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Abstract

Exploiting the residual redundancy in a source coder output stream during the decoding process has

been proven to be a bandwidth efficient way to combat the noisy channel degradations. Researchers have

recently developed techniques to employ this redundancy to either assist the channel decoder for improved

performance or design better source decoders. However, the method used for modeling the redundancy

is a first-order Markov model which fails to encapsulate all the remaining redundancies. In this work, we

present a family of solutions for the asymptotically optimum MinimumMean Squared Error reconstruction

of a source over memoryless noisy channels when the redundancy in the source encoder output stream

is exploited in the form of a γ-order Markov model (γ ≥ 1) and a delay of δ, δ > 0, is allowed in the

decoding process. We demonstrate that the proposed solutions provide a wealth of trade-offs between

computational complexity and the memory requirements. We also present a simplified MMSE decoder

which is optimized to minimize the computational complexity. Considering the same problem setup, we

present several other Maximum A Posteriori symbol and sequence decoders as well. Numerical results are

presented which demonstrate the efficiency of the proposed algorithms.
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I. Introduction

An important result of the Shannon’s celebrated paper [1], is that the source and channel

coding operations can be separated without any loss of optimality. This has been the basic idea

of enormous research endeavors in separate treatment of source and channel coders. However,

in practise, due to strict design constraints such as limited transmission bandwidth, high error

protection requirements along with restricted delay and limitations on the complexity of the

systems involved, the joint design of source and channel coders has found increasing interest.

Researchers have taken several paths toward the joint design of source and channel coders. A

class of joint source channel coders are designed by attempting to optimally allocate a fixed bitrate

between the source and channel coders to achieve the maximum overall system performance.

Examples of the works in this class are present in [2]-[6]. The applications span across the areas

of speech, image and video coding such as that of Modestino et al. on image coding using the

discrete cosine transform with convolutional channel coding [2], the work of Moore and Gibson

on DPCM speech coding with self orthogonal convolutional coding [3] and the work of Bystrom

and Modestino on combined source channel coding for video transmission [4].

Other methods of joint source and channel coding include the systems designed based on

Unequal Error Protection, Optimized Index Assignment, Channel Optimized Quantization and

more recently exploiting the source residual redundancies. In some applications a combination of

these techniques is employed for a greater protection over noisy channels.

Systems designed with Unequal Error Protection provide better error protection for the parts

of the source coder output stream which have a greater contribution in the objective or subjective

quality of the reconstructed source. One good example of this technique is the North American

IS-641 [7] standard which accommodates three different classes of error protection for different

output bits of a CELP-based speech coder. A related classical work is the work of Sundberg [8]

in which he analyzed the effect of error in different bits on the reconstruction of a PCM coded

signal. Examples of more recent applications of UEP is present in [9] and [10].

The Index Assignment technique provides more robustness to channel errors by assigning the

quantizer outputs to encoder indices in a way that possible bit errors create a lower level of

distortion in the reconstructed data. One usual advantage of the index assignment is that it does

not degrade the performance during the clean channel conditions. For a review of different index

assignment techniques refer to [11].
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In Channel Optimized Quantization, the quantization levels are designed to optimize the

performance of the system in the presence of channel noise. Two classic works in this area

are those of Kurtenbach and Wintz [12] on scalar quantization over noisy channels and Chang

and Donaldson [13] on the design of a DPCM system for transmission over a discrete memoryless

channel. Other works on channel optimized quantization include the works of Kumazawa et. al.

[14] and Farvardin and Vaishampayan [15] on vector quantization over noisy channels as well

as the works of Dunham and Gray [16] and Ayanoglu and Gray [17] on joint source channel

trellis coding. Examples of more recent works in this class are present in [18]-[20]. For a more

comprehensive review of the techniques for channel optimized quantization, the interested reader

is referred to [11],[20],[21].

More recently in this venue, exploiting the residual redundancy [22] in the output of the source

coders for improved reconstruction over noisy channels has found increasing attention [22]-[41].

This redundancy is due to the suboptimal source coding which is caused by, e.g., a constraint

on complexity or delay. Researchers have used the residual redundancy for enhanced channel

decoding, e.g., [23]-[27] or for effective source decoding, e.g., [28]-[32]. The problem is formulated

in the form of a Maximum A Posteriori detection or a Minimum Mean Squared Error estimation

problem. In [33], Phamdo and Farvardin proposed instantaneous MAP and MMSE decoders

as well as a MAP sequence decoder using the residual redundancies exploited by a first-order

Markov model. Later in [34], a sequence-based MMSE decoder was suggested that benefits

from the redundancies of both the past and future samples. Source decoding over channels with

memory using the residual redundancies has been considered in [35] and [36].

In [37], it was demonstrated that the use of residual redundancies both at the source and

channel decoder could lead to improved performance. In the same direction, iterative source

and channel decoding schemes were presented in [38]-[40]. The effectiveness of these techniques

have lead the researchers to new horizons. In [41], it is suggested that intentional leaving of the

redundancy of the source, through the use of simpler source coders, could result in higher per-

formance when this redundancy is exploited effectively at the decoder. This higher performance

is either attributed to lower overall system complexity or better trade-offs of bandwidth between

the source and channel coding.
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A. Contributions of the manuscript

The recent literature clearly demonstrate the benefit of exploiting the residual redundancies in

reconstructing the data received over noisy channels. However, it has limited itself to modeling

the redundancy with a first-order Markov model, which does not necessarily encapsulate all

the remaining redundancy. In this work, we present a family of solutions for the asymptotically

optimum MMSE reconstruction of a source over memoryless noisy channels when the redundancy

in the source encoder output stream is exploited in the form of a γ-order Markov model (γ ≥ 1)
and a delay of δ, δ > 0, is allowed in the decoding process. We demonstrate that the proposed

solutions provide a wealth of trade-offs between computational complexity and the memory

requirements. We also present a simplified MMSE decoder which is optimized to minimize

the computational complexity. Considering the same problem setup, we present several other

Maximum A Posteriori symbol and sequence decoders as well. Finally, we study the effect of

different system parameters and characteristics on the performance of the proposed decoders.

The organization of this paper is as follows. In section II, an overview of the system and the

channel model used is described. In section III, the MMSE decoding problem statement and

solutions are presented. In section IV, the MAP decoding problem statement and solutions are

presented. Section V, includes the numerical results and various comparisons which demonstrate

the effectiveness of the proposed schemes. We conclude this article in section VI.

