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Abstract

A low bit-rate low-complexity Block-based Trellis Quantization (BTQ) scheme is proposed for the
quantization of the Line Spectral Frequencies (LSF) in speech coding applications. The scheme is based
on the modeling of the LSF intraframe dependencies with a trellis structure. The ordering property
and the fact that LSF parameters are bounded within a range is explicitly incorporated in the trellis
model using a fixed-rate entropy-coding approach. BTQ search and design algorithms are discussed and
an efficient algorithm for the index generation (finding the index of a path in the trellis) is presented.
Based on the proposed Block-based Trellis Quantizer, two intraframe schemes and one interframe scheme
is proposed. Comparisons to the Split-VQ [20], the Trellis Coded Quantization of LSF parameters [19],
as well as the interframe scheme used in 1S-641 EFRC [42] are provided. These results demonstrate the

superior performance of the proposed BT(Q schemes.
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I. INTRODUCTION

The short-term spectral information of the speech signal is often modeled by the frequency
response of a tenth-order all-pole filter in different speech coding applications. The filter co-
efficients, also known as the Linear Predictive Coding (LPC) coefficients, are derived from the
input signal through linear prediction analysis of each frame of speech, which is typically 10-30 ms
long!. The LPC coefficients play a major role in the overall bandwidth and quality of the encoded
speech. Therefore, the challenge in the quantization of the LPC parameters is to achieve the
desired quantization quality, known as transparent quantization [1], with the minimum bit-rate
while maintaining the memory and computational complexity at a low level.

Direct quantization of LPC coefficients are not often used, for the fact that small quantization
errors in the individual coefficients can produce large spectral errors and can also result in
instability of the all-pole filter [1]. A number of more suitable equivalent representations of
these coeflicients have been proposed in the literature. These representations are the reflection
coefficient (RC) [2], the arcsine reflection coefficient (ASRC) [3], the log-area ratio (LAR) [4],
and the line spectral frequency (LSF)[5]. The LSF has been proven to be the most attractive
representation of LP coefficients since they possess a number of advantageous properties (see
section II-A and [1][9]). A tenth-order LPC filter is represented by ten LSF parameters which
are related to the zeros of the inverse LPC filter in the z-plane.

Various scalar and vector quantization schemes have been suggested for quantization of the
LSF parameters. Scalar quantizers are interesting due to their low level of complexity; however,
they achieve the transparent quality at high rates of above 30 bits/frame (bpf). Direct scalar
quantization of the LSF parameters at 34 bpf is used for the US federal standard FS-1016 [6].
Soong and Juang [7] proposed scalar quantization of LSF differences to exploit the dependencies
between the LSF parameters. Other schemes to exploit intraframe correlations based on scalar
quantization can be found in [8]-[12]. To improve the coding efficiency, Grass and Kabal proposed
a hybrid vector-scalar quantization scheme [13].

Vector quantizers have been shown to achieve the transparent quantization quality at lower
bit-rates, since they exploit both the joint statistical properties and the intraframe correlations of
the LSF parameters [14]. However, they are more complex and have higher storage requirements

for their codebook. A full search VQ is estimated to achieve the transparent quality at about 18

'In this work, the frame size is considered to be 20ms.



bpf [1], but it requires 10 Megabytes of memory for codebook storage and a huge number of oper-
ations to find the optimum codevector. To reduce the computational complexity and/or memory
requirements, various forms of suboptimal vector quantizers have been proposed. In specific, dif-
ferent cascade/product code schemes have been suggested [15]-[19]. Leblanc et al.[18] suggested
the multi-stage vector quantization of the LSF parameters. They reported to have achieved the
transparent quantization quality at 22-28 bpf with moderate to high levels of complexity. Paliwal
and Atal [20] reported transparent coding of the LSF parameters at 24 bpf by splitting the LSF
vector into two parts and employing separate vector quantizers for each part (Split-VQ). Xie and
Adoul [21] presented an algebraic vector quantization algorithm for the transparent quantization
of the LSF parameters at 28 bpf with small complexity. In this approach, they considered LSF3
and LSF7 as anchor points and jointly quantized them. Subsequently, they used pyramid lattice
quantizers for the quantization of the remaining splits. Pan and Fisher proposed encoding LSF
parameters using a Trellis Coded Quantization scheme (TCQ) [22], where they used 2 dimen-
sional codebooks and non-linear prediction to exploit the intraframe dependencies [19]. They
reported to have achieved comparable performance with the Split-VQ [20] at a lower level of
complexity (see section V-D).

All the schemes mentioned above are categorized as Intraframe LSF Quantizers. This is due to
the fact that they attempt to efficiently quantize the LSF parameters of one frame using only the
dependencies among the same parameters (intraframe dependencies). However, since the speech
spectrum varies slowly with time, there is substantial dependency between the parameters of the
nearby frames as well. The Interframe LSF Quantizers exploit these dependencies to reduce the
bit-rate further. But, this comes at different prices of increased delay, increased complexity and
more seriously for interframe coders, increased vulnerability to channel errors.

