar to the case discussed earlier (Eq. 1
to Eq. 7), we reach to an equation similar to Eq. 8. The updating is achieved by solving a new

LP problem for the selection of x® which is subject to the trellis and indicator constraints, i.e.,

Minimize: Ds+ mCs5 = Z Z) + me(g)] 5 (5) (9)
=1 j5=1

Subject to: Indicator and trellis constraints

Noting that the indicator constraints in 9 are decomposable, we conclude that the points
along different dimensions can be selected independently (as far as the restrictions imposed by
the structure of the underlying trellis is satisfied). This means that one can use the Viterbi
algorithm to find the solution of Eq. 9 where the branch metric i1s a linear combination of
distortion and code-word length of the form d;(j) 4 m1c(j).

In summary, given two points x! and x?, the algorithm computes the value of 7; and using
the Viterbi algorithm finds the solution of Eq. 9. Then, one of the points x* or x? is updated

and the iteration continues.

>These variable-length codes can also be designed for S; U S3 and S» U Sy [15].

11

3 Numerical Results

In the following, we present some numerical results for the performance and complexity of the
proposed method for an 1.1.d. Gaussian source. A Huffman code is used to label the quantizer
points in all the cases. The Huffman code is designed to be optimum (minimum length) for
the probabilities obtained in the last iteration of the employed iterative (LBG type) design
algorithm. In all cases, a sequence of 20000 source vectors is used to design the quantizer
and a different sequence of the same length is used to measure the resulting performance. The
quantization is measured in terms of the mean square distance. The memory size is in kilo bytes
(8 bits) per N dimensions and the computational complexity is the number of floating points
operations per dimension. In all cases, the complexity values given correspond to the “nearest
neighbor search algorithm” (for our case, the labeling algorithm has a trivial complexity).
Table 1 gives an indication of the range of I (obtained experimentally from the simulation
performed on our test data). In our following results, we have imposed the constraint I < 10 and
the complexity values are given for I = 10. Note that the complexity values given correspond

to the peak values and the average complexity would be somewhat lower.

Entropy Coding Huffman Coding
N M -[max -[avg -[max -[avg

32 8 9 1.89 9 3.27
64 8 9 2.99 9 4.69
128 8 11 4.54 11 6.33
128 16 11 5.02 11 7.10
256 8 11 6.27 11 8.04
256 16 11 7.82 11 8.48
512 8 13 8.17 12 9.55
512 16 13 9.00 12 9.57

Table 1: Number of iterations (1D case)

Table (2) shows the numerical results of the proposed quantizers at different bit rates. The
first column is based on a constraint on the total self information (SI). By applying Huffman

code and imposing the constraint on length instead of self information, the performance drops

12

about by 0.9 dB (HC-1D). This degradation will be generally lower for higher values of rate
per dimension and can be reduced by merging two or more dimensions and applying a Huffman
code to the resulting subspace. Column HC-2D in Table 2 corresponds to the case that two

coordinates are merged.

Rate=2.5 bits/dimension, M = 8
N SI HC-ID HC2D D(r)-1.530
32 13.02 11.91 12.51 13.53
64 13.20 12.25 12.83 13.53
128 13.29 1245 13.03 13.53
256 13.36 12.57 13.24 13.53
512 13.39 12.64 13.30 13.53

Table 2: SNR (in dB) vs. dimension of the proposed method for a Gaussian source, 1D and 2D
refer to using the Huffman code over 1 and 2 dimensional subspaces, respectively. I D(r) —1.53
is the distortion rate function (in dB) of a Gaussian source, D(r) = 10log 10(2%") minus 1.53dB
where 1.53dB is the maximum possible quantization gain due to packing [21]. The subtraction

of 1.53dB accounts for the lack of packing.

Table (3) provides the results when the proposed method is combined with a TCQ with 4
states where the underlying scalar quantizer are composed of 16 points. Column (HC-1D-TCQ)
corresponds to the case that the Huffman codes are applied to the one dimensional codewords.
The results show about 1 dB improvement in comparison with HC-1D given in Table 2. Column
HC-2D-TCQ corresponds to the case that the Huffman code is applied over two dimensions.
The results show about 0.3 dB improvement in comparison with HC-1D-TCQ).

In Tables 4, 5, we have a comparison between the proposed method and the method pre-
sented in [9] and [10]. The new approach shows a substantial reduction in the complexity for
a similar performance.

In Table 6, we have a comparison between proposed method and the method presented
in [16]. As table 6 shows, the new approach shows a substantial reduction in the complexity.

We have not provided a detailed comparison with the method of [1] because the results

presented in [1] are based on a fine resolution approximation of the self information values

13

Rate=2.5 bits/dimension M =8
N HC-ID-TCQ HC-2D-TCQ D(r)!

32 13.34 13.63 15.05
64 13.56 13.93 15.05
128 13.73 14.13 15.05
256 13.80 14.25 15.05
512 13.84 14.32 15.05

Table 3: SNR (in dB) vs. dimension FE-TCQ using interpolation procedure quantizer using
a four state trellis for a Gaussian source, 1D and 2D refer to using the Huffman code over 1
and 2 dimensional subspaces, respectively. D(r) is the distortion rate function (in dB) of a

Gaussian source.

