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Abstract

Linear Predictive Coding (LPC) parameters are widely used in various speech pro-

cessing applications for representation of the spectral envelope of speech. Low

bit-rate speech coding applications, require accurate quantization of these param-

eters using as few bits as possible. Line Spectral Frequency (LSF) representation

is the most widely accepted representation of LPC parameters for quantization,

since they posses a number of advantageous properties including �lter stability

preservation and spectral selectivity. The vector quantizers are more e�cient than

scalar quantizers in accurate quantization of these parameters, however, they are

prohibitively complex. In this work, a low bit-rate Block-based Trellis Quantiza-

tion (BTQ) scheme is introduced to overcome the complexity problem. The states

in the trellis diagram corresponds to quantized LSF parameters and the branches

correspond to the LSF di�erence code-words. A weighted Euclidean distance is

employed to incorporate the properties of human perception system. The search

and design algorithms for the BTQ are presented and an e�cient algorithm for the

index generation (�nding the index of the path in the trellis) is introduced. The

proposed BTQ achieves the transparent coding quality of speech at 23 bits/frame

(1150 b/sec.) with a very low level of complexity. This refers to a gain of 3 b/frame

(150 b/s) and signi�cant reduction in complexity, compared to the Split-VQ of

Paliwal and Atal [21]. In this work, an inter-frame BTQ scheme is also presented

to exploit the redundancies between the adjacent frames. The inter-frame scheme

is found to achieve an additional 50 bits/sec. reduction of the bit-rate, with slightly

higher complexity.
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Chapter 1

Introduction

In the last few years, the demand for Personal Communication Systems has been

growing faster than ever before. This has prompted further research and technology

endeavors to design and build new wireless communication systems for multime-

dia applications. Among the di�erent sources of information transmitted, such as

video, audio and the Internet, speech is still the most popular.

Frequency spectrum of the radio channel is a very precious commodity. E�-

cient utilization of the spectrum requires sophisticated coding techniques for the

removal of the inherent redundancy of the information-bearing signal. Since the

signal transmitted to the receiver through the communication channel is exposed

to channel degradations, it needs to be protected against possible channel errors.

To address these issues, our objective in this research is to contribute to the prob-

lem of low bit-rate low complexity robust speech coding for wireless multimedia

applications.

1
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1.1 Speech Coding: A Brief Review

In the past two decades, numerous standards have been established to provide

common means of communication around the globe. Internationally, the organiza-

tion responsible for this task is the International Telecommunication Union (ITU)

which is a part of the United Nations Economic, Scienti�c and Cultural Organiza-

tion (UNESCO). Within the ITU, its Telecommunications Standard Sector, ITU-T,

is involved in speech coding standardization. This sector was formerly known as

CCITT.

A new class of Linear-Prediction based Analysis-by-Synthesis (LPAS) coders was

introduced by Atal and Schroeder in 1982 [30] for low bit-rate speech coding. The

proposed scheme attempts to exploit the models of speech production and auditory

perception by modeling the speech with a linear �lter excited by a residual excita-

tion signal. This operation is performed in a frame by frame manner rather than

the sample by sample scheme of the PCM and ADPCM coders. The information

transferred to the receiver will consist of the LP �lter coe�cients and the encoded

excitation signal. The Code Excited Linear Prediction (CELP) is referred to the

case where the encoded excitation signal is selected from a vector codebook. Other

versions of CELP coders such as Vector Sum Excited Linear Prediction VSELP [31]

with less complex excitation coding scheme and Conjugate Structured Algebraic

CELP CS-ACELP [32] were also introduced in recent years. CELP coders have

been proven to be the best candidate for low-rate speech coding (4-16 kb/s). The

ITU-T standardized a CELP coder (G.728) for the �rst time in 1992. This coder

provides toll quality at 16 kb/s and was �rst employed in the low bit-rate H.320

videophones.

The digital cellular telephony standards are set by a number of regional stan-
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dards organizations. In Europe, the Group Special Mobile (GSM) standardized a

13 kb/s LPAS-based coder in 1987 for pan-European digital cellular telephony [34].

Later, in 1994, TCH-HS (the former GSM) established another standard to double

the capacity of the GSM cellular system. The new coder operating at 5.6 kb/s is

based on VSELP and was found to provide the same level of quality as the GSM

13 kb/s coder. In North America, the Telecommunication Industry Association

(TIA) standardized a 7.95 kb/s VSELP coder (IS54) in 1989 for North American

TDMA digital cellular telephony. In 1993, the TIA established an 8.5 kb/s speech

coding standard based on QCELP [33] for North American CDMA digital cellular

telephony. The new coder recognized as IS96 is a variable rate coder operating at

8.5 kb/s during the talk spurt and at 0.8 kb/s when there is no speech. In the lat-

ter mode, the coder just supplies statistics about the background noise. There are

also two intermediate rates which are used during transitions. In 1996, the ITU-T

standardized a toll quality CELP coder (G.729) for Public Land Mobile Telephone

Service operating at 8 kb/s.

Two examples of recent standardization projects are the Enhanced Variable

Rate Coder or EVRC at the TIA and a 4 kb/s coder at the ITU-T. The former

is to combat some di�culties associated with the IS96 coder under high levels of

background noise and the latter is primarily intended for very low bit-rate visual

telephony, personal communication systems and mobile-telephony satellite systems.

The presented review clearly shows that CELP based coders are the best nom-

inees for speech coding between 4 to 16 kb/s and continuous endeavors are aimed

at reducing the bit-rate while maintaining the same level of quality at a low level

of complexity. In the next section, the functional elements of CELP coding will be

described.
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1.2 Functional Elements of CELP Coding

Figure 1.1 depicts the block diagram of a closed-loop Linear-Prediction based

Analysis-by-Synthesis system. In this scheme, the transmitter includes a decod-

ing structure similar to that used at the receiver. For each possible choice of the

quantized information, the original signal is resynthesized. An error criterion is

used to compare this reconstructed signal with the original one. The best con�g-

uration of the quantized information is then selected and the corresponding index

or indices are transmitted to the receiver. The receiver using the same decoding

structure reconstructs the original signal.

minimization

error

decoderencoder �
input

output to the channel

Figure 1.1: LPAS system

Figure 1.2 shows a block diagram of the main components of a CELP coder.

Speech is modeled by the cascade of two �lters excited by an excitation signal. The

�lters correspond to short-term and long-term correlations of the speech signal.

Linear prediction analysis is performed on the input speech signal and the linear

prediction coe�cients (LPC) are derived. These coe�cients represent the short-
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time spectral envelope of speech which typically exhibits a few strong resonances.

These resonances, known as formant frequencies, are produced by the particular

shape of the vocal tract. The LP coe�cients contains the information of the vocal

tract shape during each frame of analysis, which is typically 10-30 ms long.

� �

input speech signal

long-term

prediction

short-term

prediction

generator

error

minimization

perceptual

weight function

excitation
�

Figure 1.2: Block diagram of a CELP coder

Having removed the short-term correlation of the speech signal by the LP anal-

ysis, it is observed that there is still some strong correlation between the residue

samples. This correlation, referred to as the long-term correlation, contains the

information of the harmonic structure of the speech power spectra for the vowel

sounds and is due to the vibration of the vocal cords. The vibrations usually have

a pitch period in the range of 2 to 20 ms [9]. This �lter is also known as the pitch

predictor �lter.

The excitation codebook contains a set of Gaussian sequences. To �nd the best

con�guration of the quantized parameters, LP analysis is performed on the input

speech sequence and the optimum quantized LP coe�cients are determined. Next,

using an analysis-by-synthesis scheme the corresponding pitch predictor parame-

ters and excitation code-vector from the codebook is selected such that the error

criterion is minimized. The error criterion used in speech coding is usually a per-
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ceptually weighted distortion measure which attempts to exploit the characteristics

of the human ear. This weighting is generally done by shaping of the spectrum of

the quantization noise such that it is minimally audible.

