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Abstract

This article1 presents a technique to reduce the multiple access interference in the forward-link of a conventional DS-

CDMA system by applying an energy constrained transformation to the transmitter output. For each symbol period, a new

transformation is selected which minimizes the mean-squared error at the output of a bank of matched-filter detectors. This

selection is subject to a constraint on total transmitted energy. It is shown that the proposed method results in substantial

advantages over earlier similar techniques. The proposed algorithm can be implemented efficiently at the transmitter with

existing optimization techniques that solve the quadratic trust-region subproblem.
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I. INTRODUCTION

�
HE conventional DS-CDMA detector assumes an independent additive Gaussian noise model

for the Multiple Access Interference (MAI). In reality, the MAI term is highly structured which

makes this model invalid. Multiuser detection exploits the structure of the MAI to improve perfor-

mance at the cost of additional processing overhead at the receiver which is usually quite large. This

overhead is especially problematic in the forward link of a cellular mobile network where the receiver

is usually a highly resource constrained mobile unit.

Recently, approaches have been proposed which transfer some or all of the processing burden

from the receiver to the transmitter (see [2], [3], [4], [5]). These methods work by applying a linear

transformation at either the transmitter side [2],[4], [5], or at both the transmitter and receiver sides [3].

By using the minimum mean-squared error criterion, the transformations can be selected to minimize

the bit error rate due to the MAI. Reference [4] studies a transmitter precoding scheme tailored to

exploit multi-path components, as well as a second approach based on joint optimization of spreading

sequences.

The main framework for the methods based on processing solely on the transmitter side is the so-

called transmitter precoding of [2]. In this paper, we follow a structure similar to [2] which is used as

a baseline for comparison.

It is shown in [2] that transmitter precoding results in complete decorrelation of the transmitted

symbols. In a noiseless channel, this is equivalent to the well known decorrelating detector [6]. How-

ever, by applying the decorrelation operation at the transmitter before noise is added to the signal,
�A more detailed version of this work is reported in [1].
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transmitter precoding avoids the problem of noise enhancement. Two methods are considered in [2]

to handle the increased transmitted energy of the precoder: so called unconstrained and constrained

transmitter precoding. The unconstrained method simply scales the transmitter output to the appro-

priate average energy. In contrast, the constrained method imposes an average energy constraint on

the selection of the precoding transformation. It is found that the raw bit error rate for both methods

is similar and thus the higher overhead of the constrained method is not justified.

In this work, we revisit constrained transmitter precoding for synchronous DS-CDMA with a new

formulation in which the transmitted energy is capped for each symbol period. The MAI will be

minimized in an MMSE sense subject to this constraint, thus we refer to the technique as the “opti-

mizing precoder”. The focus will be on a channel with Forward Error Correction (FEC) where it is

demonstrated that constrained transmitter precoding performs significantly better than in the uncoded

case and in fact outperforms unconstrained transmitter precoding (this is different from the conclu-

sion reached in [2] for the uncoded case). It will also be shown that the optimizing precoder not

only outperforms the constrained precoder reported in the earlier works, but also is easily solved with

efficient algorithms from non-linear optimization.

We first present a model for the target system in section II and the formulation for the various

precoders in section III. Solution algorithms for the optimizing precoders are presented in section IV.

Finally, results and conclusions are presented in sections V and VI, respectively.

II. SYSTEM MODEL

The transmitted signal, ����, in the forward link of a symbol and chip synchronous DS-CDMA

system with � active users and symbol duration �� is,

���� �

��
���

���������� � � � � ��� � � � � �� (1)

where �� is the transmitter gain for the �th user and ��, ����� are the ��� user antipodal modulated

data symbol and signature waveform, respectively. We assume that the data symbols are binary and

equi-probable. Additionally, we assume that the signature waveforms are linearly independent, zero

outside the range ��� ���, and normalized to have unit energy so that,

� ��

�

������ 	� � �� � � � � �
 (2)
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In the additive white Gaussian noise (AWGN) channel, the received waveform is,

