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Abstract

Coherent communication requires that channel estimates be available at the receiver. These

estimates are usually obtained using some sort of preamble or pilots. Powerful pilots may not

be available in some systems as they consume a big part of the transmit power. Therefore, we

propose a novel channel prediction algorithm that works well in the case that channel estimates

are not accurate. Our simulations show that this algorithm is excellent for long-range prediction,

which could be very helpful for other parts of the communication system as well.
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I. I NTRODUCTION

In this article, the issue of channel fading modeling and prediction is addressed.

Channel fading prediction can be used to improve the performance of telecommunication

systems including 3G systems. Having some estimates of future samples of the fading

coefficients facilitates and enhances the performance of many tasks of the receiver or the

transmitter, such as channel equalization, the decoding process of data symbols, antenna

beamforming, and adaptive modulation schemes. In this article, a novel channel model

is utilized for prediction of channel fading. This model is used in a Kalman filter to

introduce a powerful fading prediction algorithm. The Simulation chapter demonstrates

the effectiveness of this approach.

The rest of this report is organized as follows. Jakes fading and a general fading

model are explained. Then, the existing approach on the channel evolution models is

surveyed, a new model is introduced. SectionIV includes the simulation results where

our fading prediction algorithm is compared to the popular linear prediction algorithm.

II. I NVOLVED MODELS

A. System Model

Consider a system with two transmit antennas and one receive antenna. As a channel

model, a flat fading channel [1] is considered from each transmit antenna to the receive

antenna. At time instancen, we write

rn = hT
nxn + nn, (1)

wherern is the received signal at the receiver,

hn = [h(1)
n , h(2)

n ]T ∈ C2 (2)
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is our channel coefficients complex vector, whereh
(m)
n represents the channel between

the m-th transmit antenna and the receive antenna,

xn = [x(1)
n , x(2)

n ]T ∈ C2 (3)

represents the channel input vector.n is a complex circularly symmetric AWGN with

the varianceN0, n ∼ N (0, N0), which can model the noise and possibly some other

interferences.

B. Jakes Fading Model

In wireless communication systems, the received signal experiences significant power

fluctuations due to fading. Signal fading is caused by multipath propagation and Doppler

frequency shift. Multiple scatterers causes interference between reflected transmitter sig-

nal components. As the mobile drives through this interference pattern, it experiences a

specific fading pattern which is unique for the mobile path and the scattering environment

and is usually time-varying.

The superposition of component waves leads to either constructive or destructive

interference, which make the fading peaks and deep fades, respectively. When all delayed

components arrive at the receiver within a small fraction of the symbol duration, the fading

channel is frequency-nonselective, or flat. This often occurs in narrowband signaling.

Consider an environment with no dominant line-of-sight between the transmitter and the

receiver. It is well-known that the envelope of a transmitted carrier at the receiver has

the Rayleigh distribution, whereas the phase is uniform [1].

Assuming a two-dimensionalisotropic scattering and an omni-directional receiving

antenna, it is known that power spectral density (PSD) of the fading process is given by
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[2]

Sh(f) =





1
π fd

1√
1−

(
f
fd

)2 . |f | < fd

0, otherwise,

(4)

wherefd is the maximum doppler frequency. Alternatively, the autocorrelation function

of the process is shown as [2]

Rh(t, t− τ) =
E[h(t)h∗(t− τ)]

σ2
h

= J0(2πfdτ), (5)

whereJ0(·) is the first-kind Bessel function of the zero order andτ is the time difference.

The Jakes model, also known as Clarke’s model, is a special case of the general fading

model explained in the next section, and is mathematically valid for a rich-scattering

environment, i.e., when the number of the scatterers is significant.

The Jakes fading generator [2] has been used for several decades to simulate mobile

channels. Based on the original model, some new models have been proposed to improve

the properties of the generated fading signal. In [3], an improved model is suggested

which generates a wide-sense stationary (WSS) signal, unlike the original Jakes model

which is deterministic. The previous report [4] elaborates on the improved Jakes model

which is used in our simulations.

C. A General Fading Model

Jakes fading is resulted from a statistic modeling of fading. However, fading could

be observed as a deterministic signal. When the receiver, the transmitter, and/or the

scatterers are moving, each scattered component undergoes a Doppler frequency shift

given approximately by [5], [6]

fk = fd cos(θk) (6)
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whereθk is the incident radiowave angle of thek’th component with respect to the motion

of the mobile andfd is the maximum doppler frequency defined as

fd =
v

c
fc (7)

wherefc is the carrier frequency,v is the mobile speed andc is the light speed. Assuming

Nsc scatterers, the complex envelop of the flat fading signal at the receiver is

h(t) =
Nsc∑

k=1

ak ej(ωk t+φk) (8)

where for the n’th scatterer,ak is the (real) amplitude,φk is the initial phase, andωk =

2πfk wherefk is defined in (6). In real mobile environments, usually there are a few

main scatterers which construct the fading signal [7].