1.3 Speech Spectral Coding

The short-term spectral envelope of the speech signal in CELP is often modeled

by the magnitude frequency response of a tenth-order all-pole �lter. The �lter

coe�cients are derived from the input signal through linear prediction analysis of

each particular frame of speech. Direct quantization of these coe�cients, known

as Linear Predictive Coe�cients (LPC), are not often used for the fact that small

quantization errors in the individual coe�cients can produce relatively large spec-

tral errors and can also result in instability of the all-pole �lter [14]. A number of

more suitable equivalent representations of the LP coe�cients have been proposed

in the literature which ensure the stability of the all-pole �lter after quantization

and are less spectrally sensitive to quantization errors. These representations are

the reection coe�cients (RC) [8], the arcsine reection coe�cients (ASRC) [20],

the log-area ratio (LAR) [19] representation, and the line spectral frequency (LSF)

representation.

Line spectral frequencies (LSF) introduced by Itakura [3] have been proven to

be the most attractive representation of LP coe�cients since they possess a number

of advantageous properties. These properties include a bounded range, a sequential

ordering of the parameters and a simple check for stability [3, 15]. Further, the LSF

representation is a frequency-domain representation and, therefore, can be used to

exploit certain properties of the human perception system. A tenth-order LPC

�lter is represented by ten LSF parameters which are related to the zeros of the
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inverse LPC �lter in the z-plane1.

The challenge in quantization of the LSF parameters is to achieve the desired

quantization quality, known as transparent quantization, with the minimum bit-

rate while maintaining the memory and computational complexity at a low level2.

Various scalar and vector quantizers have been proposed in the literature for quan-

tization of the LSF parameters. Each of these methods o�ers a distinctive trade-o�

between bit-rate and complexity.

Scalar quantizers are interesting for their low level of complexity, however, they

achieve transparent quality at high rates of 30 to 40 bits/frame3. One of the most

successful scalar quantizers was presented by Soong and Juang [17]. They proposed

scalar quantization of LSF di�erences to exploit the correlations between the LSF

parameters of each frame which are referred to as intra-frame correlations. Another

scalar quantization approach was suggested by Sugamura and Farvardin [18], in

which they used the important ordering property of LSF parameters. To improve

the coding e�ciency, Grass and Kabal proposed a hybrid vector-scalar quantization

scheme [27].

Vector quantizers have been shown to result in smaller quantization distortion

than scalar quantizers since they exploit both joint statistical properties and the

intra-frame correlations of the LSF parameters. However, they are more complex

and have higher storage requirements for their codebook. A full search VQ is esti-

1See chapter 2 for details.
2Transparent quantization quality refers to the accurate quantization of LSF parameters such

that no di�erence is perceived between the reconstructed speech and the original one. In practice,

objective measures of speech quality are employed to determine the quantization quality. See

chapter 2 for details.
3Each frame of speech is considered to be 20 ms long throughout this report unless otherwise

noted.
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mated to achieve the transparent quality at 18 bits/frame, however, it requires 10

Megabytes of memory for codebook storage and a huge number of operations to

�nd the code-vector which results in the minimum distortion. To reduce the com-

putational complexity and/or memory requirements, various forms of suboptimal

vector quantizers have been proposed. Leblanc et al. [22] suggested multi-stage

vector quantization of LSF parameters. They reported to have achieved transpar-

ent quantization quality at 22-28 bits/frame with di�erent moderately-high levels of

complexity. Paliwal and Atal [21] proposed transparent coding of LSF parameters

at 24 bits/frame by splitting the LSF vector into two parts and employing separate

vector quantizers for each part. Xie and Adoul also presented an algebraic vector

quantization algorithm based on regular-point lattices [26]. Since all the a�ormen-

tioned methods attempt to exploit the intra-frame correlations of LSF parameters,

they lie in the category of intra-frame LSF coders.

Beside the intra-frame correlations of the LSF parameters, another very inter-

esting property of the LSF parameters is a very high inter-frame correlation. This

high correlation indicates that the LSF parameters of a given frame can be predicted

from the LSF parameters of the previous frames. Inter-frame LSF coders use this

property to attain performance improvement over the intra-frame coders [25, 27].

Since inter-frame encoders use the information of the previous frames to encode an

LSF parameter of a certain frame, they all su�er from the propagation of errors for

communication over noisy channels. Ohmuro et al. considered a Moving Average

(MA) prediction scheme for di�erential quantization of LSF vector in which the

error propagation is limited to a number of frames given by the prediction order.

In the same direction, Marca [29] suggested an Auto Regressive (AR) predictive

scheme in which intra-frame and inter-frame coded frames are interleaved. This

limits error propagation to at most one adjacent frame.
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1.4 Contents of the Report

In this work, we present a vector quantization scheme based on a trellis structure

to encode the LSF parameters. The proposed Block-based Trellis Quantizer (BTQ)

has been designed to exploit the intra-frame correlation of the LSF parameters by

encoding the LSF di�erences (LSFD). We take advantage of the ordering property

of LSF parameters and the fact that the LSF di�erences are positive. The proposed

Block-based Trellis Quantization scheme achieves intra-frame transparent quantiza-

tion of LSF parameters at 23 bits/frame with signi�cantly lower level of complexity

compared to the 26 bits/frame Split VQ by Paliwal and Atal [21].

Each stage of the trellis in the BTQ scheme corresponds to one dimension of

the LSF vector. The branches correspond to the LSFD codewords and the states to

the reconstructed LSF parameters. To encode an LSF vector, a path through the

trellis which results in a small distortion is selected. Next, the label of this path is

transmitted over the channel to the receiver. The receiver uses this information to

reconstruct the LSF vector from the codebook.

In the following, we begin with the development of the necessary background

for this research in Chapter 2. This includes some discussions on the properties of

the LSF parameters as well as the introduction of the objective distortion measure

used in our study.

In Chapter 3, we proceed with a complete discussion of the proposed Block-based

Trellis Quantization scheme. The trellis structure and the trellis search algorithm

will be discussed. The index generation problem or the problem of �nding the
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index of a path in the trellis is studied as well. Next, an LBG-based algorithm is

presented for the design of the BTQ.

A BTQ-based inter-frame coding system to explore adjacent frame correlation

is presented in Chapter 4. An adaptive block-based trellis quantizer is introduced

to encode the prediction residues e�ciently. The predictive coding of LSF param-

eters is limited to one frame to keep the error propagation at a low level. Using

this dual-frame coding scheme, on average, a 50 b/s reduction over the intra-frame

BTQ scheme is achieved.

The study of complexity of the proposed BTQ is presented in Chapter 5. Nu-

merical results are presented which show that the proposed BTQ scheme maintains

a low level of complexity. Comparisons to other LPC quantization schemes are also

presented in this chapter.



Chapter 2

Quantization of Speech Spectral

Parameters

In this chapter, the Linear Predictive Coding analysis is briey reviewed. Next, the

Line Spectral Representation of LPC coe�cients and their properties are studied.

Objective distortion measures of speech quality for evaluation of LPC quantizers is

discussed in the last section.

2.1 The LPC Analysis

Consider a frame of a speech signal containing N samples, fs1; s2; : : : ; sNg. In LPC

analysis, the current sample of speech is linearly predicted using the p previous

samples; i.e.,

~sn =

pX
k=1

aksn�k; (2.1)

11
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where ~sn is the predicted value of the nth sample, p determines the order of the

LPC analysis and the coe�cients fa1; a2; : : : ; apg are the LPC coe�cients. The

prediction order is usually chosen to be between 8 and 16, but its most common

value is 10 [10]. The prediction error, denoted by en, is therefore given by:

en = sn � ~sn = sn �

pX
k=1

aksn�k; (2.2)

The LPC coe�cients are found so as to minimize the average prediction error energy

which is given by:

E[e2n] = E[(sn �

pX
i=1

aisn�i)
2] (2.3)

If the partial derivatives of the above equation with respect to the coe�cients, aj,

are set to zero, p equations are obtained and solving them results in the values of

the coe�cients.