II. Preliminaries

A. Notations

The notations used in this article are as follows. The capital letters, e.g., I, represent random

variables, while the small letters, e.g., i, represent a realization. We replace the probability

P (I = i) by P (I) in most instances when it does not lead to a confusion. The vectors are

shown bold faced, e.g., X. The lower index indicates the time instant, e.g., Xn is the vector

X at time instant n. The upper index in parenthesis indicates components of a vector or bit

positions representing an integer value, e.g., Xn = [X
(1)
n , . . . , X

(N)
n ] where N is the dimension

of the vector Xn. A sequence of variables over time, e.g., (In1
, . . . , In2

), n1 ≤ n2 is denoted by

In1
n2
. For simplicity we represent I1

n by In. The N dimensional Cartesian product of a set J is
represented by J N that consists of N dimensional vectors whose components are taken from J .
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B. System Overview

The block diagram of the system is shown in Figure 1. The source coder is a mapping from

an N -dimensional Euclidean space, RN , into a finite index set J of M elements. It is composed

of two components: the quantizer Q and the index generator I. The quantizer maps the input
sample X ∈ RN to one of the reconstruction points or codewords in the codebook C, C ⊂ RN .

The index generator then maps this codeword to the an index (symbol) I in the index set J .
The bitrate of the quantizer r is given by dlog2 Me bits/symbol (or dlog2 Me/N bits/dim). We

assume the source encoder is memoryless, i.e., the mapping of Xn to In is independent from the

past and future values of the encoder input and output.

Source DecoderChannelSource Coder
I JX X̂

Fig. 1. Overview of the system

At the receiver, for each transmitted r-bit index I = i, a vector J with r components is received

which provides information about I. The reconstructor (source decoder) maps J to an output

sample X̂. In this reconstruction, the source decoder may use the previously received signals or

some of the future samples as well.

C. Channel Model

The channels considered in this work are described by a pdf P (Jn|In). We assume that
the channel is memoryless without intersymbol interference in the sense that, for a sequence of

transmitted symbols In = (I1, I2, . . . , In) and the corresponding received signals Jn, the following

equality is valid.

P (Jn = jn|In = in, Jn−1 = j
n−1
) = P (Jn = jn|In = in). (1)

This results in the followings,

P (Jn = jn|In = in) = P (Jn = jn|In = in), (2)

P (Jn = j
n
|In = in) =

n
∏

k=1

P (Jk = jk|Ik = ik). (3)

An example is a BPSK modulation over a channel with AWGN which produces soft outputs

as,

j(m)
n = s(i(m)

n ) + η(m)
n , m = 1, . . . , r. (4)
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where i
(m)
n ,m = 1, . . . , r are the bit components of in or the source coder output and j

(m)
n are

the corresponding channel soft outputs, ηn = [η
(1)
n , . . . , η

(r)
n ] is a vector of i.i.d. Gaussian noise

samples and s(.) ∈ {
√
Eb,−

√
Eb} is a mapping of bits to channel signals. The relationship

between the transmitted and the received symbols is then given by the following conditional pdf,

P (Jn = jn|In = in) =
r

∏

m=1

P (j(m)
n |i(m)

n ). (5)

In this work, we refer to such a channel as the Soft Output Channel model. The Binary Symmetric

Channel model is also based on the same Equation (4), when a hard decision is made on the

received soft outputs. If the resulting bit error probability is denoted by ε, then the relationship

between the transmitted and the received symbols is given by,

P (Jn = jn|In = in) = (ε)
h(in,jn)(1− ε)r−h(in,jn), (6)

where jn is the received binary codeword in J and h(in, jn) is the Hamming distance between

indices in and jn. In the followings, for the development of the proposed source decoders,

we assume that the probability distribution of P (Jn|In) is given and the memoryless channel
assumption of Equation (1) is valid.

III. MMSE Decoding: Problem Statement and Solutions

Consider the case where due to the suboptimality of the source coder, there is a residual

redundancy in its output stream. This redundancy is in the form of a non-uniform distribution

or a memory in the sequence of the transmitted symbols. Our objective is to design an effective

reconstructor (source decoder) which exploits this redundancy and produces the Minimum Mean

Squared Error estimate of the source sample Xn given the received sequence Jn+δ = j
n+δ

=

[j1, j2, . . . , jn+δ]. Based on the fundamental theorem of Estimation Theory, this is given by,

x̂n = E[Xn|Jn+δ = j
n+δ
] (7)

which minimizes the expected squared error of estimation,

E[(Xn − X̂n)
′(Xn − X̂n)] (8)

In Equation (7), we have,

E[Xn|Jn+δ] =
∑

In+δ∈J
n+δ

E[Xn|Jn+δ, In+δ]P (In+δ|Jn+δ) (9)
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and noting that condition on In+δ = in+δ, Xn is independent of Jn+δ, we have,

E[Xn|Jn+δ, In+δ] = E[Xn|In+δ]

which forms the decoder codebook. Therefore, the optimal decoder at time n requires a sum

over Mn+δ elements of the decoder codebook. It is seen that in this case both computational

complexity and the memory requirement grow exponentially with time, leading to an impractical

scheme. In the next subsection, we develop an asymptotically optimum MMSE decoder for the

cases where the residual redundancy is modeled by a γ-order Markov model and show that it

leads to a feasible decoder. Subsequently in section III-B, we present a simplified MMSE decoder.

A. An Asymptotically Optimum MMSE Decoder

Assuming that the sourceX has a memory that asymptotically decays with time, for sufficiently

large values of τ, τ ∈ Z, we have,

E[Xn|In+δ] ≈ E[Xn|In−τ
n+δ ]. (10)

This simplifies the optimum decoder to the following decoder,

x̂n =
∑

In−τ
n+δ

E[Xn|In−τ
n+δ ]P (I

n−τ
n+δ |Jn+δ). (11)

which is asymptotically optimal for τ À 0. We refer to the decoder of Equation (11) as the

Asymptotically Optimum Minimum Mean Squared Error (AOMMSE) decoder. It describes the

decoded signal in the form of the weighted average of the codewords E[Xn|In−τ
n+δ ]. Note that

E[Xn|In−τ
n+δ ] provides a finer reconstruction of the source symbols than the codewords E[Xn|In]

used at the transmitter side. Particularly, as seen in the results section, if the channel is noise

free, the signal decoded at the receiver will be closer to the original source (higher signal to noise

ratio) when compared to the source encoded signal at the transmitter. The extra information is

provided by the memory between the symbols [In−τ , . . . , In+δ].

At each time instant, the decoder needs to calculate the instantaneous values of the weights

in Equation (11) or the probabilities P (In−τ
n+δ |Jn+δ). To calculate these probabilities, we assume

that due to the residual redundancy at the encoder output, the encoder output symbols form a γ-

order, γ > 0, Markov model. In the following sections, we first present a solution to compute these

probabilities and then consider alternative solutions to optimize the computational complexity.