The interframe predictive quantizers are designed based on the fact that the LSF parameters
of a given frame can be predicted from the parameters of the previous frames [23]-[29]. Ohmuro
et al. considered a Moving Average (MA) prediction scheme for differential quantization of LSF
parameters [24]. Also, the ITU-T 8 kb/s speech coding standard includes a fourth-order MA pre-
diction for the LSF quantization [25]. Marca [26] suggested an Auto Regressive predictive scheme
in which intraframe and interframe coded frames are interlaced. This limits error propagation to,
at most, one adjacent frame. Along the same direction, Zarrinkoub et al. employed a switched-

predictive scheme. In this approach, the LSF parameters are quantized in both intraframe and



interframe mode at the encoder. Subsequently, the one with the lower quantization distortion
is transmitted to the receiver [27]. Eriksson et al. suggested a similar scheme (Safety-Net V()
[28]. To further enhance the performance of the system in the presence of channel noise, they
suggested using the noisy channel predictor coefficients discussed in [30]. Nonlinear prediction
has also been considered for predictive interframe quantization of the LSF parameters [29].

Another important class of interframe quantizers is the Finite State Quantizers (FSVQ). At
each instant of time, the signal (and hence the quantizer) is in one particular state which is
determined through a state function. Corresponding to each state, there is a specific codebook
which is used for quantization. Among the most successful FSVQ interframe schemes is the
ommniscient labeled-transition FSV() [31]-[33].

In addition, a number of other interframe schemes have been reported in the literature [34]-[38].
In matrix quantization, the parameters of 2 to 4 consecutive frames form a matrix to be quantized
together. This scheme introduces a delay of up to 80ms and results in a computationally intensive
approach. In [35] and [36], variable rate solutions are provided. In [37] and [38], two dimensional
prediction is considered to exploit both the intraframe and the interframe dependencies. For a
comprehensive review of interframe schemes refer to [28].

In this work, we propose the Block-based Trellis Quantization (BTQ) of LSF parameters with
a low bit-rate and low complexity?. At first, the intraframe dependencies of the LSF parameters
are modeled by using a trellis structure. In this modeling, we explicitly utilize the ordering
property of the LSF parameters and the fact that they are bounded within a range by taking
a fixed-rate entropy-coding approach. Next, this structure is used for the quantization of the
LSF parameters. Each stage of the trellis in the BTQ scheme corresponds to one dimension of
the LSF vector. The branches correspond to the codewords and the states to the reconstructed
LSF parameters. To quantize an LSF vector, a path through the trellis which results in a small
distortion is searched. Next, the index of this path is determined and transmitted to the receiver.

Based on the proposed Block-based Trellis Quantizer, two intraframe schemes are presented.
In the first scheme, denoted by BTQ-LSFD, the branches of the trellis (codewords) correspond
to the LSF parameter differences (LSFD). The second intraframe scheme considers employing
the proposed Sequential Vector Decorrelation Technique [41] in the structure of the Block-based

Trellis Quantizer. In this approach, the information provided by the surviving path that reaches

2 A more detailed version of this work is included in [39].



each state is used to estimate the LSF to be quantized next. The proposed BTQ intraframe
schemes offer low-complexity solutions for the transparent quantization of the LSF parameters
at low bit-rates. Specifically at 24 bpf, performance similar to the 2-part split-VQ by Paliwal
and Atal [20] is achieved, while reducing the computational complexity and memory requirement
by factors of 20 and 30 times respectively. Also, comparisons to the Trellis Coded Quantization
scheme with nonlinear prediction proposed in [19] are provided which demonstrate the superior
performance of the BTQ intraframe schemes.

A BTQ-based error-resilient interframe coding scheme to exploit adjacent frame dependency
is also presented. In this scheme, a low level of error propagation is achieved by interlacing
the intraframe coded and the first order predictive coded frames. By using this scheme, on the
average, we achieved a 50 b/s bit-rate reduction over the intraframe BTQ schemes. Also, in a
comparison with the interframe scheme used in IS-641 Enhanced Full Rate Codec (EFRC) [42],
the proposed interframe BTQ scheme offers the transparent quality with a savings of 1 bpf and
considerable reduction in complexity.

An outline of this article is as follows. In section II, we briefly review the properties of the
LSF parameters and discuss the proposed Block-based Trellis Quantization scheme. The trellis
structure, the distance measure as well as the BTQ search and design algorithms are discussed.
Next, the index generation problem or the problem of finding the index of a path in the trellis
is investigated and a solution is provided. In sections III and IV, we present two intraframe
and one interframe coding scheme based on the proposed Block-based Trellis Quantization. The
complexity of the BT(Q is studied in section V. The numerical results indicate that the proposed
BTQ scheme maintains a low level of complexity. Performance results and comparison to other

LPC quantization schemes are also presented in this section.