@

@aj
E[e2n] = 0 (2.4)

) �2E[(sn �
Pp

i=1
aisn�i)sn�j ] = 0 (2.5)

)
Pp

i=1 aiE[sn�isn�j ] = E[snsn�j ] (2.6)

In order to solve the equation set (2.6) for the LP �lter coe�cients, we need to

estimate E[sn�isn�j ] for i; j 2 f1; : : : ; pg. Two di�erent approaches exist to esti-

mate these values: the autocorrelation method and the covariance method. These

approaches are briey described below.
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Autocorrelation method

In the autocorrelation method of LPC analysis, stationarity of the signal, sn, is

assumed. Further, a windowing operation is performed, i.e., it is assumed that

sequence sn of speech is zero outside the analysis frame. For windowing, tapered

cosine functions such as the hamming window is usually employed. Therefore,

E[sn�isn�j ] is given by

E[sn�isn�j ] = r(ji� jj) (2.7)

in which r is the autocorrelation function and is estimated as

r(k) =

n0+NX
n=n0+1+k

wnsnwn�ksn�k (2.8)

where fwng is the window function. The p equations of (2.6) can now be written

in matrix form as

Ra = r (2.9)

where

R =

26666664
r(0) r(1) r(2) : : : r(p � 1)

r(1) r(0) r(1) : : : r(p � 2)
...

...
...

. . .
...

r(p � 1) r(p � 2) r(p � 3) : : : r(0)

37777775 ; (2.10)

a = [a1; a2; : : : ; ap]
T ; (2.11)

and

r = [r(1); r(2); : : : ; r(p)]T : (2.12)
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The matrix equation can be solved directly to �nd the LPC coe�cients. The

matrix R in equation (2.10) which is often called the autocorrelation matrix, has a

Toeplitz structure. This facilitates the solution of the equation (2.10) through using

the computationally e�cient Levinson-Durbin algorithm.

Covariance method

The assumption of stationarity which is used to establish the autocorrelation method

is not really valid for speech signals. If this assumption is dropped, the term

E[sn�isn�j ] will now depend on both i and j and not only their di�erence. If we

denote this term by cij, the equation (2.6) can be written as

Ca = c (2.13)

where

C =

26666664
c11 c12 c13 : : : c1p

c21 c22 c23 : : : c2p
...

...
...

. . .
...

cp1 cp2 cp3 : : : cpp

37777775 ; (2.14)

and

c = [c10; c20; : : : ; cp0]
T : (2.15)

The matrix C is the covariance matrix. This matrix does not have a Toeplitz

structure, yet it is symmetrical. Therefore, Cholesky decomposition is employed to

solve the equation (2.13) for the LP �lter coe�cients.
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2.2 Line Spectral Frequencies

As mentioned previously, direct quantization of the LPC parameters is not often

used for the fact that small quantization errors in the individual coe�cients can

produce relatively large spectral errors and can also result in instability of the all-

pole �lter. Line Spectral Parameters are the most widely used representation of

LPC parameters for quantization. In the followings, the advantages and properties

of LSF parameters which has resulted in their wide acceptance are reviewed.

A pth-order LPC analysis results in an all-pole �lter with p poles whose transfer

function is denoted by

S(z)

E(z)
= H(z) =

1

A(z)
(2.16)

in which

A(z) = 1 + a1z
�1 + : : :+ apz

�p (2.17)

From (2.17), two polynomials are formed: The symmetric or even polynomial, also

called the sum �lter polynomial

P (z) = A(z) + z�(p+1)A(z�1) (2.18)

and the anti-symmetric or odd polynomial, also called the di�erence �lter polyno-

mial

Q(z) = A(z)� z�(p+1)A(z�1) (2.19)

Each of the polynomials P (z) and Q(z) have p+1 roots. From their total of 2p+2

roots, two of them are located at z = 1 and z = �1 and are called the extraneous

roots. The roots of P (z) and Q(z) satisfy the following properties:
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� They all lie on the unit circle; therefore each root z is completely determined

by its angle ! = arg(z).

� Since the polynomial coe�cients are real, the roots occur in complex conjugate

pairs; therefore the angles occur in pairs.

� The pole at z = 1 is a root of Q(z). The pole at z = �1 is a root of P (z) if

p is even and is a root of Q(z) if p is odd.

� The roots of the two polynomials are interleaved on the unit circle; hence,

they are ordered.

root of Q(z)

root of P(z)

!1

!2

!3
!4

Figure 2.1: Placement of the roots of P (z) and Q(z)

Figure 2.1 demonstrates the placement of the roots of P (z) and Q(z) for a

sample case with p = 4. From the above mentioned properties, it is observed that

the information of the polynomials P (z) and Q(z) and hence A(z) can be encoded
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by a set of p angles which lie between 0 and �. We will use the term Line Spectral

Pairs (LSP) for these angles and will denote them by

! = [!1; !2; : : : ; !p]
T (2.20)

The Line Spectral Frequencies are de�ned as a scaled version of the LSPs and

denoted by

l = [l1; l2; : : : ; lp]
T (2.21)

in which

li =
1

2�
!i (2.22)

Thus, the LSFs are ordered frequencies between 0 and 0:5 or equivalently between

0 to 4 kHz for speech sampled at 8 kHz.

One of the interesting advantages of the LSF parameters is an easy way to

check the stability of the �lter reconstructed from their quantized versions. It was

shown in [3] that the stability of the reconstructed �lter is guaranteed, provided

that the roots corresponding to the LSF values remain interleaved and on the unit

circle. Therefore, it su�ces to check for the ordering property of the quantized

LSF parameters to ensure the stability of the reconstructed all-pole �lter. Another

important property of LSF parameters is their spectral selectivity, i.e., a pertur-

bation in the value of LSF parameter li only a�ects the LP �lter power spectrum

in the frequency region about the frequency li. Therefore, quantization of LSF

parameters has a more predictable e�ect on the power spectrum than that of the

LPC coe�cients.

Since the LSF representation is a frequency domain representation, it can be

used to exploit certain properties of the human perception system. The magnitude
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of the power spectrum depends on the spacing of the LSF parameters. Closely po-

sitioned LSF parameters correspond to the peaks of the spectrum or the formants,

and widely positioned LSF parameters correspond to the spectrum valleys. Since

the power spectrum information in the formant regions are more important to the

human auditory system, �ner quantization of the LSF parameters in these regions

is desired. This can be achieved by �ner quantization of closely positioned LSF

parameters. It is also known that higher ordered formants contribute negligibly to

the intelligibility of speech. This property can be exploited by less accurate quan-

tization of higher indexed LSF parameters.1

In this work, we employ a 10th-order LPC analysis and hence, there are 10 LSF

parameters associated with each 20 ms frame of speech. Using our training speech

database, Figure 2.2 shows the probability distribution of the ten LSF parameters.

Some statistical information of the LSF parameters are also demonstrated in Figure

2.3.

2.3 Objective Distortion Measures

Quality degradation is an inherent result of the speech coding process. As we men-

tioned earlier, our goal in speech coding is to achieve transparent coding of speech

or to limit the introduced degradation to below the perceivable level. This, in turn,

can only be assessed through costly and time consuming subjective listening tests.

In practice, for the evaluation of LPC quantization schemes, objective distortion

measures are used to assess the encoded speech quality. Extensive research has been

1In section 3.3, a weighted Euclidean distance is discussed to address the issue of quantizing

di�erent LSF parameters with variable accuracy
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Figure 2.2: LSF parameter distributions

done to develop objective measures which perform closely to the subjective human

tests [36]. Among the many proposed measures, a log-spectral distortion measure

has been widely accepted in the literature to evaluate the quality of quantized LSF

parameters of speech[35]. This criterion is a function of the distortion introduced in

the spectral density of speech in each particular frame. The log-spectral distortion

in the nth frame is given by

D(n) =

s
1

f2 � f1

Z f2

f1

[10 log10(Pn(f)) � 10 log10(P̂n(f)))]
2df

(2.23)

in which

Pn(f) =
1

jAn(exp(j2�f=Fs))j2
(2.24)
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Figure 2.3: LSF parameter statistics

and

P̂n(f) =
1

jÂn(exp(j2�f=Fs))j2
(2.25)

are the original and quantized power spectral density of the nth frame respectively.