These solutions are valid for all values of τ ≥ γ (the case τ < γ will be straight forward).
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A.1 A basic solution

To compute the a posteriori probabilities required in the AOMMSE decoder of Equation (11),

we use a trellis structure. The trellis structure models the symbols In and their assumed γ-order

Markov property due to the residual redundancies. In this section, we first describe the trellis

structure and subsequently, present a solution based on this structure.

We consider a trellis structure in which, the states at time n correspond to the ordered set,

Sn = (In−γ+1, In−γ+2, . . . , In−1, In), (12)

In−k ∈ J , 0 ≤ k < γ

Hence, there are Mγ states in each time step (stage), Sn ∈ J γ . Each branch leaving the state at

time step n corresponds to one particular symbol In+1 = in+1. Therefore, there are M branches

leaving each state. Each branch is identified by the pair (Sn = sn, Sn+1 = sn+1) of the two states

that the branch connects together. Having defined the trellis structure as such, there will be one

a priori probability P (In+1 = in+1|Sn = sn) corresponding to each branch which characterizes

the γ-order Markov property of the source. The states now form a first-order Markov sequence,

i.e., for states S1, S2, . . . , Sn that form an arbitrary path of the trellis, we have,

P (Sn|Sn−1, Sn−2, . . . , S1) = P (Sn|Sn−1). (13)

Using this property and the memoryless assumption of the channel (see Equations (1)-(3)), in line

with the BCJR algorithm [42], the probability of a particular state Sn = sn given the observed

sequence Jn is calculated recursively as follows,

P (Sn|Jn) = C.P (Jn|In) .
∑

Sn−1→Sn

P (In|Sn−1)P (Sn−1|Jn−1) (14)

where the summation is over a subset of M states in time step n − 1 which are connected to
the state Sn and C is a factor which normalizes the sum of the probabilities to one. The details

of the derivation of Equation (14), which is referred to as the forward recursive equation, are

provided in the Appendix-A. We use the notation C as the normalizing factor throughout this

paper.

In the same direction, the probabilities of states given the observed sequence Jn+δ, δ ≥ 0 are
calculated by the following equation,

P (Sn|Jn+δ) = C .P (Sn|Jn) . P (J
n+1
n+δ |Sn) (15)
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where Jn+1
n+δ = [Jn+1, Jn+2, . . . , Jn+δ]. The Equation (15) is referred to as the forward backward

equation in which the first term is the forward equation given in (14) and the second term is

referred to as the backward equation and can be calculated recursively as follows,

P (Jn+1
n+δ |Sn) =

∑

In+1∈J

P (Jn+1|In+1) . P (In+1|Sn) . P (J
n+2
n+δ |Sn+1) (16)

where the recursion starts from,

P (Jn+δ|Sn+δ−1) =
∑

In+δ∈J

P (Jn+δ|In+δ) . P (In+δ|Sn+δ−1) (17)

and continues backward in each time step. The details of the derivation of these equations

are provided in the Appendix-A. The presented trellis structure and either of the forward and

backward equations are used in the following sections for calculation of different symbol or

sequence probabilities. We note that in each time step, the forward recursion of Equation (14)

proceeds one step forward through the trellis while the backward term is recomputed over the

entire backward window as indicated in Equations (16) and (17).

Now, using the presented trellis structure and the forward equation (14), the probabilities

required for the asymptotically optimum MMSE decoding of Equation (11) are calculated recur-

sively by the following (τ ≥ γ > 0, see Appendix-B for proof),

P (In−τ
n+δ |Jn+δ) = C .





δ
∏

k=−(τ−γ)

P (Jn+k|In+k)P (In+k|Sn+k−1)



P (Sn−(τ−γ)−1|Jn−(τ−γ)−1). (18)

At each time instant the Mγ probabilities P (Sn|Jn) corresponding to each state are stored to

be used in Equation (18) at the next time instant. In addition to the computations required

to do this task, the complexity of the AOMMSE decoder is comprised of the cost to perform

the multiplications and normalization in Equation (18), as well as the weighted average of the

reconstruction rule in Equation (11). Clearly, these computations are not trivial and therefore,

efficient alternative solutions are of particular interest. In the followings, we present efficient

alternative exact solutions based on construction of an extended trellis structure of the source.

A.2 Solutions based on the extended trellis structure

The general problem of calculating the weights required in Equation (11), can be viewed as

finding the probability of a sequence of states (symbols) within the structure of the source trellis

given the entire history of the received signals or equivalently,

P (Sn−L, . . . , Sn−1, Sn|Jn) = P (In−(γ+L)+1
n |Jn), L > 0,
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where L+1 is the length of the sequence of states. The alternative solutions are provided based

on different constructions of an extended trellis structure for the source coder output symbols.

The states in this structure are referred to as the super states and are defined as,

SSn = (In−(γ+L′)+1, . . . , In−1, In), (19)

In−k ∈ J , 0 ≤ k < γ + L′,

where L′, 0 ≤ L′ < L is referred to as the (state set) extension factor and is the number of symbols

by which the states (Equation (12)) have been extended to form the super states. Similar to the

original trellis, there are M branches leaving a (super) state in the extended trellis, where each

branch corresponds to one symbol In = in, in ∈ J . Therefore, each stage of the extended trellis
still corresponds to one time step.

Based on the proposed extended trellis, a family of solutions to calculate the required a pos-

teriori probabilities are given as follows (see Appendix-B for proof),

P (In−(γ+L)+1
n |Jn) = (20)

C .





L−L′−1
∏

k=0

P (Jn−k|In−k)P (In−k|SSn−k−1)



 . P (SSn−(L−L′)|Jn−(L−L′))

where,

P (In−k|SSn−k−1) = P (In−k|Sn−k−1) (21)

and P (SSn−(L−L′)|Jn−(L−L′)) are Mγ+L′ probabilities of super states which are stored in each

time step. This term is updated by,

P (SSl|J l) = C .
∑

SSl−1→SSl

P (Jl|Il)P (Il|SSl−1)P (SSl−1|J l−1). (22)

in which l = n − (L − L′) + 1 and the terms within the summation is available during the

process of calculating Equation (20). The direct implementation of Equation (20) leads to a

computational complexity1 CC of,

CC = 2(L− L′ + 1)ML+γ + (M + 2)ML′+γ (23)

in which the first term is the cost due to the required multiplication of the terms and the

required normalization and the second term includes the cost due to updating and normalizing

1In this work, the computational complexity is measured in terms of the number of floating point operations.

Each addition, multiplication or comparison is considered as one floating point operation (flop).



12

the probability of the super states according to Equation (22). The memory requirement includes

the fixed amount of static memory (ROM) required to storeM γ+1 transition probabilities, as well

as the dynamic memory (RAM) required for the operation of the algorithm, which is O(M γ+L′)

based on the number of super states. This indicates that the family of solutions of Equation

(20) provide a wealth of trade-offs of computational complexity and the memory requirement.