���� � ���� � ����� � � � � ��� (3)

where ���� is a Gaussian process with zero mean and power spectral density of �� � 
���. The

matched-filter output for user � is the scalar �� where,

�� �

� ��

�

���������	�� � � � � �
 (4)

If we combine the matched-filter outputs to form the vector � � ���� � � � � ����, then the set of

outputs can be described in matrix notation as,

� � ��� � �� (5)

where � � ���� 
 
 
 � ���� is the vector of modulated data symbols, � � 	
������ 
 
 
 � ��� is the

set of amplitudes, � � ������ is the � �� cross-correlation matrix for the current set of signature

waveforms where,

���� �

� ��

�

����������	�
 (6)

and � � ���� � � � � ���� is a Gaussian noise vector whose elements have zero mean and covariance

matrix �. The detection strategy which gives the minimum bit error rate selects the vector � with

maximum-likelihood given the set of observations �. If the off-diagonal elements of � are zero

(implying the spreading codes are orthogonal), and the data symbols are equi-probable (as assumed),

then it is well known that the optimal decision rule is 
����� which is equivalent to a zero threshold

decision rule.

For simplicity, we consider a binary phase-shift keyed (BPSK) system for which the signature

waveforms are composed of square waveforms called “chips” which have uniform duration �	, where

�	 is typically much smaller than ��. With this structure, the normalized signature waveforms �����

can be represented as the binary code vectors �� � � ���


� ��



�
, where � � ��

��
, and the collection of

codes as the matrix,

� �

�
�����
��

...

��

�
����� 
 (7)

Note that � � ��� where �� denotes the transpose of � and that � is symmetric and positive

definite. We assume that the signature codes are selected randomly. Note that a system with random
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codes will closely match the system that uses long pseudo-random sequences to generate its signature

codes.

III. PROBLEM FORMULATION

Our goal is to improve the bit error-rate (BER) of a DS-CDMA system by preprocessing the trans-

mitted signal. We use the minimum mean-squared error as the criterion in the design of the prepro-

cessor. To estimate a (BPSK modulated) data vector � based on the set of observations �, we use the

function ���� which minimizes the mean-squared error, i.e.,

����� ��������
 (8)

One option for preprocessing is transmitter precoding which applies a linear transformation � to the

transmitted vector so that,

� � ���� � �
 (9)

It was shown in [2] that when the MMSE criterion is used to solve for� and expectation is taken with

respect to � and � the result is � � ���.

Similarly, we can consider a more general (possibly non-linear) transformation on � which gives

the real-valued vector �� so that,

�� � ��� � �� (10)

where we have incorporated� into ��. Using the MMSE criterion to select ��, we obtain mean-square

error � where,

� � ������ ������ (11)

� ������ ���� � ������ (12)

which, after taking expectation with respect to �, gives

� � ��� ������
 (13)

As a result, the optimization problem can be expressed as,
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����
�
��

���������� (14)

where the solution �� � ����� is the same as for transmitter precoding.

Similar to the decorrelating detector, using the optimal � completely eliminates MAI. However,

because the decorrelating operation occurs before transmission, this method (unlike the decorrelating

detector) does not suffer from noise enhancement.

A side effect of precoding is increased transmitter power. It is natural to consider imposing an en-

ergy constraint at the transmitter, say ������ � �. Replacing� ���� in (14), we can reformulate

the optimization as:

min
��

��� ��������

subject to: ������ � �

(15)

We refer to this method as the optimizing precoder. From the set of �� with transmitted power less

than or equal to �, it selects the element which results in the minimum squared error due to MAI. The

parameter � is held constant from symbol to symbol so instantaneous transmitter power is capped by

a fixed value.

It is crucial to realize that the method proposed here acts on the amplitude of the transmitted signal,

and consequently, does not modify its spectral property. This can be considered as a form of fast

power control where the power of each user is readjusted at each bit interval (taking into account the

bit values transmitted to other users). This is unlike the known alternatives, say [2], which are based

on applying a linear transformation to the transmitted signal which obviously will affect the spectral

properties of the transmitted signal. We note that having a flat spectrum is a desirable property of

many CDMA systems and the method proposed here does not interfere with this property.