Ideally for a speech sampled at Fs = 8 kHz, the lower and upper limits of the above

integral is 0 and 4 kHz respectively, however, in practice the lower limit is chosen

between 0 and 120 Hz and the upper limit is chosen between 3 and 3:5 kHz for the

telephone bandwidth speech [14, 21].

Reference [21] has found the following criteria for transparent quantization of LPC

parameters to be satisfactory through subjective listening tests:

� The average log-spectral distortion is about 1 dB

� There are less than 2% of frames with a spectral distortion between 2�4 dB.

These frames are usually called 2 dB outliers.
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� There is no frame with spectral distortion greater than 4 dB. These frames

are usually referred to as 4 dB outliers.

Recently, some other authors [26, 29] have also veri�ed these criteria as the suitable

objective criteria for the transparent coding of LPC parameters.



Chapter 3

Block-based Trellis Quantization

3.1 Introduction

A vector quantizer Q of dimension N and size M is a mapping from an N -

dimensional Euclidean space, RN , into a �nite set C of M reconstruction points

or code-vectors from the same space. Thus

Q : RN ! C (3.1)

where

C = fy1;y2; :::;yMg; (3.2)

and

yi 2 RN ; i 2 J = f1; 2; :::;Mg: (3.3)

The set C is referred to as the code-book of Vector Quantizer (VQ) Q which is

of size M , i.e., it has M distinct elements or code-vectors. Each component of a

22
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code-vector is called a code-word, therefore, there are M � N code-words in code-

book C. The mapping of the input vectors from the domain, RN , into the range, C

depends on the quantization algorithm as well as the distance measure employed.

This partitions the RN space into M regions or cells. Each cell, Ri, is associated

with one code-vector yi; i 2 J , such that

Ri = fx 2 RN : Q(x) = yig (3.4)

and we have

[
i

Ri = RN and Ri \ Rj = ; for every i 6= j (3.5)

so that the cells partitioning RN are disjoint. In fact, quantization is the problem

of determining in which quantization cell an input vector is located. The problem

of designing the quantization cells of a vector quantizer is referred to as vector

quantizer design.

Two basic components of a source coding system are known as the encoder

and the decoder. The encoder E is a mapping from RN to the index set J and is

composed of two elements: the quantizer Q and the index generator I. As is shown

in Figure 3.3, the index generator is a mapping from the code-book C to the index

set J .

E : RN ! J and I : C ! J (3.6)

The decoder D is then a mapping from the index set J into the reconstruction set

C; i.e.,

D : J ! C (3.7)
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The rate of vector quantizer is r = d(log2M)=Ne, which determines the number of

bits needed to represent each input vector component.

In this chapter, we introduce a vector quantization scheme based on a trellis struc-

ture to encode the LSF parameters. The proposed block-based trellis quantizer

(BTQ) is designed to exploit the intra-frame correlation of the LSF parameters

by encoding the LSF di�erences (LSFD). For a sample vector of LSF parameters,

l = fl1; l2; : : : ; l10g, LSFD parameters are denoted by ld = fld1; ld2; : : : ; ld10g and

de�ned as

ld1 = l1 (3.8)

ldi = li � li�1 2 6 i 6 10 (3.9)

Therefore, the BTQ code-book consists of a set of LSFD code-words. To encode

an LSF vector, a path through the trellis identifying a set of LSFD code-words in

the code-book which results in a small distortion is selected.

In the following, we begin with a complete description of the proposed trellis

structure and the search algorithm used. Next, the employed distance measure

which attempts to exploit properties of the human auditory system is explained.

The issue of index generation or the addressing problem is discussed in Section 3.5.

In section 3.6, an LBG-based algorithm is presented for the design of the proposed

Block-based Trellis Quantizer.

3.2 Trellis Structure

Figure 3.1 demonstrates a state diagram representing the Block-based Trellis Quan-

tization scheme introduced in this work. A trellis diagram consists of a number of
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stages. Each stage consists of a set of states which are disjoint from those of the

other stages. For example, the trellis diagram in Figure 3.1 has 11 stages and each

stage includes a maximum number of 5 states. There are a number of transitions

from any state of a stage to the states of the next stage. These transitions are

unidirectional, i.e. we only can move from a lower stage to a higher one, but not

vice versa. We call these transitions the branches. As an example, there are a

maximum number of 3 branches going out of each state in the trellis diagram of

Figure 3.1.

8 9 100 1 2 3 4

0

1

2

3

4

state

stage

Figure 3.1: An example of a trellis structure used in BTQ with 11 stages. Each

state of the trellis is identi�ed by (stage; state) and each branch of the trellis is

determined by (stage; state; branch).

Having described the trellis structure, we proceed to explain the correspondence

of stages, states and branches to the quantization procedure. Each stage in the

trellis diagram is associated with one dimension of the LSF vector, hence, there

are 10 stages in the trellis, plus an initial stage. The initial stage or stage (0)

corresponds to the value 0. The �rst stage (stage (1)) corresponds to the �rst

LSF, the second stage corresponds to LSF2, and so on. As mentioned earlier, we

are interested in quantizing the LSF di�erences or LSFDs. Therefore, we assign
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di�erent LSFD codewords to the branches of the trellis. For example, the branches

starting in stage (0) of the trellis correspond to di�erent LSFD1 codewords and

the branches starting in stage (1) correspond to di�erent LSFD2 codewords. This

allows us to partition the code-book C to disjoint subsets Ci; i 2 f1; 2; : : : ; 10g, i.e.,

C = ffC1g; fC2g; : : : ; fC10gg (3.10)

where set Ci consists of the LSFD code-words of dimension i, bldi(s; b), associated
with each branch (i�1; s; b) connecting state s in stage i�1 to state s+b in stage i.

Now consider a sequence of k branches connecting a state in the stage (0) to an-

other state in the kth stage. This is called a partial-path of length k. A partial-path

of length 3 has been highlighted in Figure 3.1. The summation of the codewords

associated with the branches along a partial-path of length k results in a candidate

value for the quantized kth LSF parameter. This value is assigned to the state where

the partial-path ends, say, at state s in stage k, and is denoted by l̂k(s). Therefore,

we can see that the states in the trellis correspond to the quantized LSF parameters.

The trellis used in the Block-based Trellis Quantization (BTQ) scheme presented

here, is designed based on the ordering property of the LSF parameters which states

that for each sample vector l, we have

0 < l1 < l2 < : : : < l10 < 0:5 : (3.11)

This also indicates that the LSF di�erences are positive. Assuming ordered posi-

tive LSFD codewords on the branches of each state, the reason behind the speci�c

way of connections in the above trellis diagram is revealed. In order to exploit the

correlation between LSF parameters, only the branches connecting an arbitrary
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state in the trellis to the states at the same level or at a lower level within the next

stage are allowed. This results in greater values of quantized LSF parameters as we

move downward through the states of a certain stage of the trellis. Another impor-

tant result of the ordering property is the fact that LSF parameters are bounded

within a range. Therefore, we limit the number of states of each stage to a certain

maximum of Ns.

As mentioned earlier, a code-vector of the quantizer is speci�cally determined,

once a path is chosen through the trellis. The total number of the paths in the trellis

determines the bit-rate of the BTQ. This is controlled by the speci�c structure of

the trellis which we already described, as well as a set of parameters. One of

these parameters is the maximum number of states in each stage or Ns. Once

this parameter is selected, the maximum number of branches in each stage will

completely determine the trellis and hence, the bit-rate of the BTQ. In the next

section, we will elaborate on how a speci�c path or equivalently a code-vector is

chosen in the trellis to represent an LSF vector sample.

