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Abstract: This report describes a new fixed-rate entropy-constrained quantization scheme

for stationary memoryless sources where the structure of code-words is derived from a variable-

length scalar quantizer. This method is a sequential encoding algorithm which looks for the

quantizer partition in a number of steps. It starts from the quantization points which result in

the minimum distance among the available candidates, and then in each step tries to reduce a

given cost value1 by changing the quantizer point along an appropriately selected dimension.

The algorithm continues til the total cost of the encoded codeword becomes smaller than

its maximum allowable value. We show that the step-wise algorithm results in a substantial

reduction in the complexity, while the associated degradation in the performance is negligible.

1 Introduction

Optimum fixed-rate scalar quantizers, introduced by Max [2] and Lloyd [3] (LMQ), minimize

the average distortion for a given number of threshold points. To increase the resolution

of quantization in high probability regions, the threshold points are closely spaced in those

regions, and widely spaced where the probability values are small. In spite of the gain of LMQ

in comparison with the uniform quantization, there is a big gap between the LMQ performance

and the rate distortion bound.

An extension of LMQ to vector quantizers introduced by Linde, Buzo, and Gray in [4] per-

forms arbitrarily close to the rate-distortion bound as the quantizer dimension N becomes large.

However, the implementation complexity of [4] (both computational and storage) is exponential

in NR (where N is the dimension and R is the per sample rate), making it impractical even

for modest values of rate and dimension. Suboptimal tree-searched vector quantizers [5] solve

the computational complexity problem, but only at the cost of added storage complexity.

To improve the performance of scalar quantizers, one could use variable-length encoding of

the quantizer output. Goblick and Holsinger [6] showed by numerical experiment that uniform

scalar quantizers with variable rate coding perform within about 1.5 dB of the rate distortion

bound for an i.i.d. Gaussian source. Optimal entropy-constrained scalar quantizers (ECSQ)

minimize the average distortion for a given output entropy and are known to asymptotically (at

high rates) perform within 1.53 dB of the rate-distortion bound for a large class of memoryless

1Cost is defined as an integer number proportional to the additive self information [1].
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sources [7, 8, 9, 10, 11]. Wood [8] provided a numerical descent algorithm for designing an

entropy-constrained scalar quantizer, and showed that the result was only slightly superior to

a uniform scalar quantizer followed by a lossless code. Berger [9, 10] described a condition

for optimality of an entropy-constrained scalar quantizer for squared-error distortion measure.

He formulated the optimization as unconstrained Lagrangian minimization and developed an

iterative algorithm for the design of entropy-constrained scalar quantizers.

The design of an entropy-constrained vector quantizer is generally based on the minimiza-

tion of the functional J = D + λH where D is the distortion between input and output, λ is

the Lagrange multiplier, and H is the entropy of the output. This class of convex optimization

problems in information theory was first presented by Blahut [12]. The Blahut algorithm, for

finding the rate-distortion function, is based on minimizing a Lagrangian where the Lagrangian

multiplier is interpreted as the slope of the hyper-plane supporting the convex optimization re-

gion. Chou and et al., [13] present an algorithm for the entropy-constrained vector quantization

(ECVQ) using Lagrangian formulation which uses a form of generalized Lloyd algorithm.

The improvement due to entropy coding comes at the cost of a variable-rate output with

its concomitant difficulties. To take advantage of entropy coding, while avoiding the dis-

advantages associated with conventional methods based on using variable rate codes (including

error propagation and buffering problems), one can use fixed-rate entropy-coded vector quanti-

zation (FEVQ).

The pyramid vector quantizer (PVQ), introduced by Fischer (for Laplacian sources) [14],

is an example of FEVQ in which the code-vectors are located on the intersection of a cubic

lattice and a pyramid in an N -dimensional space. For Laplacian sources, this quantizer is

asymptotically optimal and achieves the performance of ECSQ.

One class of FEVQ schemes are based on using a subset of points from a lattice (quantiza-

tion lattice) bounded within the Voronoi region around the origin of another lattice (shaping

lattice) [15]. This approach has been extended in [15] to the case of using the trellis diagram

of a convolutional code to construct the shaping lattice. In both cases, the selected subset

forms a group under vector addition modulo the shaping lattice. This group property is used

to facilitate the complexity of the underlying operations.