By constraining transmitter power, we force the system to include MAI in situations where elim-

inating it would require inappropriate power levels. For this reason, the optimizing precoder can be

expected to have worse raw performance than unconstrained precoding due to allocating different

level of MAI at different bit positions. The situation changes, however, when FEC is used because

FEC coders achieve a form of averaging of instantaneous signal-to-noise ratio over several bit peri-

ods, compensating for the aforementioned effect of variable MAI. This conclusion will be borne out

by simulation results.
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A constrained transmitter precoding scheme is also presented in [2]. However, there are some criti-

cal differences between that formulation and (15), the most significant of which (as already discussed)

is that our method is based on a scaling of the transmitted signals, and consequently, preserves their

spectral properties. Another significant difference is the scope of the precoder design. In (15), a new

transformation is generated for each symbol period, with expectation of MSE taken with respect to

environmental noise only. In [2], expectation of MSE is taken with respect to � as well as � so that

the current data vector is not a distinct influence on the design of the precoding transformation. Fur-

thermore, (15) caps instantaneous power at each interval while in [2], average power is constrained.

The latter method allows for undesirable spikes in instantaneous power.

IV. SOLUTION ALGORITHM

Numerical optimization techniques are required to solve (15). The problem specifies minimization

of a convex quadratic function (because ��� is positive semi-definite) over an ellipsoid (a convex

region) whose surface is the set of signal vectors which have a transmitted power level of �. Note

that due to the convexity of the problem, any local optimum solution will be also globally optimum.

To simplify the problem, we apply the change of variable � � ��� which transforms (15) into

minimization over a sphere, i.e.,

min
�

���������

subject to: ���� � �

(16)

Expanding the new objective function results in,

������� ������ � ������


Let 	 � ����, 
 � ����� and delete the constant term to obtain,

min
�

�

�
��	�� ��


subject to ���� � �

(17)

This type of problem occurs frequently in nonlinear optimization as the trust-region subproblem. Its

solution has a standard treatment which is given in [7]. A more convenient solution algorithm is given

in [8]. We give an overview of that algorithm here.
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At a point �, the gradient to the objective function is given by 	� � 
 while the gradient to

the constraint is given by ���� where � is the identity matrix. If the Karush-Kuhn-Tucker (KKT)

conditions for local2 optimum point �� are satisfied with Lagrange multiplier ��, then the following

holds:

�	� ������ � 
 � � (18a)
�
� � ���� 	 � (18b)

�� 	 � (18c)

���
�
� � ����� � �� (18d)

where the factor � has been absorbed into �� for notational convenience.

To establish whether a particular �� is a minimum, we check the second order condition which

requires positive curvature of the objective function at ��. Because the matrix 	 is positive semi-

definite, we are assured that the second order condition will be satisfied for any point in the constraint

region. This observation, coupled with a non-zero constraint gradient at all points other than the

origin, allows us to conclude that the KKT conditions are satisfied with a unique �� and that the

associated point �� is a global optimum solution.

For matrix �, we use ���� to denote the least eigenvalue of �. The range of possible values for

�� is already lower bounded by zero in (18c). We can obtain an upper bound for �� by rearranging

and taking the norm of each side of (18a). After some manipulation, we have,

��	� ������
� � ����

which implies,
�

��	� � ��
�
� 	 ���� (19)

and thus,

��	� � �� � �
�
���� (20)

finally,

�� � �
�
��� � ��	�� (21)

�Note that due to the convexity of the problem, any local optimum solution will be also globally optimum.
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as shown in [8]. If a non-zero �� satisfies the KKT conditions, then the corresponding �� must have

���� �
�
�. If we do not have access to the eigenvalues of 	, then we can drop the ��	� term from

(21) which gives the relaxed upper bound �� � ����
�

.

We now have a range of possible values for ��. We start by checking �� � �. If the norm of the

solution is less than
�
� then we terminate with a solution inside the constraint. Otherwise, we can

test an arbitrary � for optimality by solving (18a) for � and then checking its norm. If ��� �
�
�,

then � is the optimal solution to the problem. This suggests a bisection algorithm for solving (17).