3.3 Search through the Trellis

Assume we want to quantize an LSF sample vector l using the BTQ scheme intro-

duced earlier. A BTQ codebook consists of a set of LSFD codewords associated

with the branches of the trellis. We are interested to �nd a path through the trellis

to indicate a set of code-words which results in a small quantization error. The def-

inition of LSFD parameters given in equation (3.9) describes what is known as an

open-loop di�erential quantization scheme, i.e., the error introduced in quantization

of one LSFD component is not considered in quantization of the next component(s)

[37]. However, this results in accumulation of errors while reconstructing the quan-
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tized LSF parameters. Therefore, we employ a closed-loop di�erential quantization

scheme in this work and rede�ne the LSFD parameters as follows

ld1 = l1 (3.12)

ldi = li � l̂i�1 2 6 i 6 10 (3.13)

where l̂i refers to the quantized ith LSF parameter.

A modi�ed version of the Viterbi algorithm [4] is used to �nd the path repre-

senting the quantized LSF vector. We start from the �rst stage and perform a set

of operations in each stage until we get to the last stage. These operations includes

calculating a metric D for each branch and assigning a cost Ci(s) to each state s

in stage i. The metric is a measure of the distortion introduced if a certain branch

is taken. The cost assigned to each state will be the minimum distortion produced

by taking any of the branches reaching a speci�c state. The search algorithm is

explained below and is demonstrated in Figure 3.2.

1. Initialization:

C0(0) = 0 (3.14)

l̂0(0) , 0 (3.15)

start from the �rst stage i = 1.

2. Compute a metric D(li; l̂i�1(s) + bldi(s; b)) for each branch (i� 1; s; b)

3. Assign a cost, Ci(s
0), to each state s0 in stage i. The cost is determined as

follows

Ci(s
0) = min

8s;b:s+b=s0
(Ci�1(s) +D(li; l̂i�1(s) +cldi(s; b))) (3.16)
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4. Set the index of the parent state of state (i; s0), IPi(s
0), to the state in stage

i� 1 which resulted in the minimum cost in the last step, i.e.,1

IPi(s
0) =

�1

min
8s;b:s+b=s0

(Ci�1(s) +D(li; l̂i�1(s) +cldi(s; b))) (3.17)

5. Update the reconstruction l̂i(s
0) given by

l̂i(s
0) = l̂i�1(IPi(s

0)) + bldi(IPi(s0); s0 � IPi(s
0)) (3.18)

6. If i < 10, set i to i+ 1 and go to step 2. Otherwise continue.

7. When i = 10, �nd the state s in the last stage with the minimum cost. The

winning path is traced back using the IP values stored for each state and

hence, the corresponding code-vector is found.

It is important to note that the search algorithm just presented does not necessarily

result in the path with minimum quantization error among the set of all paths of

the trellis. The reason is that the BTQ search algorithm does not follow a dynamic

programming approach [11] for the fact that the distance measure employed in

each dimension is not completely describable in terms of the variables of the same

dimension alone, i.e., the decision to be made to optimize an objective distance

function in one dimension depends not only on the previous state, but also on the

survivor path ending that state.

3.4 Distance Measure

The simplest metric which is usually used in quantization is the Euclidean distance.

In order to incorporate the characteristics of the human auditory system, di�erent

1
�1

min refers to the state which minimizes the argument.
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Figure 3.2: The variables used in the BTQ search algorithm

weighted Euclidean distance measures have been introduced in the literature. These

distance functions are generally of the form:

Di(li; l̂i) = wici(li � l̂i)
2; (3.19)

D(l; l̂) =

i=10X
i=1

Di : (3.20)

The vector c = [c1; c2; : : : ; c10] is a constant weight vector which prioritizes LSF pa-

rameters. These weights are meant to emphasize the lower frequency components

which are more important to the perceptual quality of the speech. The vector

w = [w1; w2; : : : ; w10] is a variable weight which is derived from the LSF vector in

each frame and is meant to provide better quantization of LSF parameters in the

formant regions than those in the non-formant regions. Paliwal and Atal in [21]

suggested assigning a variable weight wi to the ith LSF which is proportional to the



CHAPTER 3. BLOCK-BASED TRELLIS QUANTIZATION 31

value of LPC power spectrum at this frequency. Another simpler weight function

was proposed in [25] which takes advantage of the fact that formant frequencies are

located at the position of two or three closely located LSF parameters.

Equation (3.19) is the de�nition of the metric used in this work. Due to recom-

mendation of NORTEL2, we choose constant weight c = [1; 1; : : : ; 1] and employ

a nonlinear weight function to determine the variable weights. This weight for a

sample LSF vector l is given by

w1 =

8><>:
1:0 if (2�(l2 � 0:02) � 1) > 0,

10(2�(l2 � 0:02) � 1)2 + 1 otherwise:

wi =

8><>:
1:0 if 2�(li+1 � li�1)� 1 > 0,

10(2�(li+1 � li�1)� 1)2 + 1 otherwise:

2 6 i 6 9

w10 =

8><>:1:0 if (2�(0:471 � l10)� 1) > 0,

10(2�(0:471 � l10)� 1)2 + 1 otherwise:

(3.21)

which has been designed based on the same idea of emphasizing the closely posi-

tioned LSF parameters. This weight function is similar to that used in the ITU-T

G.729 standard [7]. The values 0:02 and 0:471 are respectively the minimum value

of LSF1 and the maximum value of LSF10 for the codec for which our BTQ LSF

quantizer has been designed.

A closer look at equation (3.19), again con�rms the closed-loop di�erential quan-

tization scheme employed. Although our proposed BTQ scheme is based on the

quantization of LSF di�erences, we have de�ned the metric as a function of the er-

ror introduced in the reconstructed LSF parameters themselves. This is of course,

2This work was done as part of a project funded by NORTEL NETWORKS
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to prevent the magni�cation of the quantization noise.

3.5 Index Generation

Consider the Block-based Trellis Quantization of the LSF sample vector l. In this

process, a path through the trellis is identi�ed which represents a code-vector l̂ in

the trellis. This path is recognized by a 10 dimensional vector p = [p1; p2; : : : ; p10]

of the states taken by this path in di�erent stages of the trellis. This is called a

path-vector. The index generator receives this vector and produces the information

which is transmitted to the receiver. This will be the index of the winning path in

the set of all paths of the trellis. Figure 3.3 demonstrates the overview of the sys-

tem. Having received this index by the receiver, the decoder performs the reverse

operations. It translates the index back to the corresponding integer vector p from

which it reconstructs the quantized vector l̂ once again.

l p
BTQ Index

Generator

Encoder

I
Decoder

p

Figure 3.3: Overview of the system

Note that in a BTQ structure, as shown in the trellis of Figure 3.1, the number

of outgoing branches from di�erent states of each stage are not equal and therefore,

the traditional index generation methods used in the trellis source codes can not be

applied here. The BTQ index generating/decoding algorithms have been designed

with very low complexity. Figure 3.4 demonstrates the index generating algorithm

for an example of a BTQ with dimension 3.
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p Index

[0; 0; 0] 0

[0; 0; 1] 1

[0; 0; 2] 2

: : : : : :

[2; 3; 3] 16

Table 3.1: Path-Vector vs. Index
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17

Figure 3.4: An example on the BTQ index generating algorithm.

The paths of the trellis are enumerated from top to bottom and they are iden-

ti�ed either by the path-vectors or the equivalent indices as shown in Table 3.5.

The �rst three paths have the states (0; 0) and (1; 0) in common and their ending

states are (3; 0), (3; 1) and (3; 2), respectively. The last path is the one connecting

states (0; 0),(1; 2),(2; 3) and (3; 3). We now de�ne a parameter which is useful in

our following discussions. The number of chooseable paths of state (i; s), CPi(s), is
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de�ned as the total number of paths we can choose form this state to reach to the

last stage. The number of chooseable paths from state (0; 0) is equal to the total

number of the paths which determines the bit rate. In Figure 3.4, the value of CP

for di�erent states of the trellis is shown. One can examine to �nd CP0(0) = 17,

CP1(0) = 8 and CP1(1) = 6, and so on. The number of chooseable paths of the

states in the last stage is de�ned to be 1.