Method N M Rate Computation Memory SNR

HC-2D 128 8 25 200 04 13.03
[9] 16 8 25 2000 21 13.00
[10] 16 8 25 3000 0.22 1291
HC-1D 128 16 3.5 380 0.6 18.8
[9] 32 16 3.5 10000 300 18.8
[10] 32 16 3.5 1100 21 18.7

Table 4: Comparison of proposed methods and references [9], [10]

requiring a high complexity for the underlying enumerative addressing scheme (the issue of
addressing is not discussed in [1]). Note that unlike the method proposed here, the method
of [1] cannot be combined with a lattice quantizer either. As a rough comparison, in [1], a
case is reported which results in an SNR of 13.0 dB for a rate of 2.5 bits/dimension where
the number of operations for the nearest neighbor search is about 1700 per dimension and the
memory requirement (RAM) is about 8K (this does not include the addressing complexity).

These values can be compared with a similar case of 2.5 bit/dimension given in Table 2.

14

Method N M Rate Computation Memory SNR
HC-2D 32 8 25 670 0.42 12.51
HC-1D 128 8 2.5 200 1.4 12.45
HC-2D 128 8 2.5 670 1.5 13.03
9] 16 8 25 2000 21 13.00
[10] 16 8 25 3000 0.22 12.91
HC-1D 128 16 3.5 380 2.5 18.8
9] 32 16 3.5 10000 300 18.8
[10] 32 16 3.5 1100 21 18.7

Table 5: Comparison of proposed methods and references [9], [10]

Rate=2.5 bits/dimension M =8, N =64
Method Computations Memory SNR
HC-1D-TCQ 400 1.75 13.56
[16] 5720 15.5 13.56

Table 6: Comparison of proposed methods and trellis-based scalar-vector quantizer from refer-

ence [16]. The number of trellis states for both methods is four.

References

[1] A. K. Khandani, “A Linear (Zero-one) Programming Approach to Fixed-rate, Entropy-
Coded Vector Quantization,” IEE Proceeding Communication, vol. 146, pp. 275-282,
October 1999.

[2] J. Max, “Quantizing for minimum distortion,” IRE Trans. Inform. Theory, Vol. IT-6,
pp- 7-12, March 1960.

[3] S. P. Lloyd, “Least square quantization in PCM,” IEFE Trans. Inform. Theory, vol.
IT-28, pp. 129-137, Jan. 1982.

[4] Y. Lindo, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” IEEF
Trans. Communication, vol. COM-28, pp. 84-95, Jan. 1980.

15

[5]

[6]

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

R. Blahut, “Computation of channel capacity and rate distortion functions,” IEEE Trans.
Inform. Theory, vol. IT-18, pp. 460-473, March 1972.

P. A. Chou, T. Lookabaugh, and R. M. Gray, “Entropy-coded vector quantization,” IEEE
Trans. Acoust., Speech, Signal Process., vol. 37, pp. 31-42, Jan. 1989.

T. R. Fischer, “A pyramid vector quantizer,” IEEE Trans. Inform. Theory, vol. IT-32,
pp. 468-583, Nov. 1986.

M. V. Eyuboglu and G. D. Forney, “Lattice and trellis quantization with lattice- and
trellis- bounded codebooks—high-rate theory for memoryless sources,” IEEE Trans. In-
form. Theory, vol. IT-39, pp. 46-59, Jan 1993.

R. Laroia and N. Farvardin, “A structured fixed-rate vector quantizer derived from
variable-length scalar quantizer—Part I: Memoryless sources,” IEEE Trans. Inform. The-

ory, vol. IT-39, pp. 851-867, May 1993.

A. K. Khandani, “A Hierarchical Dynamic Programming Approach to Fixed-rate,
Entropy-Coded Quantization,” I[EEE Trans. Inform. Theory, vol. IT-42, pp. 1298-1303,
July 1996.

M. W. Marcellin and T. R. Fischer, “Trellis-coded quantization of memoryless and Gauss-
Markov sources,” IEEE Trans. Commun. vol. 38, pp. 82-93, Nov. 1990.

T. R. Fischer, M. W. Marcellin, and M. Wang, “Trellis-coded vector quantization,” I[EEE
Trans. Inform. Theory, vol. IT-37, pp. 1551-1566., Nov. 1991.

H. S. Wang and N. Moayeri, “Trellis coded vector quantization,” IEEE Trans. Commu-
nication, vol. 40, pp. 1273-1276, Aug. 1992.

T. R. Fischer and M. Wang, “Entropy-coded trellis-coded quantization,” IEEE Trans.
Inform. Theory, vol. IT-38, pp. 415-426, March 1992.

M. W. Marcellin, “On entropy constrained TCQ,” IEEE Trans. Commun., vol. 42, pp.
14-16, Jan. 1994.

16

[16] R. Laroia and N. Farvardin, “Trellis-based scalar-vector quantizer for memoryless

sources,” IEEE Trans. Inform. Theory, vol. IT-40, pp. 860-870, May 1994.

[17] L. Yang and T. R. Fischer, “A new trellis source code for memoryless sources,” IEEE
Trans. Inform. Theory, vol. 44, pp. 3056-3063, Nov. 1998.

[18] H. M. Salkin, Integer programming, Addison-Wesley Publishing Company, 1975.

[19] G. B. Dantzig, and R. M. Van Slyke, “Generalized upper bounding techniques,” Journal
of Computer and System Sciences, pp. 213-226, 1967.

[20] George B. Dantzig “Linear Programming & Extensions,” Princeton University Press,

January 1998.

[21] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Springer-Verlag,
1988.

17