We assume flat fading for the channel here, i.e., one resolved multipath component.

But the same analysis could apply to each resolved multipath component in case the

delays were not negligible in comparison to the symbol period [8].

D. Estimation of the General Fading Parameters

AssumingNsc scatterers, there are2 Nsc unknown parameters to be determined

for the model. Using2 Nsc fading samples, an equation set could be solved to find

ωk and αk, k = 1, . . . , Nsc (For details, refer to [4]). But it is evident that using noisy

measurements could result in poor estimations. Let’s look at the problem in the frequency

domain.

Fourier transform of the fading signal shown in (8) is

H(ω) =
Nsc∑

k=1

αk δ(ω − ωk) (9)

Therefore the components are decoupled in the frequency domain and it is appropriate

to find the parameters using Fourier transform, which can be implemented using FFT

[9] over the observation window. This analysis gives a very good estimation ofωk’s if
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the doppler frequencies does not change drastically over the window (This may happen

if the mobile does an abrupt path change).ωk’s are usually changing slowly. Therefore,

we will be using an adaptive algorithm to to track the doppler frequencies.

As it can be seen in (9), αk’s also may be estimated from the fourier analysis. But

αk’s usually change faster thanωk’s as mobile moves and the scattering environment

changes. Therefore, knowingωk’s, we will apply Kalman filter to efficiently trackαk’s.

The next section explains the existing channel evolution models. Then we will

introduce an state-space model of the general fading formulation, which is utilized in a

Kalman filter later.

E. Channel Evolution Model

To predict a process, a time evolution model of the process is required. A linear

model, i.e. an auto-regressive moving-average (ARMA) model, is easy to use. But the

fading process represented in (4) (or equivalently in (5)) is highly nonlinear, and can not

exactly be modeled with a reasonable linear filter. Therefore, an approximate low-order

AR model is widely used which can capture most of the fading dynamics [10], [11].

From now on, we consider one fading channel from one transmit antenna to a receive

antenna, because we assume that the channels are uncorrelated and undergo the same

condition (e.g. the same doppler frequency). Moreover, we consider a single path fading

for simplicity, because the same model could be used for each fading path.

1) Linear Models: Assuming a first-order AR model, shown as AR(1), for the

fading coefficient, the evolution equation is

hn = a1 hn−1 + g0 qn (10)

wherea1 is the AR coefficient, andqn is a complex white Gaussian noise process with

the varianceσ2
h. For stability,|a1| ≤ 1. The gain of the noise process isg0 =

√
1− |a1|2
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to keep the power of the process constant. From (5) and (10), it can be simply shown

that a1 = J0(2πfd T ), whereT is the time distance between the channel samples. This

value of AR coefficient matches the first correlation coefficient of the AR process with

the original fading process.

For carrier frequency offc, we havefd = fc

3×108 v, wherev is the mobile speed.

Assuming that the channel fading is sampled eachT = 1/1500 second andfc = 2 GHz,

we havefd T = .0012 v, wherev is the mobile speed (in kmph). Hence, forv < 100

kmph, fd T < .12 which meansa1 > .86.

The AR(1) estimation model can be extended to an AR(p) model, which follows

hn = a1 hn−1 + a2 hn−2 + · · ·+ ap hn−p + g0 qn. (11)

2) State-Space Representation:An evolution model can be shown as a state-space

model, as follows:




xn = An xn−1 + qn

zn = Mn xn + vn

(12)

wherexn is a N × 1 state vector at timen, An is a N ×N matrix which controls the

transition of the state vector in time, andqn is a (usually Gaussian) noise vector, with the

covariance ofQ = E[qn qH
n ], which represents the model error. AlsoMn is known as the

measurement matrix, andvn is the observation noise with the varianceσ2
v . In effect,zn

is the system output which is the available (noisy) measurement of the state. In practical

systems of interest,An, Q andMn are usually constant or very slow time-varying.

Note that the state-space representation of a specific system is usually not unique.