Now assume that a path, p, through the trellis is determined as the winning path

and we want to �nd its corresponding index. Consider for example the highlighted

path in Figure 3.4.

p = [1; 1; 3] (3.22)

This path takes the state (1; 1) in the �rst stage, therefore, among the total of

17 chooseable paths of state (0; 0), the index of this path, I, is between 8 and

8 + 6 = 14; 8 <= I < 14. There are 6 paths to choose from state (1; 1). Since path

p passes through state (2; 1) in stage 2, it is among the �rst 3 and since it ends at

state (3; 3), it ranks third among these 3. Therefore, the index of this path is given

by: I = 8 + 0 + 2 = 10. A reverse set of similar operations is performed by the

decoder to retrieve the path-vector p from this index at the receiver. Figure 3.5,

shows the owchart of the BTQ encoding and decoding algorithms.

3.6 Block-based Trellis Quantizer Design

The ultimate goal of a quantizer design algorithm is to �nd the optimum quan-

tizer code-book. By an optimum code-book, we mean a set of code-words, which
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Figure 3.5: Index Generation and Decoding in BTQ
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produces the minimum quantization distortion for a training database consisting of

virtually all possible types of the data to be encoded. The LBG algorithm [2] for

vector quantization design is widely used in various VQ applications. A number of

modi�ed versions of this algorithm have been also employed to design structured

vector quantizers. Immediate application of the LBG algorithm to the proposed

BTQ scheme faces several problems such as lack of proper initialization method and

divergence in the optimization process. In order to overcome these problems and to

address some other issues, such as incorporating weighted Euclidean distance and

the empty partition problem, a more sophisticated algorithm is required to design

the BTQ code-book.

The main reasons behind most of these problems are the facts that: (i) the

statistics of the signals to be quantized and hence, the set of code-words of each

dimension di�er from those of the other dimensions; (ii) the signals to be quantized

in each dimension depend upon the code-words chosen in the previous dimensions;

and (iii) there are a di�erent number of branches going out of di�erent states of the

trellis. The algorithm that we found to perform satisfactorily in the BTQ design is

based on the same facts and is as follows:

� Step 1: Initialization

{ Use the LBG algorithm to design a scalar quantizer for the �rst dimen-

sion of the LSF vector, with the number of levels equal to the number

of branches of the �rst stage of the trellis.

{ Use these values to initialize the reconstruction levels of the �rst stage

fC1g.
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{ Set stage i = 1

� Step 2: Partitioning

{ Partition the training database of LSF vectors fT g into sets

fTi(1)g; fTi(2)g; : : : ; fTi(Ns)g (3.23)

corresponding to the state to which their ith components are quantized.

� Step 3: Initialization

{ To initialize the code-words of the outgoing branches of each state (i; s),

apply the LBG algorithm to the vectors of each set fTi(s)g to design

scalar quantizers for the signal to be encoded in the i+ 1th dimension.

The signal to be encoded is given by li+1� l̂i(s) and the number of levels

of each quantizer is equal to the number of outgoing branches from state

(i; s).

{ Use the resulting reconstruction levels to initialize the code-words of the

i+ 1th dimension fCi+1g.

� Step 4: Block-based Trellis Quantization

{ Apply the Block-based Trellis Quantization algorithm discussed earlier

and the LBG algorithm to design the BTQ of dimension i+ 1 (only the

�rst i+ 1 stages are considered).

� Step 5: End

{ Increment i, if i < 10 go to step 2. Otherwise if i = 10 the design of

BTQ code-book is complete.



Chapter 4

Interframe Coding of LSF

parameters

In the previous chapter, we presented the Block-based Trellis Quantization of LSF

parameters which encodes the spectrum for each speech frame individually. How-

ever, there is a substantial amount of redundancy between neighboring speech

frames which can be exploited. In this chapter, we present an inter-frame coding

scheme which attempts to use these redundancies to further reduce the bit-rate.

4.1 Correlation of Spectral Parameters

Speech is assumed to be a pseudo-stationary process. Due to slow variation of the

short-time spectrum of speech, there is a considerable degree of correlation in the

sequence of speech spectra. Using the training set of LSF vectors, Figure 4.1 shows

the normalized autocorrelation coe�cient of the ith line spectral frequency, ri(k),

38
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at a frame delay, k, which is given by

ri(k) =
E[li(n)li(n� k)]

E[li(n)li(n)]
(4.1)

where li(n) is the ith LSF of the nth frame. It is seen that the autocorrelation

of the LSF parameters of the adjacent frames are as high as 0:9 for most of the

parameters.
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Figure 4.1: Normalized inter-frame autocorrelation coe�cients of line spectral fre-

quencies at varying delays (The frame period is 20ms).

In order to exploit the existing correlations, we employ an inter-frame predictive

coding scheme in which the frames coded in the predictive mode are interleaved

with the ones coded in the intra-frame or absolute mode [29]. This reduces both

the propagation of channel errors and quantizer slope overload to the maximum

of one frame. In this approach, the LSF vector of frame say 2n � 1, l(2n � 1), is

encoded in the absolute mode. Next, the quantized vector is used to predict the

LSF vector of frame 2n. The prediction error or the LSF residue (LSFR) vector of
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frame 2n, denoted by lr(2n), is now encoded and transmitted to the receiver. The

following LSF vector, l(2n + 1), is again encoded in the intra-frame mode and so

on. This can be formulated as

~l(2n) = A l̂(2n � 1) (4.2)

lr(2n) = l(2n) �~l(2n) n > 0 (4.3)

in which l̂ and~l are quantized and predicted values of l respectively and the matrix

A is the matrix of prediction coe�cients. Two choices for A are considered here:

(i) a �rst-order scalar linear predictor (SLP) and (ii) a �rst-order vector linear

predictor (VLP). In the former case, the matrix A is a diagonal matrix with its

diagonal elements equal to the prediction coe�cients of the �rst order. In this

scheme, each LSF parameter is predicted from the same parameter in the previous

frame. In the case of the �rst-order VLP, the whole LSF vector of a frame is used

to predict each of the LSF parameters of the next frame. The prediction matrix A

is given by1

A = R01R
�1
11 (4.4)

where

Rij = E[l(n� i)l(n� j)T ] = Rji (4.5)

The prediction gain of di�erent LSF parameters are presented in Table 4.1 for two

choices of A. This gain is de�ned as

Gi = 10 log10
E[li(n)

2]

E[lri(n)2]
dB (4.6)

From Table 4.1, it is seen that by employing SLP, the energy of the signal to be

encoded is reduced by 4:76 dB on the average. However, the LSF parameters of the

1See reference [12] for details.
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mid-frequency range can be predicted more e�ciently as compared to those of the

low and high frequency regions. It is also observed that employing VLP provides

an additional prediction gain of 0:1 dB. Therefore, we select the �rst-order VLP as

the prediction matrix to be used.

Prediction overall LSF1 LSF2 LSF3 LSF4 LSF5

SLP 4:7574 3:4032 3:8592 4:5517 5:2724 6:0780

VLP 4:8574 3:5669 4:0641 4:6237 5:2971 6:1631

Prediction overall LSF6 LSF7 LSF8 LSF9 LSF10

SLP 4:7574 5:2998 4:8234 4:3585 3:4040 2:8589

VLP 4:8574 5:4241 4:9437 4:4451 3:5402 2:9246

Table 4.1: Prediction gain in dB of the training database LSF vectors and LSF

components for �rst order scalar linear predictor (SLP) and �rst-order vector linear

predictor (VLP)

Figure 4.2 demonstrates the block diagram of the proposed inter-frame coder.

A Block-based Trellis Quantizer of bit-rate RBTQ is employed to encode the LSF

parameters of frames 2n�1, n = 1; 2; : : :. Next, a vector linear predictor of the �rst

order is used to calculate the prediction residues of the LSF parameters of frames

2n, n = 1; 2; : : :. Finally, an Adaptive Block-based Trellis Quantization scheme with

a bit-rate of RABTQ is employed to encode these LSF residues. We will explain this

scheme in the next section.