Assume that we wish to find �� to within � of the exact solution. The bisection algorithm, introduced

in [8], proceeds as follows:

1. set �low � � and �high � ����
�

.

2. set � � �

�
��low � �high�.

3. if ��high � �low� � � exit procedure, otherwise go to step 4.

4. solve �	� ���� � �
 for �

5. if ��� � �
�, then set �low � �, otherwise set �high � �.

6. goto step 2

A change of variables was applied to obtain the formulation in (17). The solution to the original

problem can be obtained by back-solving through the symmetric positive-definite system �� � � �

once � is found.

The complexity of this algorithm is determined by the desired accuracy and the cost of the linear

system solution in step 4. At least ���
�

����
�
� ���

�
� iterations are required to converge to precision �. If

the eigenvalues of	 are known and non-zero, the number of iterations can be reduced. The structure

of the linear system in step 4 is helpful in reducing the complexity. Because � � � during each

iteration, �	 � ��� must be symmetric positive definite which implies fast Cholesky factorizations

can be used to solve the system.

Simulation will show that two iterations are enough to obtain solutions with near-optimal perfor-

mance. Each of these iterations requires the factorization of an � � � matrix. Thus, complexity

depends on the system chip rate, but not on the number of active users.

Alternatively, another solution algorithm has been proposed in [9],[10] tailored for large scale sys-

tems for which forming factorizations is infeasible. The basis of this technique is the Lanczos method

which can approximate eigenvalues using only matrix-vector products. On specialized processors,

this technique may provide a performance gain over the method described above.
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V. SIMULATION RESULTS

In this section, we analyze the performance of the optimizing precoder in a simulated DS-CDMA

environment. Simulation results will be compared with those from conventional systems as well as

with both the constrained and unconstrained transmitter precoding methods of [2]. It will be shown

that, in environments utilizing error-correcting codes, energy-constrained methods out-perform all

other methods considered here (this is unlike the conclusion reached in [2] for the uncoded case). Fur-

thermore, it will be shown that the energy-constrained method proposed in this article out-performs

the energy-constrained method of [2].

A. Simulation Setup

The channel model used for simulation matches the forward link of a single-cell synchronous DS-

CDMA system using BPSK modulation as specified in section II. The system chip rate is set to

� � �� in all cases. Both coded and uncoded systems are considered with coded systems using the

rate ��� convolutional code from the IS-95 cellular communication standard. Receivers use a standard

Viterbi decoder which is supplied with soft outputs from the matched-filter detector.

The simulator generates independent pseudo-random data streams for each user which are inde-

pendently coded when FEC is used. Another independent pseudo-random bit stream, shared by all

users, is used to generate the spreading codes. After modulation and spreading, AWGN is added to

the combined signals. A bank of independent detectors then produces soft-outputs from the received

signals which are either fed to a Viterbi decoder or used to make hard decisions for the original data

bits.

B. Optimizer Setup

With the structure of the simulation system in place, the optimal value of the power constraint � for

the proposed method can be determined. With no closed form solution for the optimal � in (15), we

must use simulation to find it. By holding the system parameters and SNR constant while varying �,

we hope to find a value which gives the minimum BER for each system configuration. Fortunately,

BER curve is smooth and continuous with respect to changes in � which aids in the search. Figure 1

shows the effect of � on the optimizing precoder performance when the system configuration and SNR

level are held constant. In all four curves, performance reaches a single global optimum with respect

to �. This is a result of the optimization step which results in a different set of optimizer solutions for
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each �. One such set will have the minimum total MAI, implying that � must have a minimum value.