A well-known state-space representation of the linear model of (11) can be found in [4].
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3) Our State-Space Model::For the general fading model, we propose the following

state-space model

An = diag
[
ejω(1) Ts, ejω(2) Ts, . . . , ejω(N) Ts

]
(13)

and

Mn = [1, 1, . . . , 1] (14)

wherezn = ĥn is the available channel estimate, and

xn =
[
α(1) ej nω(1) Ts, α(2) ej nω(2) Ts, . . . , α(N) ej nω(N) Ts

]T
(15)

III. PREDICTION

A. Linear Prediction

A linear predictor of orderp, with the prediction depth ofD is shown as follows

ĥn = aD hn−D + · · ·+ aD+p−1 hn−D−p+1 (16)

=

p−1∑
i=0

aD+i hn−D−i. (17)

Minimizing the mean square error (MSE) provides the required coefficients, i.e.,

min E

[∣∣∣hn − ĥn

∣∣∣
2
]

=

min
aD,...,aD+p−1

E




∣∣∣∣∣hn −
(

p−1∑
i=0

aD+i hn−D−i

)∣∣∣∣∣

2

 , (18)

wherehn = hn + vn is the noisy estimate of the channel fading. The observation SNR

is defined asSNRz = σ2
h/σ

2
v which is assumed to be known. Also we assumeσ2

h = 1.

It is well-known that the solution of (18) can be found by solving the Yule-Walker

equations [12], which is

a = R−1 R0 (19)
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wherea,R andR0 are defined as follows.a = [aD aD+1 · · · aD+p−1]
T is the coefficient

vector,R = [Rji]p×p is the data correlation matrix where

Rji = E[hn−D−i+1 h
∗
n−D−j+1] (20)

= σ2
h J0(2πfdT |j − i|) + σ2

v δ(j − i), (21)

where

δ(k) =





1, k = 0

0, k 6= 0

(22)

andR0 = [R0j]p×1 where

R0j = E[hn h
∗
n−D−j+1] (23)

= σ2
h J0(2πfdT |j + D − 1|) + σ2

v δ(D + j − 1). (24)

The corresponding mean square error defined in (18) is

MSEout = σ2
h −

p∑
j=1

aD+j−1 R0j. (25)

Note that the input samples to the linear predictor has the MSE ofσ2
v = 1/SNRz, while

the output estimate error isMSEout defined as above.

In practice, channel coefficients are estimated (using the common pilots,...) which

usually introduces some error in the available channel coefficients. Here, the channel

estimation error is modelled as an Additive White Gaussian Noise (AWGN), and Ob-

servation SNR,SNRz, is defined as the ratio of the channel power to the noise power.

Fig. 1 demonstrates the MSE of the linear prediction versus mobile speed for different

linear orders at differentSNRz. It is observed that at eachSNRz and each mobile speed,

there is an optimum orderp which could be different at other situations. This variable

order makes the implementation of the prediction algorithm difficult. Therefore, for the

SNRz corresponding to a specific application, an overall-good order should be chosen.
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Fig. 1. Linear Prediction MSE versus mobile speed in different observation SNR’s for Jakes fading

SNRz = inf SNRz = 40 dB

SNRz = 20 dB SNRz = 10 dB

For example, considerSNRz = 40 dB. For low to moderate mobile speeds,p = 2 is

optimum, while at high mobile speed,p = 3 or 4 seem better.

B. Kalman Filtering

Kalman Filtering is now commonly used in communication systems (for example,

see [13]). Assuming a state-space model, Kalman filter efficiently estimates the state

vectorxn which will be used to predict the future samples of the fading signal.

Table I defines the variables used in the Kalman equations, which follow:

Prediction part:

x−n = Ax+
n−1 (26)
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Q The covariance matrix of the model noise

zn The observation sample

x−n The a priori estimate of the statexn (sometimes shown asxn|n−1)

x+
n The a posteriori estimate of the statexn, i.e., with having the observationzn (sometimes

shown asxn|n)

P−n The covariance matrix of thea priori error

P+
n The covariance matrix of thea posteriorierror

TABLE I

VARIABLES USED IN KALMAN FILTER

P−
n = AP+

n−1A
T + Q (27)

Update part:

x+
n = x−n + Kn

(
zn −Mn x−n

)
(28)

P+
n =

(
I−Kn Mn

)
P−

n (29)

where

Kn = P−
n MH

n

(
Mn P−

n MH
n + σ2

v

)−1

. (30)

Assuming the current statexn, which carries all the information about the past,

future channel state should be predicted. It has been shown in [14] that the MMSE

estimate of the D-step prediction is

x̂n+D = AD xn. (31)

Hence, the predicted channel coefficient isĥn+D = Mx̂n+D.
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IV. SIMULATION

A. The Fading Prediction Algorithm

It was observed in the previous section that fading prediction can result in signif-

icant savings in transmit power. Linear prediction is used at the mobile unit, which is

good enough for some applications. But the performance of a linear predictor may not

be enough, for example, for low observation SNR’s. The linear approach has a poor

performance at high mobile speeds as well, as it is solely dependent on the correlation

parameters of the fading process.