The increase of L′, reduces the computational complexity at the cost of an increase in memory

requirement. It is important to note that any increase of L′, 0 ≤ L′ < L, beyond L−1 would lead
to a solution which is suboptimal both in terms of computational complexity and the memory

requirement.

More trade-offs of computational complexity and memory are possible considering the fact that

the structure of the extended trellis is still based on the redundancy of the source as indicated in

Equation (21). For example using Equation (21), the multiplying terms of Equation (20), can be

calculated once for theM γ states Sn−k−1 and stored as aM
γ×ML−L′ matrix to be appropriately

multiplied by the probability of super states. This reduces the corresponding computations in

Equation (23) from 2(L− L′)ML+γ to 2(L− L′)ML−L′+γ .

B. A Simplified MMSE Decoder

As mentioned before, the asymptotically optimum MMSE decoder presented in the previous

section utilizes a codebook given by E[Xn|In−τ
n+δ ] which provides a finer reconstruction of the

source when compared to the encoder codebook E[Xn|In]. An approximation of interest to the
AOMMSE decoder is to consider a decoder codebook identical to that of the encoder. We refer

to this decoder as the MMSE decoder. Simplifying the Equation (7), the MMSE decoder is given

by,

x̂n =
∑

In∈J

E[Xn|In]P (In|Jn+δ) (24)

which describes the MMSE estimate in terms of the weighted average of the encoder (LBG

[43]) codewords. The weights are the probability of receiving the corresponding symbol given

the received sequence Jn+δ. It is noteworthy that in the trivial case where there is no memory

between the symbols In (corresponding to γ = 0), the Equation (24) collapses to the basic MMSE

reconstruction rule,

x̂n =
∑

In∈J

E[Xn|In]P (In|Jn) (25)
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in which the probability P (In|Jn) = C.P (In).P (Jn|In), C = 1
P (Jn) includes the residual redun-

dancy in the form of the non-uniform symbol a priori probabilities.

In the followings, we first present an efficient solution to calculate the required probabilities

in Equation (24) based on the presented original trellis structure (γ > 0). Next, we investigate

possible alternative solutions based on the extended trellis structure.

B.1 A basic solution

The a posteriori probability of a symbol In given the received sequence Jn+δ is calculated as

follows. Assuming that the encoded sequence contain a residual redundancy in the form of a

γ-order, γ ≥ 1, Markov model, we use the probabilities of states in the original trellis structure
as described in section III-A.1. In particular when no delay is allowed in the decoding process,

δ = 0, we have,

P (In|Jn) =
∑

In−γ+1

. . .
∑

In−2

∑

In−1

P (Sn|Jn). (26)

The Equations (14) and (26) together with the reconstruction rule of Equation (24) provide

the instaneous (no delay allowed, i.e., δ = 0) MMSE decoding of the source samples given the

history of the received channel outputs.

We observe that the required symbol a posteriori probabilities can be alternatively calculated

using the a posteriori probabilities of any of the states Sn+m as long as Sn+m includes In, i.e.,

0 ≤ m ≤ γ−1. As presented below, this is of particular interest when a delay of δ > 0 is allowed

in the decoding process. In such cases, this flexibility can be used to optimize the solution in

terms of the complexity. We have,

P (In|Jn+δ) = . . .
∑

In+k
. . . P (Sn+m|Jn+δ), (27)

∀m ∈ Z, 0 ≤ m ≤ γ − 1

k = m− γ + 1, . . . , m, k 6= 0.

where the probabilities of states P (Sn+m|Jn+δ) as described in section III-A.1, are given by the

following forward backward equation,

P (Sn+m|Jn+δ) = C .P (Sn+m|Jn+m) . P (J
n+m+1
n+δ |Sn+m) (28)

0 ≤ m ≤ δ

in which the forward and the backward terms are given in Equations (14) and (16). In Equation

(28), if the number of computations required for the forward and backward recursions (Equations
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(14) and (16)) per time step is denoted by CCfwd and CCbwd, respectively, we have,

CCfwd = (2M + 3)Mγ (29)

CCbwd = 3(δ −m)Mγ+1 (30)

where δ−m is the number of backward recursions required per time step. The overall complexity

of computing Equation (27) is then given by2

CC = CCfwd + CCbwd + 2M
γ + 2M (31)

Noting that only CCbwd depends on m in Equation (31), to minimize the overall computational

burden, we solve the following for the optimum value of m,

Minimize CCbwd = 3(δ −m) .Mγ+1 (32)

subject to 0 ≤ m ≤ γ − 1; 0 ≤ m ≤ δ

case 1. δ < γ In the cases where the delay is smaller than the assumed residual redundancy

order, we are able to choose m = δ and eliminate the backward term. The probabilities in

Equation (24) are then given as follows,

P (In|Jn+δ) = . . .
∑

In+k
. . . P (Sn+δ|Jn+δ), (33)

k = δ − γ + 1, . . . , δ, k 6= 0.

case 2. δ ≥ γ Alternatively, when the delay is larger than the assumed redundancy order,

the CCbwd is minimized when m = γ − 1, i.e., δ − γ + 1 backward recursions is required. The

probabilities in Equation (24) are now given by,

P (In|Jn+δ) =
∑

In+1

∑

In+2

. . .
∑

In+γ−1

P (Sn+γ−1|Jn+δ) (34)

and Equations (14) to (17). The value m = γ−1 sets up the solution of Equation (34) based on
the probabilities of states Sn+γ−1 = (In, . . . , In+γ−1), in which, In is located in the last position.

Hence, it reduces the number of backward recursions while keeping the complexity due to the

forward recursion unchanged. This motivates us that should we set up a solution based on the
2Note that the computational complexity of the forward equation includes the cost of normalization as well

(2Mγ). This is a common approach in this work in which the forward probabilities of trellis states which are

stored to be used in the next time instant are always normalized. However, in practise we perform the required

normalization of Equation (28) after we summed the multiplied forward and backward terms according to Equation

(27). This only costs 2M operations as opposed to the original 2M γ according to Equation (28).
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a posteriori probabilities of a sequence larger than a state, we can reduce the number of the

backward recursions and its complexity even further. In the following section, we present such

solutions and examine if it leads to an smaller overall complexity as compared to the solution of

Equation (34).