Only �� user results are shown. However, the optimum value of � was consistently lower for coded

transmission than for uncoded for all numbers of users. Moreover, the optimal � for FEC was much

less affected by the number of users and changing channel conditions. Likely, this is due to fact that

by averaging over several symbol periods, the effect of high instantaneous MAI is reduced and the

benefit of tightly constrained transmitted power levels is enhanced.
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Fig. 1. BER vs �: �� users

Despite the effects of FEC, the optimum � was not constant for different system configurations or

even for different SNR levels. The system is required to adjust � constantly for changing conditions

to achieve optimum performance. However, the set of optimum values for � need only be calculated

once and stored in a look-up table. Alternatively, � can be chosen to optimize performance at a certain

SNR with only a small loss at other SNR levels due to the smoothness of the BER curve. Note that a

conventional detector does not require knowledge of � to produce soft output metrics for this type of

signal so that the modulator is free to adjust � as necessary.

C. Channel Simulation

Each simulated “system” consists of a modulator/detector pair and produces a single curve on each

graph. Two conventional systems are considered (all systems simulated in a similar environment): a

system with a standard modulator and a standard matched-filter detector, and a system with a decor-

relating detector. The former is labeled “Conventional System” and provides a baseline performance

curve with no performance enhancing techniques. The latter is labeled the “Decorrelating Detec-
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Fig. 2. BER: � Users in � � �� Chips, Not Coded
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Fig. 3. BER: �� Users in � � �� Chips, Not Coded

tor” and gives an example of a standard receiver-based performance enhancement technique. The

two methods from [2] are labeled “Transmitter Precoding” and “Constrained Transmitter Precoding”.

These are appropriate generalizations of the method proposed in [2] to a case comparable to ours

(with FEC and power constraint added at the transmitter side 3). The optimizing precoder proposed

in this paper is labeled “Optimizing Precoder” and is paired with a standard detector. The single user

case is also given for comparison.

In Figures 2 and 3, uncoded data is being transmitted to �� �� users. In all cases, transmitter
�Reference [2] does study the case of imposing a constraint on the power at the transmitter side, however, as it does not use FEC, the

conclusion has been that imposing such a constraint does not improve the performance. This agrees with our results for the uncoded

case, however, we have shown that imposing a constraint on power indeed improves the performance for the coded case.
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Fig. 4. BER: � Users in � � �� Chips, Coded
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Fig. 5. BER: �� Users in � � �� Chips, Coded

precoding gives the best performance at practical system error rates of ���� and below. As stated

in [2], constrained transmitter precoding performs better for low SNR, but eventually crosses the

unconstrained method as SNR rises. The optimizing precoder from this paper generally performs

worse than constrained transmitter precoding in this setting. However, this situation changes in the

presence of FEC.

In Figures 4 and 5, data is independently coded and then transmitted to �� �� users. Clearly, the

energy-constrained methods significantly out-perform unconstrained methods in this setting. For ��

users, the constrained transmitter precoding has a gain of more than 1.0dB over unconstrained trans-

mitter precoding. The optimizing precoder performs even better, achieving a further gain of 0.5dB

over constrained precoding. Simulations for the � user case show this gain to be 0.25dB.
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Fig. 6. Complexity: �� Users in � � �� Chips, Coded

D. Complexity Analysis

The computational complexity of the standard solution algorithm for both optimizing precoders is

determined by the desired accuracy of the solution. Accuracy translates directly into iterations of a

loop which requires the Cholesky factorization of a matrix. Figure 6 show the result of limiting the

number of iterations for the �� user case. From this graph it is clear that that near-optimal performance

is achieved as soon as the second iteration, which requires only two matrix factorizations. This result

dramatically improves the feasibility of these methods for practical systems.

In order notation, the Cholesky factorization is ����� while two ����� triangular system back-

solves are required to obtain the final solution. The parameter� (chip rate) is usually fixed in practical

systems, so that these costs are also fixed. These costs are not prohibitive in the forward link of

a mobile cellular system because the processing is performed at the base station where power and

processing resources are readily available. The chief benefit of this, and all other precoding methods,

is the simplicity of the receiver, which is only a matched-filter detector.

VI. CONCLUSIONS

A new transmitter precoding method has been demonstrated in this article which, for practical

systems which delivers gains of: (i) 0.75dB to 4dB over existing unconstrained precoding methods,

(ii) 0.25dB to 0.5dB over existing constrained precoding methods, and (iii) requires only 2 to 4 fast

Cholesky factorizations of an order � matrix to achieve those gains
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