Another class of FEVQ schemes are based on selecting the N -fold symbols with the lowest

additive self-information (typical set). In this case, the selected subset has a high degree of
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structure which can be used to substantially reduce the complexity. This scalar-vector quantizer

(named as SVQ [1]) is a vector quantizer derived from a variable-length scalar quantizer and

can usually achieve a large portion of the boundary gain by placing the code-vectors on and

inside the typical region. However, no granular gain is realized by SVQ as the underlying grid

is rectangular. A method for exploiting this structure based on using a dynamic programming

approach with the states corresponding to integer numbers proportional to the additive self

information (cost) of the code-words is used by Laroia and Farvardin in [1]. The core idea in

the schemes of [1] is to use a state diagram with the transitions corresponding to the one-D

symbols. This results in a trellis composed of N stages where N is the space dimensionality.

The states s and s+ c in two successive stages are connected by a link corresponding to the

one-D symbol(s) of cost c. Consequently, the states in the nth stage, n=0, . . . , N − 1, represent

the accumulative cost over the set of the first n dimensions. The links connecting two successive

stages are labeled by the corresponding one-D distortions. Then, the Viterbi algorithm is used

to find the path of the minimum overall additive distortion through the trellis.

Reference [16] uses a different approach to dynamic programming showing improvement

with respect to the schemes of [1]. The key point in [16] is to decompose the underlying

operations into the lower dimensional subspaces. This decomposition avoids the exponential

growth of the complexity. The core of the scheme, as in any problem of dynamic programming,

is a recursive relationship which is formed in a hierarchy of levels (where each level involves the

Cartesian product of the lower dimensional subspaces).

In this report, we introduce a reduced-complexity method for fixed-rate entropy-constrained

quantization. The approach, a very low complexity algorithm, starts from an initial point and

improves the quantization SNR in a number of subsequent steps. It is shown (through numerical

simulations) that for an important class of sources with a monotone probability density function,

the proposed quantizer offers a performance very close to an optimum search procedure (based

on dynamic programming) with a substantial reduction in the complexity.

The rest of report is organized as follows: Section 2 explains the step-wise algorithm to

fixed-rate entropy constrained quantization. The section includes the basic definition about

the algorithm and a discussion about the cases where the proposed method results in the

optimum solution. Finally, in Section 3, we conclude the report by presenting some numerical

results and a comparison between proposed methods with some other quantization schemes.
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2 Step-Wise Algorithm (SWA) to Fixed-rate Entropy

Constrained Quantization

The methods known for solving a constrained optimization problem fall into two general cate-

gories. One class of procedures are based on starting from a point which satisfies the optimality

condition, but is not feasible. In this case, the optimization routine gradually moves towards

the feasible region, while optimizing the changes in the objective function value. A second class

of procedures start from a feasible point which is not optimum, and gradually move towards

a better solution, while maintaining the feasibility. Both of these procedures are applicable

to our following discussion, however, we focus on the first approach as it turns out to have a

smaller complexity for the cases which are of interest to us.

Consider an initial solution corresponding to the quantizer partitions with smallest distor-

tion along each dimension. If this initial point satisfies the rate constraint, then the solution is

complete, otherwise, we plan to move in a sequence of steps towards a feasible solution which

satisfies certain optimality conditions. To formulate the procedure, we consider a subset of

quantizer points along each dimension which can potentially become a component in the final

solution. We refer to these subsets as the candidate sets corresponding to each dimension,

denoted by Ci, i = 0, . . . , N − 1. We assume that the candidate set Ci is composed of ci = |Ci|

elements (ci ≤M , M is the number of threshold points along each dimension).

To formalize the definition, we assign a second set of indices to the quantizer partitions

along each dimension to index the elements within each candidate set. We assume that the

reconstruction level and the cost corresponding to the jth element of the candidate set for the

ith dimension are equal to rji and lji , i = 0, . . . , N − 1, j = 0, . . . , ci − 1, respectively, and

dji = (r
j
i −ai)

2, where ai is the input sample along the ith co-ordinate. We also assume that the

elements of each candidate set are ordered according to their distance from the corresponding

input component with the nearest point indexed by zero. Using these notations, the candidate

set for the ith dimension is defined as the collection of quantizer partitions satisfying,

d0
i ≤ d1

i . . . ≤ dcii
l0i ≥ l1i . . . ≥ lcii

This definition is justified noting that if two points α and β satisfy, dαi ≤ dβi and l
α
i ≤ lβi , then α

is always a better choice as compared to β, and consequently, β /∈ Ci. We refer to ∆
j
i = lji−l

j+1

i ,
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j = 0, . . . , ci − 1, i = 0, . . . , N − 1, as the cost increments. Note that ∆
j
i ≥ 0.