We propose a fading prediction algorithm here for improving the prediction at low

observations SNR’s, and high mobile speeds. Fig. (2) shows the flowchart of the prediction

algorithm. A description of the main blocks follows. Kalman filtering and the prediction

part are explained in SectionIII-B .

1) Doppler Frequencies:The required parameters for the fading are estimated

according to Section (II-D). AssumeNsc as the number for the scatterers.

2) Acquisition:: We apply the Fourier method explained in Section (II-D) to es-

timate theω(k), k = 1, . . . , Nsc by performing FFT over an observation window of

Nwin recent samples,H = FFT [h]. We have used an FFT length ofNFFT = 2 Nwin,

to increase the frequency resolution. Therefore, each sinusoid can be projected upto 3

samples inH. Therefore, first the peak ofH is found, and then theω(1) is calculated by

averaging over the amplitudes of the three adjacent frequency samples. An initial estimate

of α(1) is also achieved in this way. Otherω(k) andα(k)’s are found by continuing this

procedure.

Acquisition could be done frequently to keep the frequency doppler estimates up-

dated. However, to decrease the required computations, it could be done only if the error

trend passes a threshold. Also the algorithm does not allow two consecutive acquisitions



13

���������
���	
�

���������	���
���	��	�
��������������

�����	�����������
������	���
��
�������������

���������	
����������	�����
�������������	����

 �

!��

 �

!��

"����	�������	�
���������������	�

#��
����	

�����

 �$�
������

Fig. 2. Block Diagram of our Prediction Algorithm (KF)

to be too close. Because after each acquisition, other blocks of the algorithm should have

enough time to catch up with the new frequency estimates.

3) Tracking: An adaptive algorithm is used to track the fine changes of the doppler

frequencies. Using a gradient-based approximate, the following LMS algorithm can be

applied

wn+1(k) = wn(k) + µX+
n (k)

H
Mn(k)H en, (32)

where

en = zn − ĥn, (33)
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Fig. 3. Block Diagram of the Linear Prediction Algorithm (LP)

where

ĥn = Mn X+
n . (34)

4) Calculation of the Error Trend:We use an exponential window for calculation

of the error trend from sample errors, as follows

En+1 = λE En + (1− λE) |en|2 , (35)

whereλE is the forgetting factor (0 ¿ λE < 1).

5) The Linear Prediction Algorithm:The block diagram of the linear prediction

algorithm is shown in Fig.3. Estimation of the AR coefficients is done frequently, by

using thelpc( ·) function of MATLAB. As opposed to our algorithm, here we do not

decrease the computational complexity by looking at the error trend, because we want

to get the best achievable performance out of the linear prediction.

6) Simulation Results:The two prediction algorithms are compared here (LP and

KF), with respect to the average MSE versus the prediction depth, atSNRz = 10 dB.
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Fig. 4. Comparison of MSE versus prediction depth for Jakes fading at v=25 and v=100

The results are reported for various linear ordersNAR, and various scattering ordersNray,

respectively (Nray is an estimate ofNsc in (8)). Fig. 4 show the results for Jakes fading

for v=25 and v=100 kmph. It is observed that KF significantly outperforms LP ifNray is

large enough (Nray ≤ 8), while LP fails at high prediction depths regardless of the linear

order.
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Fig. 5. A typical mobile environment for generation of RT fading

Jakes fading is valid for a rich scattering area. We want to test the algorithms with a

more realistic fading signal. So we use the Ray-Tracing simulation environment explained

in [4] to generate the “RT fading”. Fig.5 shows the environment which was used to

generate RT fading here. The mobile is randomly moving vertically and horizontally in

the scattering area and experiences different combination of signal rays. At each point of

the mobile path, it undergoes a different doppler frequency and a different signal power

for each ray. Therefore, the generated fading can closely resemble the fading in a real

mobile environment.

Fig. 6 show the results for a ray-tracing (RT) fading for v=25 and v=100 kmph.

It is observed that always KF outperforms LP. As RT fading represents not a very rich

scattering environment, it is observed that increasingNray does not necessarily improves

the performance. Note that LP is sensitive to the linear order at high mobile speeds. In

fact, it is observed in our simulations that a linear model is not dependable for higher

mobile speeds because the pattern of the performance fluctuations follows the correlation
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Fig. 6. Comparison of MSE versus prediction depth for RT fading at v=25 and v=100

properties of the fading, i.e., a lower correlation at a time difference results in a higher

MSE for that prediction depth.
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