Considering the structure of the inter-frame coder in Figure 4.2, it is seen that

the quantized odd numbered LSF vectors (1st; 3rd; : : :) contribute to the overall
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l̂(2n� 1)

~l(2n)

l(m)

BTQ
Encoder

Predictor

Adaptive
BTQ

Encoder

l(2n)

l(2n� 1) I(2n � 1)

I(2n)

I(m)

Figure 4.2: BTQ inter-frame encoder

average distortion in two ways. One is their direct e�ect upon the representation

of their corresponding LSF parameters of the odd numbered frames and second,

in the prediction of the even numbered LSF vectors. The latter determines the

residues to be quantized in the inter-frame mode. Therefore, we always allocate

more bits to the BTQ quantizing the actual LSF vectors (LSFD parameters) and

less bits to the ABTQ quantizing the LSF residues. The overall bit rate of the

inter-frame quantization system will then be equal to the average of the number of

bits allocated to the two quantizers:

R =
1

2
(RBTQ +RABTQ); b/frame (4.7)

Clearly, this �gure is a constant as is required by the structure of the transmission

frame of the North American TIA digital cellular standard.
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4.2 Adaptive Block-based Trellis Quantization

In order to encode the LSF residues or prediction errors, we employ an adap-

tive vector quantization scheme based on the same trellis structure as is used for

the quantization of LSF Parameters in intra-frame mode. However, the signal to

be encoded in this case is the LSF residue and the branches of the trellis, now,

correspond to the residue code-words instead. If the code-book of LSF residues is

denoted by Clr = ffClr1 g; fC
lr
2 g; : : : ; fC

lr
10gg and the adaptive code-book of this quan-

tizer which is used to encode the LSF parameters of the even frames, is denoted by

CA(2n) = ffCA1 (2n)g; : : : ; fC
A
10(2n)gg, then we have

fCAi (2n)g = fClri g+ ~li(2n) n > 0 (4.8)

This can be interpreted as biasing the LSF residue code-book by the predicted LSF

vector of frame 2n, ~li(2n), as given in (4.2). By biasing the branches with the pre-

dicted LSF values, the correspondence of the trellis states with the reconstructed

LSF parameters is preserved. In other words, assuming ordered residue codewords

on the branches, the states correspond to the quantized LSF parameters in ascend-

ing order. This allows us to de�ne the same weighted distance measure as was

given in (3.19) and to easily check for the ordering property of the quantized LSF

vectors. The ABTQ search and design algorithms slightly change here, for the fact

that the signal to be encoded by the quantizer is no longer the LSF di�erences.



Chapter 5

Performance Evaluation

In Chapter 3, a Block-based Trellis Quantizer for intra-frame coding of LSF param-

eters is introduced. An inter-frame coding system is also presented in Chapter 4

to exploit the redundancies of LSF parameters in the consecutive frames of speech.

This scheme utilizes a Block-based Trellis Quantizer to encode the LSF parameters

in the absolute mode and an Adaptive Block-based Trellis Quantizer to encode

the LSF prediction residues in the predictive mode. In this chapter, the proposed

Block-based Trellis Quantization scheme is evaluated by studying two important

attributes of every LPC quantization scheme, i.e., the quality of the encoded speech

using the quantized LPC coe�cients and the encoding/decoding complexity. We

begin with studying the complexity issues of the BTQ and proceed with objec-

tive quality evaluation of the proposed intra-frame and inter-frame BTQ schemes.

Lastly, a comparison with other methods is presented.

44
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5.1 Complexity Issues

Complexity considerations consist of computational complexity and memory re-

quirements. Memory requirements include Random Access Memory (RAM), or the

dynamic memory which refers to the memory used during the run-time of the algo-

rithm and Read Only Memory (ROM), or the static memory, which is used to store

the code-book of the quantizer. As shown in Figure 3.3, the BTQ quantization

system is composed of two parts: the encoder and the decoder while the encoder,

in turn, is composed of the BTQ and the index generator. Each of these parts has

its own memory requirements and computational complexity.

5.1.1 BTQ Complexity

RAM Requirement

The dynamic memory requirement of the BTQ is the memory which is needed for

the BTQ search algorithm (presented in Section 3.3) to operate. The exact amount

of the RAM required depends upon the actual software implementation. However,

an approximate value can be achieved by examining the parameters need to be

stored in memory. As shown in Figure 3.2, these parameters include:

� IPi(s) or the index of the parent state. This is an integer value which needs

to be stored for each state of the trellis.

� Ci(s) or the cost to reach to state (i; s). This is a oating point value which

needs to be stored for the states of two consecutive stages of the trellis.

� l̂i(s) or the reconstructed value of LSFi, should the winning path passes

through state (i; s). This is also a oating point variable which needs to
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be stored only for the states of two consecutive stages of the trellis.

In Block-based Trellis Quantization at bit-rates of our interest (18-30 b/frame),

number of states in each stage of the trellis varies between 12 and 24. Since there

are 10 stages in the trellis, the total number of states does not exceed 240 for high

rates. Therefore, the BTQ RAM requirement is very small.

ROM Requirement

Static memory is needed in the BTQ for code-book storage. The number of code-

words in a BTQ scheme is equal to the number of branches in the trellis. The BTQ

bit-rate is determined by the total number of the paths in the trellis and this is

a function of the number of states and branches in di�erent stages of the trellis.

Therefore, we have examined several con�gurations of the number of states and

branches for the 10-stage BTQ and have selected the best set for each bit-rate.

Table 5.1 shows the selected trellis parameters for di�erent bit-rates. The resulting

total number of branches and states in the trellis for di�erent bit-rates are given

in Table 5.2. As an example, a BTQ of rate 21 (b/frame) has 1095 branches and

hence, it has a code-book size of 1095 code-words or equivalently it requires 1095

oating point variables to be stored in ROM.

In the following section, we will show that the BTQ ROM requirement is very

small.

Computational Complexity

As described in Section 3.3, the BTQ bene�ts from a search algorithm similar to

the Viterbi algorithm, hence it is computationally e�cient. A close look at equation
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Bit-rate No. of stages No. of states Max. No. of branches in each stage

20 10 14 (14; 14; 14; 14; 13; 6; 6; 6; 6; 6)

21 10 15 (15; 15; 15; 15; 15; 15; 15; 15; 15; 15)

22 10 17 (17; 17; 17; 8; 6; 6; 6; 6; 6; 6)

23 10 18 (18; 18; 15; 13; 11; 11; 11; 11; 11; 11)

24 10 20 (20; 20; 20; 9; 9; 8; 7; 7; 7; 7)

Table 5.1: Trellis parameters at di�erent bit-rates

Bit-rate Total No. of states Total No. of branches ROM

20 140 778 778

21 150 1095 1095

22 170 953 953

23 180 1104 1104

24 200 1320 1320

Table 5.2: BTQ ROM requirement at di�erent bit-rates

(3.16) and the BTQ search algorithm, reveals that the total number of operations

to quantize one LSF frame mainly consists of a set of operations performed for

each branch of the trellis. This includes the computation of a cost and performing

a comparison which requires a total of 6 operations. Therefore, the total number

of operations is approximately 6 times the total number of branches in the trellis.

Table 5.3 shows the total number of required operations for Block-based Trellis

Quantization of each LSF vector at di�erent bit-rates. The same set of trellis

parameters as given in Table 5.1 is used.
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Bit-rate No. of Operations/frame

20 4668

21 6570

22 5718

23 6624

24 7920

Table 5.3: Number of operations in BTQ to quantize one LSF vector at di�erent

bit-rates

5.1.2 Index Generation/Decoding Complexity

The algorithm for index generation or �nding the corresponding index of each path

through the trellis, is discussed in Section 3.5. Examining this algorithm, one can

see that a block of ROM is needed to store the CPi(s) values for each state (i; s)

of the trellis. The total number of states, as is shown in Table 5.2 for di�erent bit-

rates is a small number, and hence, this algorithm is e�cient in terms of memory

requirements. Total number of operations needed to generate the index of the path-

vector of each frame is upper-bounded by the number of states in each stage. For

example, there are only 15 states in each stage of a 21 b/frame BTQ; therefore a

maximum of 15 operations are needed to add up the CP values of the states above

the ones of the path-vector. This value again is negligably small. Hence, the BTQ

index generation algorithm is computationally very e�cient. A similar statement

is valid for complexity of the BTQ decoding algorithm (the decoding is composed

of the same set of operations in the reverse order). The total number of operations

to decode a received index to a path-vector is a multiple of the number of states
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in each stage and is very small. The CP values stored in memory for the index

generation process can be used by the decoder as well.