We also assign a shadow price to the element of each candidate set, defined as,

sji =
dj+1

i − dji
∆j

i

, j = 0, . . . , ci − 2

We define the optimization problem to be concave if the shadow prices sji , i = 0, . . . , N − 1, are

non-increasing for j = 1, . . . , ci−1. Using these notations, the step-wise optimization procedure

is formulated as follows,

• Start from an initial solution for which the partition selected along each dimension is

the element of the corresponding candidate set with the minimum distance. This is the

element indexed by zero in the corresponding candidate set.

• Compute the overall cost of the current solution, namely L̂k, where k is the iteration

index.

• If L̂k ≤ Lmax, quit, otherwise find the dimension for which the current selected point has

the smallest shadow price among all the current selected points of all dimensions, change

the current selected point along this dimension to the next element in the corresponding

candidate set, and go to step 2.

Reference [17] discusses a special case of this optimization procedure for which ∆j
i = 1, ∀i, j,

in which case they show that the step-wise procedure results in the optimum solution for a

concave function.

An important special case of our analysis is for situations that the quantizer points are

labeled by a dyadic Huffman tree2 and the cost of the quantizer partitions is defined as the

binary length of their associated code-word.

Theorem 1: The step-wise optimization procedure results in the optimum solution for

a concave quantizer with unity cost increments (for example a concave quantizer based on a

dyadic tree labeling).

Proof: The proof follows by a direct interpretation of theorems presented in [17].

Theorem 2: Assuming a concave quantizer, the kth iteration of the step-wise optimization

procedure outlined above results in the optimum solution for a problem with Lmax = L̂k.

2A dyadic tree has the lengths 1, 2, 3, . . . , lmax − 1, lmax, lmax, where lmax is the maximum length.
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Proof: Consider two subsequent elements of a given candidate set, say rji , r
j+1

i ∈ Ci with

∆j
i = lji − lj+1

i = m where m > 1. To fill the gap between lji and lj+1

i , we consider a set of

hypothetical quantizer partitions with code-word costs lji − 1, l
j
i − 2, . . . , l

j
i −m+1, all with the

same shadow price of (dj+1

i − dji )/m. The resulting hypothetical quantizer will be concave (if

the original quantizer is concave), and will satisfy the conditions of Theorem 1 as applied to a

quantizer with unity length increments. This means that the step-wise optimization procedure

results in the optimum solution for the resulting hypothetical concave quantizer. On the other

hand, as the shadow prices corresponding to the hypothetical quantization partitions used to fill

a given gap are all the same, the step-wise optimization procedure will select these hypothetical

partitions subsequent to each other. In this case, the solution to the original problem (obtained

by step-wise algorithm) will coincide with that of the modified problem for similar values of

Lmax, and consequently, is optimal.

3 Numerical Results

In the following, we present the numerical results for the performance and the complexity of the

proposed methods for an i.i.d. Gaussian source. The quantization is measured in terms of the

mean square distance. In all comparisons, the memory size is in byte (8 bits) per N dimensions

and the computational complexity is the number of additions/comparisons per dimension. A

quantizer with a search mechanism based on a Dynamic Programming Algorithm (DPA) is

used as the benchmark for comparison.

Table 1 and 2 shows the numerical results of the proposed quantizers at two different bit

rates. For Table 1, the set of codeword lengths (costs) is {4, 4, 3, 2, 2, 3, 4, 4}, and for Table 2 the

set of codeword lengths is {7, 7, 6, 5, 4, 3, 3, 3, 3, 3, 3, 4, 5, 6, 7, 7} which are the lengths associated

with the Huffman code designed in the last iteration of the employed iterative (LBG type)

design algorithm. It was observed that for a Gaussian source and this set of codeword lengths,

the quantizer is concave, and consequently satisfies the optimality conditions of Theorem 1

(concave with unity cost increments).