B.2 Alternative solutions

In this section, we reconsider the problem of finding the a posteriori probability of a symbol

In, given the observed sequence Jn+δ for the cases where δ ≥ γ. Motivated by the results

and discussions presented in section III-B.1.case 2, we seek possibly more efficient solutions to

calculate the required a posteriori symbol probability using the probability of a sequence larger

than one state, i.e.,

(In, . . . , In+γ+L−1), 0 < L ≤ δ − γ + 1,

we have,

P (In|Jn+δ) =
∑

In+1

∑

In+2

. . .
∑

In+γ+L−1

P (In, . . . , In+γ+L−1|Jn+δ) (35)

where P (Inn+γ+L−1|Jn+δ) is given by the following forward backward equation,

P (In, . . . , In+γ+L−1|Jn+δ) =

C .P (In, . . . , In+γ+L−1|Jn+γ+L−1) .P (J
n+γ+L
n+δ |Sn+γ+L−1) (36)

The first term in Equation (36) is the a posteriori probability of a sequence of L + γ symbols

or L states (γ, L > 0), given the entire history of the received information from the channel. To

calculate such a probability, in section III-A.2, we presented a set of solutions based on different

constructions of an extended trellis structure for the source coder output withM γ+L′ , 0 ≤ L′ < L

states in each stage. The second term in Equation (36) is a backward recursive term which is

given by Equation (16). The number of backward recursions is equal to δ − γ − L+ 1, which as

expected reduces with the increase of L and is always smaller than that of the solution in section

III-B.1.case 2. However, increase of L results in a more complex forward term.

Using the results of sections III-A.1 and III-A.2, the overall complexity of the solution in

Equation (35) is given by,

CC = 2(L− L′ + 1)ML+γ + 3(δ − γ − L+ 1)Mγ+1 + (M + 2)Mγ+L′ + 2M (37)

which includes the number of computations required to calculate the forward and backward

terms, updating the forward probabilities of super states according to Equation (22) and multi-
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plications and normalization required in Equation (36). The memory requirement includes the

fixed amount of ROM required to store M γ+1 transition probabilities and the RAM required is

O(Mγ+L′).

This set of solutions can be optimized over the choices of L (sequence length) and L′, 0 ≤
L′ < L (the state set extension factor for the forward term). Interestingly, using the results of

section III-A.2, it can be shown that L = 1 optimizes the solution in terms of the computational

complexity disregarding of the values of γ and δ for all M ≥ 2. It is noteworthy that since
L = 1 requires L′ = 0 hence, L = 1 minimizes the memory requirement as well. Therefore, the

optimum solution (for δ ≥ γ) in terms of the complexity, provided by the family of solutions of

Equation (35) is based on the original source trellis and is given by,

P (In|Jn+δ) =
∑

In+1

∑

In+2

. . .
∑

In+γ

P (In, . . . , In+γ |Jn+δ) (38)

where from (36) we have,

P (In, . . . , In+γ |Jn+δ) =

C .P (In, . . . , In+γ |Jn+γ) .P (J
n+γ+1
n+δ |Sn+γ) (39)

in which, using Equation (20), the forward term is given by,

P (Inn+γ |Jn+γ) = C .P (Jn+γ |In+γ) . P (In+γ |Sn+γ−1) . P (Sn+γ−1|Jn+γ−1) (40)

and the backward term is calculated using Equations (16) and (17). The probabilities of states

in the forward term are then updated by the following,

P (Sn+γ |Jn+γ) =
∑

In∈J

P (Inn+γ |Jn+γ) (41)

From Equation (37), the overall complexity of this solution is given by,

CC = (3δ − 3γ + 5)Mγ+1 + 2Mγ + 2M. (42)

Now, it remains to compare the above solution (based on L = 1, L′ = 0) with that presented in

section III-B.1.case 2. Examining Equations (42) and (31), indicates that the current solution

maintains a lower complexity. Although both solutions are based on the same original source

trellis, their distinction stems from using different forward recursive (and updating) equations

(Equations (40) and (41) vs. Equation (14)). This in turn leads to the reduction of the backward

term by an additional step as seen comparing Equations (39) and (28) for m = γ − 1.
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IV. MAP Decoding: Problem Statement and Solutions

A. Maximum A Posteriori Symbol Decoder

An instantaneous symbol MAP decoder exploiting the residual redundancies in the form of a

first-order Markov model was presented in [33]. Later in [34], a decoder that accommodates a

certain delay in the decoding process was proposed for the same problem setup. Here, we present

an optimal symbol MAP decoder when the residual redundancies are captured with a γ-order

Markov model and a delay of δ is allowed in the decoding process.

The symbol MAP decoder receives the sequence Jn+δ and determines the most probable

transmitted symbol. Next, it outputs the corresponding codeword. We have,

x̂n = E[Xn|In = în]

în = arg max
In∈J

P (In|Jn+δ) (43)

The required a posteriori probability of the symbol In in Equation (43) can be efficiently cal-

culated as described in section III-B. The performance of this decoder is studied in section V

where it is referred to as the MAP decoder.

The presented MAP decoder uses a codebook identical to that of the encoder. Alternatively,

we can use the decoder codebook corresponding to the asymptotically optimum MMSE decoding

algorithm with the MAP decoder. In this case a sequence is decoded such that,

î
n−τ

n+δ = arg max
In−τ
n+δ

∈J τ+δ+1

P (In−τ
n+δ |Jn+δ) (44)

using Equations (18) or (20). Next, the source decoder reproduces,

x̂n = E[Xn|In−τ
n+δ = î

n−τ

n+δ ]

at the output. We refer to this technique as the AOMAP decoder and present its performance

in section V.

B. Maximum A Posteriori Sequence Decoder

A sequence MAP decoder exploiting the residual redundancies in the form of a first-order

Markov model was presented in [22] for source decoding over noisy channels. Later in [33], a

similar but optimal decoder was proposed. Here we present an optimal sequence MAP decoder

when the residual redundancies are captured with a γ-order Markov model.
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The sequence MAP decoder receives the sequence JT and determines the most probable trans-

mitted sequence,

îT = arg max
IT∈J

T
P (IT |JT ) (45)

Using the same trellis structure as described in the previous section and considering the mem-

oryless property of the channel as well as the Markov model for the source redundancy, it is

straightforward to see that the Equation (45) is equivalent to (see Appendix-C for a proof),

îT = arg max
IT∈J

T

[

T
∑

k=2

log[P (Jk|Ik)P (Ik|Sk−1)] + log[P (J1|I1)P (S1)]

]

(46)

where S1 , (I1, 0, . . . , 0). The sequence MAP decoder in Equation (46) can be implemented

using the well-known Viterbi algorithm. We use the same trellis structure as defined in section

III-A.1 and the metric corresponding to branch (Sk−1, Sk) is given by log[P (Jk|Ik)P (Ik|Sk−1)].

The optimum sequence MAP decoder, according to Equation (46), requires to receive the whole

sequence JT to decode the corresponding sequence îT and hence, imposes a large delay. However,

to limit the delay to a certain value, at each time instant, we identify the state with the maximum

metric and decode the symbol at delay δ on the surviving path reaching that state accordingly.

Subsequently, the correpsonding codeword is reproduced at the source decoder output. We refer

to this decoder as the Sequence MAP (SMAP) decoder and will examin its performance in

section V.