5.2 Objective Quality Measurement

In this work, we use a training database of 175; 726 LSF vectors derived from a 58:57

minute long recorded speech. This database is used to design the vector quantizers.

Another outside test database of 102; 400 LSF vectors derived from a 34:13 minute

long recorded speech is used to test the performance of the quantizers. A spectral

distortion measure as presented in equation (2.23) with f1 = 60 Hz and f2 = 3500

Hz is employed to measure the objective quality of the quantized LPC coe�cients.

The transparent quality is considered as the average spectral distortion of about

1 dB, and 2 dB outliers of less than 2%. Table 5.4 shows the numerical results

Bit-rate 20 21 22 23 24

SD [dB] 1:45 1:36 1:24 1:16 1:05

2 dB outliers [%] 11:10 6:97 3:84 1:63 0:02

Table 5.4: Average spectral distortion and 2 dB outliers percentage for Block-based

Trellis Quantization of the test database LSF vectors using weighted distance at

di�erent bit-rates

of Block-based Trellis Quantization of LSF parameters at di�erent bit-rates using

the weighted Euclidean distance measure given in equation (3.19). The BTQ intra-

frame coding scheme achieves transparent quantization criteria at 23 bits/frame.

To observe the e�ect of employing the weighted distance measure, Figure 5.1 depicts

the performance pro�le of the intra-frame BTQ for both Euclidean distance and



CHAPTER 5. PERFORMANCE EVALUATION 50

the weighted Euclidean distance. Examining these curves, one can see that using

weighted Euclidean distance both the spectral distortion and and the outliers are

reduced and a bit-rate reduction of about 0:7 b/frame on the average is achieved.

However, the main contribution of weighted distance as described in Section 3.4 is

to improve the subjective quality of the reconstructed speech.
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Figure 5.1: Average spectral distortion [dB] and 2 dB outliers for Block-based

Trellis Quantization of the test database LSF vectors with and without weighted

Euclidean distance at di�erent rates

Our simulation results show that by employing the BTQ inter-frame coding

scheme presented in Chapter 4, transparent coding criteria is achieved at an overall

bit-rate of 22 bits/frame. This inter-frame coder uses a 23 b/frame BTQ for the

quantization of the LSF vectors of the odd frames and a 21 b/frame Adaptive

BTQ for the quantization of the prediction residues of the even frames. Table

5.5 also shows the performance of the BTQ inter-frame coder for other bit-rates.

Figure 5.2 compares the average spectral distortion of the intra-frame BTQ encoder

and that of the inter-frame BTQ coder for quantization of the LSF vectors of the test

database. It is observed that by using the inter-frame coder an average reduction
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Bit-rate 21 22

BTQ/ABTQ bit-rates (22; 20) (23; 21)

SD [dB] 1:21 1:09

2 dB outliers [%] 5:10 1:01

Table 5.5: Average spectral distortion and 2 dB outliers percentage for BTQ inter-

frame coding of LSF parameters at di�erent bit-rates

of 1 b/frame is achieved over the intra-frame coder for the same level of spectral

distortion. However, we acknowledge the fact that the inter-frame coder is more

vulnerable to the propagation of channel errors.
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Figure 5.2: Average spectral distortion [dB] and 2 dB outliers percentage for inter-

frame and intra-frame Block-based Trellis Quantization of the test database LSF

vectors at di�erent rates
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5.3 Comparisons

Various quantizers presented in the literature for the quantization of LSF parame-

ters o�er di�erent trade-o�s between bit-rate and complexity to achieve the desired

quantization quality. At one end of the spectrum, scalar quantization of the LSF

parameters is used to achieve the transparent quantization quality at 35 b/frame

with the lowest complexity. At the other end of this spectrum is the full search 10-

dimensional vector quantizer which achieves the same quality at about 19 b/frame

with the highest impractical complexity [28]. Table 5.6 depict the performance

of the scalar quantizer for intra-frame coding of LSF vectors in the test database

at di�erent bit-rates. Split Vector Quantization by Paliwal and Atal [21] suggests

Bit-rate 26 30 34 40

SD [dB] 1:75 1:40 1:06 0:75

2 dB outliers [%] 28:83 9:39 2:47 0:24

Table 5.6: Average spectral distortion and 2 dB outliers percentage for scalar quan-

tization of the test database LSF vectors at di�erent bit-rates

splitting the LSF vector to a number of sub-vectors (usually 2 or 3) and encoding

the sub-vectors with full-search VQs. This work is the benchmark for comparison

of di�erent schemes in the literature. A 26 b/frame Split-VQ scheme which utilizes

�rst-order MA prediction has been chosen by the TIA to be included in IS-641

standard. In this scheme the LSF residue vector is split to sub-vectors of 3,3 and 4

dimensions and each of them is quantized by a full search VQ with 8,9 and 9 bits

respectively. Here, for comparison we use the same (3; 3; 4) Split-VQ with (8; 9; 9)

bit allocation for quantization of LSF parameters in the intraframe mode. Table
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5.7 depicts the performance of this Split-VQ and another Split-VQ with 2 splits of

4 and 6 dimensions.

bit-rate 22 26

split type (4; 6) (3; 3; 4)

bit allocation (11; 11) (8; 9; 9)

SD [dB] 1:16 0:98

2 dB outliers [%] 3:00 2:94

Table 5.7: Average spectral distortion and 2 dB outliers percentage for Split Vector

Quantization of LSF parameters in the test database at di�erent bit-rates

Quantization Scheme IS-641 Split-VQ BTQ

Bit-rate 26 23

Computational Complexity 17408 6624

ROM requirement 4352 1104

Table 5.8: Computational Complexity and ROM requirement (code-book size) of

Split-VQ and the proposed intra-frame BTQ at the rate they achieve the transpar-

ent coding quality

Other important attributes of every quantization scheme, as mentioned earlier,

are the computational complexity and the memory requirements. The computa-

tional complexity that we consider here is the total number of the operations needed

for code-book search. The memory requirement considered, is the ROM require-

ment or the code-book size. Table 5.8 depicts the complexity at which the trans-
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parent coding quality of LSF parameters is achieved with di�erent quantization

schemes. It is observed that a 23 b/frame intra-frame BTQ achieves transparent

coding and requires 6624 operations/frame to �nd the corresponding code-vector

in a code-book of 1104 oating point code-words. However, the Split-VQ achieves

the same quality at 26 b/frame while requires 17408 operations/frame to locate

the appropriate code-vector in a code-book of 4352 oating point code-words. This

refers to a gain of 3 b/frame (150 b/s) and signi�cant reductions of about 60% and

70% in computational complexity and ROM requirement respectively.



Chapter 6

Conclusions

A new low bit-rate low-complexity Block-based Trellis Quantization (BTQ) scheme

is presented for quantization of Line Spectral Frequencies. An e�cient recursive

algorithm to index the paths of the trellis is introduced. Numerical results are pre-

sented indicating that the BTQ achieves transparent quantization at 23 b/frame.

Compared to IS-641 Split-VQ, it o�ers a gain of 3 b/frame and reduces the compu-

tational complexity and codebook size signi�cantly by about 60% and 70% respec-

tively. An interframe BTQ scheme was also presented to exploit the redundancies

between the adjacent frames. The interframe scheme employs an Adaptive BTQ

and saves an additional 1 b/frame at the cost of a reasonable increase in the memory

requirements.
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