In order to evaluate the performance of SWA for a concave quantizer but not with unity

incremental cost values, we present the numerical results for a quantizer with M = 10 and

different set of codeword lengths as given in Table 3. In Table 3, the codeword lengths of half

of the points are shown. Due to the symmetry of the Gaussian source with respect to the
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origin, the same lengths apply to the other half. The SNR values presented in Table 3 show a

negligible degradation in performance for the case that the quantizer does not have unity cost

increments.

In Table 4, we have a comparison in terms of SNR and complexity between SWA and DPA

for a quantizer with unity cost increments. As Table 4 shows, the proposed algorithm offers a

substantial reduction in the complexity.

For the further evaluation of the proposed algorithm, we have tested the SWA with the

lexicographic indexing. The lexicographic indexing and using DPA for codebook search has been

presented in [1]. In this method, the cost associated with each threshold point is proportional

to its self information, namely, b−B log2(p)e where p is the corresponding probability and B is a

scaling factor employed to reduce the effects of round-off error. Larger values of B improve the

quantizer performance at the price of an increase in the complexity. In this case, the quantizer

does not have unity length increments, however, it was observed that it satisfies the condition

of concavity for the cases studied. The numerical results shown in Table 5 and 6 indicates that

even for the case that the quantizer does not have unity length increments, the SWA algorithm

performs well. The gap between SWA and DPA in this case is at most 0.15 dB while the

complexity of SWA is much lower than DPA.

In summary, the SWA performs close to optimum performance for a concave quantizer and

in the case of a quantizer with unity length increments, it achieves the optimum performance.

Its negligible complexity makes this method very attractive in comparison with dynamic pro-

gramming approach while the corresponding degradation in performance is quite negligible.
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Dimension SWA/DPA (dB)

32 11.93

64 12.26

128 12.46

256 12.58

512 12.64

1024 12.71

Table 1: SNR of SWA/DPA (in dB) vs. dimension for a rate of 2.5 bits/dimension, M = 8

(using Dyadic Huffman tree labeling).

Dimension SWA/DPA (dB)

32 18.06

64 18.50

128 18.79

256 18.99

512 19.10

1024 19.17

Table 2: SNR of SWA/DPA (in dB) vs. dimension for a rate of 3.5 bits/dimension, M = 16

(using Dyadic Huffman tree labeling).
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Set of lengths Rate M N SWA (dB) DPA (dB)

{1, 2, 3, 4, 4} 2.5 10 32 11.74 11.74

{1, 2, 3, 5, 5} 2.5 10 32 11.64 11.66

{1, 2, 4, 6, 7} 2.5 10 32 11.03 11.06

{1, 3, 4, 6, 6} 2.5 10 32 9.23 9.36

{1, 3, 4, 6, 6} 3.0 10 32 12.20 12.29

Table 3: Performance comparison of SWA vs. DPA.

Rate=3.5 bits/dimension M = 16, N = 32

Method Add/dimension Multiplies/dimension Memory SNR (dB)

SWA 3 3 96 byte 18.06

DPA 688 16 3.6 k-byte 18.06

Table 4: Performance/Complexity comparison of SWA vs. DPA.

Rate=2.5 bits/dimension, N = 32

M = 8 M = 10

B SWA (dB) DPA (dB) SWA (dB) DPA (dB)

4 12.06 12.11 12.08 12.13

8 12.50 12.60 12.51 12.60

16 12.71 12.83 12.78 12.85

32 12.81 12.96 12.87 —-

64 12.91 13.05 12.92 —-

128 12.92 13.07 12.95 —-

Table 5: SNR vs. dimension of SWA in comparison with DPA for N = 32, cost of the codewords

is computed as b−B log2(p)e.
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Rate=2.5 bits/dimension, N = 64

M = 8 M = 10

B SWA (dB) DPA (dB) SWA (dB) DPA (dB)

4 12.08 12.16 12.08 12.19

8 12.59 12.64 12.58 12.64

16 12.89 12.91 12.81 12.93

32 12.96 13.02 13.02 13.10

64 13.11 13.14 13.12 —-

128 13.13 13.17 13.17 —-

Table 6: SNR vs. dimension of SWA in comparison with DPA for N = 64, cost of the codewords

is computed as b−B log2(p)e.
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