Given that the values logP (J |I) received from the channel are available, the computational
complexity of the SMAP algorithm per time step is given by,

CC = 3Mγ+1 +Mγ (47)

which includes the computations required for updating the state metrics and selecting the one

with the largest value.

The decoder codebook in the presented SMAP decoder is the same as the encoder codebook.

Alternatively, we can use the decoder codebook corresponding to the asymptotically optimum

MMSE decoding algorithm with the SMAP decoder. In this case a sequence is decoded which

in turn outputs one of the decoder codewords E[Xn|In−τ
n+δ = î

n−τ

n+δ ]. We refer to this technique as

the AOSMAP decoder and present its performance in section V.
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fA -1.3822 0.3399 0.1772 0.6760 -0.6396 0.0719 -0.1386 0.6024 -0.4561 0.1560

fB 1.381 -0.599 0.367 -0.700 0.359

fC -1.7493 2.4263 -2.5733 1.6585 -0.7426 0.1644 0.3019 -0.1157 0.0350 0.0018

TABLE I

Filter coefficients of the synthesized sources

V. Numerical Results

To analyze the performance of the proposed MMSE decoders, we use a synthesized source

similar to [22]. In addition to the fifth-order Gauss-Markov source from [22], two other tenth-

order Gauss-Markov sources are used whose coefficients have been picked from a speech LPC

database. Each ten LPC coefficient set represents the short-time spectral information of speech

within 20ms. The source samples are given by,

xk =

γs
∑

i=1

f(i).xk−i + ek (48)

where Ek is a Gaussian i.i.d. random variable, γs is the order of the synthesizing filter and

the corresponding coefficients f(i) are given in Table I. The source sample vector Xn =

[X(n−1)N+1, . . . , XnN ] is quantized with an M point N dimensional VQ producing the symbol

In. At different redundancy model orders γ, the value R(M,γ) in bits defined as,

R(M,γ) , log2 M −H(In|Sn−1) (49)

where Sn = [In, . . . , In−γ+1], provides an indication of the redundancy to be exploited and hence,

the gains to be achieved. Table II presents the amount of R(M,γ) for the selected synthesized

sources at different values of γ when the source is quantized by a 3-bit LBG scalar quantizer. As

given in Table II, for source A, the redundancy due to the non-uniform distribution (γ = 0) is

0.25 bits. The redundancy exploited by means of a first, second and third order Markov model

is 1.16, 1.48 and 1.67 bits respectively. In Table III, the normalized auto-correlation of the

source samples at different delays are also presented. In the followings, we investigate the per-

formance of the decoders presented in the previous sections. Six source decoders are considered:

(i) asymptotically optimum MMSE (AOMMSE) decoder (ii) simplified MMSE (MMSE) decoder

which uses identical encoder and decoder codebooks (iii) Maximum A Posteriori symbol decoder
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Redundancy Order γ 0 1 2 3

RA 0.254 1.162 1.482 1.667

RB 0.319 1.182 1.327 1.388

RC 0.439 0.540 0.867 1.248

TABLE II

Redundancy of the source, R(M,γ) (in bits), at different redundancy model orders γ,

(M = 8, N = 1).

Delay δ 0 1 2 3

ρA 1.000 0.849 0.553 0.159

ρB 1.000 0.868 0.599 0.280

ρC 1.000 0.374 −0.417 −0.098

TABLE III

Normalized autocorrelation of the source samples at different delays

(MAP) (iv) AOMAP decoder which selects the codeword with the Maximum A Posteriori proba-

bility from the codebook corresponding to the AOMMSE decoder (v) the Sequence MAP decoder

(SMAP) (vi) and the AOSMAP decoder which is the Sequence MAP decoder which uses the

decoder codebook of the AOMMSE decoder. We begin with the performance comparison of the

instantaneous decoders (δ = 0) over a Binary Symmetric Channel and we proceed to analyze the

effect of delay, performance with a channel (decoder) with soft outputs, the effect of redundancy

type and the effect of quantizer bit-rate.

A. Basic Comparison of the Decoders

In this section, we present a performance comparison of the instantaneous decoders (δ = 0).

Figure 2 demonstrates the performance of the instantaneous AOMMSE decoder for τ = γ (dotted

lines) and the MMSE decoder (solid lines), for transmission of source A over a Binary Symmetric

Channel when different levels of residual redundancy is exploited at the receiver (γ = 1, 2, 3).

As mentioned before, for γ = 0 (and τ = 0) both schemes collapse to the basic MMSE decoder

of Equation (25). The performance of the basic MMSE decoder (γ = 0) with Equal symbol
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Fig. 2. Performance of the instantaneous (δ = 0) AOMMSE (for τ = γ) and MMSE decoders for

transmission of the Gauss-Markov source A (M = 8, N = 1) over a Binary Symmetric Channel when

different levels of residual redundancy is exploited at the decoder. Note that for γ = 0 and γ = 0EPA

the curves of AOMMSE and MMSE decoding have overlapped.

Probability Assumption (EPA) in which case no a priori information is used in the decoding

process (P (I = i) = 1
M

, ∀i ∈ J ) is provided as a baseline for comparison.
For the AOMMSE decoder, Figure 2 shows that using a redundancy model of order γ = 2

or γ = 3 provides a gain as high as 2.5dB or 4dB respectively compared to the case where the

redundancy is modeled with a first-order Markov model. Using the simplified MMSE decoder,

similar gains are achievable, however at lower bit error rates, the performance is upperbounded

by that provided at the encoder output. As mentioned before, in such cases the AOMMSE

decoding provides a finer reconstruction of the source samples. This is due to using a larger

decoder codebook which exploits the dependencies between the source coder output symbols.

The performance of the corresponding AOMAP and MAP decoders are presented in Figure 3.

In Figure 4, the performance of a selected set of instantaneous AOMMSE, MMSE, AOMAP and

MAP decoders are redrawn for comparison. It is observed that the MMSE decoders constantly

outperform the MAP decoders with gains as high as 1.4dB.

Figure 5 compares the performance of the MAP symbol decoder with that of the Sequence

MAP decoder for transmission of source A over a Binary Symmetric Channel. It is observed that

the SMAP algorithm, although suboptimal in the sense of minimizing the symbol probability of

error, performs very closely to the MAP algorithm in the MSE sense. For any given delay of
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Fig. 3. Performance of the instantaneous (δ = 0) AOMAP (for τ = γ) and MAP decoders for transmission

of the Gauss-Markov source A (M = 8, N = 1) over a Binary Symmetric Channel when different

levels of residual redundancy is exploited at the decoder. Note that for γ = 0 and γ = 0EPA the

curves of AOMAP and MAP decoding have overlapped.
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Fig. 4. Performance of the instantaneous (δ = 0) MAP, AOMAP, MMSE and AOMMSE decoders for

transmission of the Gauss-Markov source A (M = 8, N = 1) over a Binary Symmetric Channel when

the redundancy order γ = 2 and τ = γ.
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Fig. 5. Performance of the SMAP and MAP decoders for transmission of the Gauss-Markov source A

(M = 8, N = 1) over a Binary Symmetric Channel when different levels of residual redundancy is

exploited at the decoder, δ = 1, 3.

δ and redundancy order γ, similar observations are made in other cases, when comparing the

AOMAP and the AOSMAP decoders (with the same τ) or the MAP and the SMAP decoders.

Consequently, we will only discuss the performance of the MAP and AOMAP algorithms in the

following sections. As seen in section IV, the SMAP and the MAP algorithm can be implemented

with a comparable complexity. A more precise complexity comparison depends on the design

parameters such as δ and γ and the actual decoder implementation. The AOSMAP decoder

maintains a lower level of complexity as compared to the AOMAP decoder.

B. Effect of Delay

To demonstrate the effect of delay, Figure 6 depicts the performance of the MMSE decoder for

reconstruction of the source A over a Binary Symmetric Channel at different delays (δ = 0, 1, 2, 3)

for the two scenarios of redundancy order γ = 1 and γ = 3. The curve corresponding to the

basic MMSE decoder (γ = 0) of Equation (25) provides a baseline for comparison. Also the

performance of the MAP decoder in similar scenarios are provided in Figure 7. It is observed

that for the case of transmission of source A over a noisy channel, a delay of δ = 3 allows the

decoder to capture almost all of the redundancy in the future samples. The gains achieved in

this case are higher than 3.5dB, 3dB and 2.5dB for γ = 1, γ = 2 and γ = 3 respectively when

compared with the corresponding instantaneous decoding schemes.
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Fig. 6. Performance of the MMSE decoder for transmission of the Gauss-Markov source A (M = 8,

N = 1) over a Binary Symmetric Channel when different delays are allowed (δ = 0, 1, 2, 3) and the

residual redundancy is exploited with a γ = 1, 3 order Markov model.
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Fig. 7. Performance of the MAP decoder for transmission of the Gauss-Markov source A (M = 8, N = 1)

over a Binary Symmetric Channel when different delays are allowed (δ = 0, 1, 2, 3) and the residual

redundancy is exploited with a γ = 1, 3 order Markov model.

C. Performance Using A Soft Output Channel (Decoder)

Recently, channel decoding techniques using the soft channel information has found increasing

attention in different applications for their improved performance. In techniques such as turbo

decoding, iterative decoding or soft output Viterbi algorithm, soft outputs are readily available

at the output of the channel decoder as well. The decoders proposed in this work are able
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Fig. 8. Performance of the MMSE decoder for transmission of the Gauss-Markov source A (M = 8,

N = 1) over the Soft Output Channel and the Binary Symmetric Channel when different levels of

source redundancy is exploited at the decoder, δ = 0.

to exploit the soft output information and the source a priori information for effective source

decoding. Alternatively, with appropriate considerations the proposed MAP (SMAP) decoders

can be used for effective channel decoding using the soft channel information and assisted with

the source a priori information.

To indicate the possible performance improvement due to using the soft output of the channel

(decoder), Figure 8 compares the performance of the instantaneous MMSE decoder for recon-

struction of source A transmitted over the Soft Output Channel and the Binary Symmetric

Channel. Figure 9 provides the same comparison when a delay of δ = 3 is allowed in the decod-

ing process. Alternatively, Figures 10 and 11 depict the same performance results when MAP

decoding is used. It is observed that if channel (decoder) soft outputs are available gains as high

as 2−3dB can be achieved. As the decoding schemes become stronger i.e. δ and γ are increased

the maximum gains achieved move more towards the low channel SNRs or higher probabilities

of error.

D. Effect of Redundancy

In this section, we study the effect of the type of source redundancy in the achievable gains using

the proposed techniques. As well, we examine the effectiveness of the measures of redundancy as

discussed before. We consider the instantaneous MMSE reconstruction of the sources A, B and C
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Fig. 9. Performance of the MMSE decoder for transmission of the Gauss-Markov source A (M = 8,

N = 1) over the Soft Output Channel and the Binary Symmetric Channel when different levels of

source redundancy is exploited at the decoder, δ = 3.
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Fig. 10. Performance of the MAP decoder for transmission of the Gauss-Markov source A (M = 8,

N = 1) over the Soft Output Channel and the Binary Symmetric Channel when different levels of

source redundancy is exploited at the decoder, δ = 0. Note that the curves corresponding to BSC

with γ = 0, γ = 0EPA and SOC with γ = 0EPA have overlapped.
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Fig. 11. Performance of the MAP decoder for transmission of the Gauss-Markov source A (M = 8,

N = 1) over the Soft Output Channel and the Binary Symmetric Channel when different levels of

source redundancy is exploited at the decoder, δ = 3.
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Fig. 12. Performance of the instantaneous MMSE decoder for transmission of the Gauss-Markov source

B (M = 8, N = 1) over the Soft Output Channel when different levels of source redundancy is

exploited.
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Fig. 13. Performance of the instantaneous MMSE decoder for transmission of the Gauss-Markov source

C (M = 8, N = 1) over the Soft Output Channel when different levels of source redundancy is

exploited.

over the Soft Output Channel as given in Figures 8,12 and 13 respectively. From these figures, it

is observed that the amount of redundancy R(M,γ), as defined in Equation (49) and provided in

Table II correlates well with the achieved gains. On the other hand, the source auto-correlation

as given in Table III does not seem to be a suitable indicator of the possible gains. This is in

line with the observations in [22].

E. Effect of Quantizer Bitrate

Figure 14 depicts the performance of the instantaneous MMSE decoder for transmission of

source A quantized with an M = 4, 8, 16 point quantizer over the Soft Output Channel model.

Since the higher rate quantizers are more sensitive to the channel errors, therefore the effectiveness

of the proposed decoder is more significant in such cases. Specifically, the gains at low error rates

are noticeable.

VI. Conclusions

A family of solutions for the asymptotically optimum MMSE reconstruction of a source over a

memoryless noisy channel is presented when the redundancy in the source encoder output stream

is exploited in the form of a γ-order Markov model (γ ≥ 1) and a delay of δ, δ > 0, is allowed in

the decoding process. Considering the same problem setup, we also present a simplified MMSE
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Fig. 14. Performance of the instantaneous MMSE decoder for transmission of the Gauss-Markov source

A (quantized with rates r = 2, 3 and 4 bits, N = 1) over the Soft Output Channel when different

levels of source redundancy is exploited, M = 2r, N = 1.

decoder as well as several other Maximum A Posteriori symbol and sequence decoders. In each

case, we investigate the alternative solutions and optimize them for the smallest computational

complexity.

The numerical results and analysis demonstrate the effectiveness of the stronger models (higher

Markov order, γ) to capture the residual redundancy. The MMSE-based decoders outper-

form their equivalent MAP-based decoders. As expected, the asymptotically optimum MMSE

(AOMMSE) decoder provides the best performance among the presented decoders. The simpli-

fied MMSE decoder has a smaller decoder codebook and a lower complexity, which is compara-

ble to that of the SMAP decoder. The sequence MAP decoder and the symbol MAP decoder

maintain the same level of performance. The AOSMAP decoder provides a lower complexity

alternative to the AOMMSE decoder at the price of a certain loss in performance.

The possible future research in this direction includes the design of Channel Optimized Vector

Quantizers based on the proposed decoders and more efficient approximate algorithms to the

presented MMSE decoders.
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Appendix

A. Proofs for section III-A.1

The a posteriori probabilities of states within the source trellis diagram, described in section

III-A.1, are calculated by the following forward backward equation as detailed below,

P (Sn|Jn+δ) = C1.P (Sn, Jn, J
n+1
n+δ)

= C.P (Sn|Jn).P (J
n+1
n+δ |Sn, Jn)

= C.P (Sn|Jn).P (J
n+1
n+δ |Sn). (50)

where C1 = 1/P (Jn+δ) and C = P (Jn)/P (Jn+δ). The forward term is given by,

P (Sn|Jn) = C1.P (Sn, Jn)

= C1.P (Jn−1).P (Sn|Jn−1).P (Jn|Sn, Jn−1)

= C.P (Jn|In).P (Sn|Jn−1)

= C.P (Jn|In).
∑

Sn−1

P (Sn|Sn−1, Jn−1).P (Sn−1|Jn−1)

= C.P (Jn|In).
∑

Sn−1

P (Sn|Sn−1).P (Sn−1|Jn−1), (51)

in which C1 = 1/P (Jn) and C = P (Jn−1)/P (Jn). The backward term is calculated as follows,

P (Jn+1
n+δ |Sn) =

∑

In+1

P (Jn+1
n+δ |In+1, Sn).P (In+1|Sn)

=
∑

In+1

P (In+1|Sn)
∑

In+2

P (Jn+1
n+δ |Sn, In+1, In+2).P (In+2|Sn+1)

=
∑

In+1

P (In+1|Sn)
∑

In+2

P (In+2|Sn+1) . . .
∑

In+δ

P (In+δ|Sn+δ+1).P (J
n+1
n+δ |Sn, I

n+1
n+δ)

Using Equations (1) and (3) we have P (Jn+1
n+δ |Sn, I

n+1
n+δ) =

∏δ
k=1 P (Jn+k|In+k), which simplifies

the backward equation to,

P (Jn+1
n+δ |Sn) =

∑

In+1

P (Jn+1|In+1)P (In+1|Sn)
∑

In+2

P (Jn+2|In+2)P (In+2|Sn+1) . . .

∑

In+δ

P (Jn+δ|In+δ)P (In+δ|Sn+δ−1)

=
∑

In+1

P (Jn+1|In+1)P (In+1|Sn)P (J
n+2
n+δ |Sn+1) (52)
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which is calculated recursively at each time instant, starting from,

P (Jn+δ|Sn+δ−1) =
∑

In+δ

P (Jn+δ|In+δ)P (In+δ|Sn+δ−1)

and continuing backward in δ steps until P (Jn+1
n+δ |Sn) is found.

B. Proofs for section III-A.2

The Equation (20) provides the probability of a sequence of symbols within the structure of

the trellis, given the entire history of the received signals. The derivation of this Equation is

presented below. Note that, L > L′ ≥ 0 and for L′ = 0, this collapses to the case with the

original source trellis presented in Equation(18).

P (In−(γ+L)+1
n |Jn) = C1.P (I

n−(γ+L)+1
n , Jn)

= C1.P (SSn−(L−L′), I
n−(L−L′)+1
n , Jn−(L−L′), J

n−(L−L′)+1
n )

= C.P (SSn−(L−L′)|Jn−(L−L′)).P (I
n−(L−L′)+1
n |SSn−(L−L′), Jn−(L−L′))

.P (Jn−(L−L′)+1
n |SSn−(L−L′), Jn−(L−L′), I

n−(L−L′)+1
n )

Using the memoryless property of the channel and the Markovian property of the source, this is

simplified to,

P (In−(γ+L)+1
n |Jn) = C .P (Jn−(L−L′)+1

n |In−(L−L′)+1
n ).

P (In−(L−L′)+1
n |SSn−(L−L′)) . P (SSn−(L−L′)|Jn−(L−L′)) =

C .

[

L−L′−1
∏

k=0

P (Jn−k|In−k)P (In−k|SSn−k−1)

]

. P (SSn−(L−L′)|Jn−(L−L′)) (53)

where in Equation (53), C = P (Jn−(L−L′))/P (Jn). The overall computational complexity of the

Equation (53) is given by,

CC = 2(L− L′ + 1)Mγ+L + (M + 2)Mγ+L′ (54)

Now, we show that for a fixed value of L,L > 0, increasing the value of L′, 0 ≤ L′ < L, or the

state set extension factor, reduces this complexity. The case of L = 1 requires L′ = 0 and is

trivial. For a given L, L > 1, ∀L′, 0 < L′ < L, we have,

CC(L,L′)− CC(L,L′ − 1) = −2Mγ+L +Mγ+L′−1(M2 +M − 2)

= Mγ+L′−1(−2ML−L′+1 +M2 +M − 2)

≤ Mγ+L′−1(−M2 +M − 2) < 0
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C. Proof for section IV-B

The Sequence MAP decoder is derived as follows,

îT = arg max
IT∈J

T
P (IT |JT ) (55)

in which,

P (IT |JT ) = C.P (JT |IT )P (IT ) = C.P (JT |IT )P (ST )

= C.

[

T
∏

k=1

P (Jk|Ik)
]

.

[

T
∏

k=2

P (Sk|Sk−1)P (S1)

]

= C.
T

∏

k=2

P (Jk|Ik)P (Ik|Sk−1)P (J1|I1)P (S1), (56)

and C = 1
P (JT ) . Considering that the logarithm function is monotonically increasing, we have,

îT = arg max
IT∈J

T
P (IT |JT ) = arg max

IT∈J
T
logP (IT |JT )

= arg max
IT∈J

T

[

T
∑

k=2

log[P (Jk|Ik)P (Ik|Sk−1)] + log[P (J1|I1)P (S1)]

]

(57)

where S1 , (I1, 0, . . . , 0).
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