II. BLOCK-BASED TRELLIS QUANTIZATION

In this section, we present a brief review of the properties of LSF parameters and proceed with
the description of the structure of the trellis, the distance measure, the BT(Q search and design

algorithms, as well as the BT(Q index generation algorithm.
A. Line Spectral Frequencies
A 10th-order LPC analysis results in an all-pole filter with 10 poles whose transfer function is

denoted by H(z) = ﬁ in which A(z) = 14+ 1271 4+ ...+ aj0271%, and [ay, az, .. ., a1o] are the



LPC coefficients. These coefficients are equivalently represented by the LSF parameters which
are related to the zeros of the polynomial A(z) [1][9]. The LSF parameters, denoted by

1=[ly,1y,...,110)" (1)

are in fact, ordered normalized frequencies between 0 and 0.5, or equivalently, between 0 to 4
kHz for speech sampled at 8 kHz.
Some important properties of the LSF parameters are: (1) The ordering property or the fact

that the LSF parameters are ordered and bounded within a range.
0<lhi<ly<...<lip<05 (2)

(2) An easy way to check the stability; The reconstructed filter will be stable, provided that the
quantized LSF's are ordered, and (3) LSF is a frequency domain representation; it can be used
to exploit certain properties of the human perception system.

The ordering property of LSF parameters encapsulates a large portion of their intraframe de-
pendencies. Therefore, if this property is effectively employed in the quantizer structure, it can
boost the quantizer performance significantly. To see this, let us assume continuous approxi-
mation and a uniform density of points within a 10 dimensional hypercube of edge length 0.5
(corresponding to the range of LSF parameters). In this case, the specific ordering of our interest
as given in Equation (2), corresponds to one out of 10! possible orderings of the coordinates. The
10! orderings correspond to partitioning of the hypercube into 10! non-overlapping regions of
equal volume. Therefore, imposing the ordering property will reduce the required bit-rate by
the ratio of the volume of the hypercube to that of one of the regions (10!) or log,(10!) = 21.79
bits. Note that this value is an overestimation mainly due to using continuous approximation,
it however gives an indication of a strong potential for reducing the bit-rate by exploiting the
ordering property. In [40], it was shown that in non-uniform scalar quantization of LSF parame-
ters at 30 bpf, there is 4.406 bpf redundancy due to the ordering property. They quantified this

redundancy through simulation and attempted to exploit it for improved channel decoding.

B. Trellis Structure

The trellis structure of the Block-based Trellis Quantizer proposed here is based on the ordering
property of LSF parameters. Figure 1 depicts an example of such a trellis diagram. Each stage in

the trellis diagram is associated with one dimension of the LSF vector; hence, there are ten stages



in the trellis, plus an initial stage which corresponds to the value zero®. Within one stage of the
trellis, the states correspond to the quantized LSF parameters in ascending order. Since the LSF
parameters are bounded within a range, the number of states is limited to a certain maximum
value of NS. To capture the ordering of the LSF parameters, only the branches connecting an
arbitrary state in the trellis to the states at the same level or at a lower level in the next stage

are allowed.

0 1 2 3 9 10 11 stage
T T T T T T I
0 = 0
o O
2 |
3
s L N0o——0 s O—0 - 0

Fig. 1. An example of a trellis structure used in BT Q. In this example, the maximum number of branches

in different stages NB = [3,3, ..., 3], and the maximum number of states NS is 4.

In Figure 1, the maximum number of branches going out of the states of stage i — 1 is
determined by NB; < NS. The structure of the trellis is determined by the value of NS,
NB = [NBy, NBy, ..., NBjg] and the following expressions. Each state of the trellis is identified

by (stage, state) = (i, s), where

1 <i< 10, (3)

0 <s< NS, (4)

plus the initial state (¢,s) = (0,0). Each branch is identified by (stage, state, branch) = (i, s, b),

where
0 <b < min(NB(7), NS — s). (5)

Considering the trellis structure given in Figure 1 and the Equation (5), it is easy to see that
for a given number of states NS, a larger value for s results in a smaller number of possible
values for b, meaning that there are less branches going out of the states with a larger index

3In Figure 1, a dummy stage 11 with one state is also shown to better illustrate the relationship of this structure

to the statistical properties of the LSF parameters. This state corresponds to the value NS or the upper limit of
the range of LSF parameters (0.5 in Equation (2)).



(LSF value). This is a method for fixed rate entropy coding based on using a trellis diagram with
a non-uniform branching factor which models the statistical properties of the LSF parameters
attributed to their ordering property. This will reduce the number of paths of the trellis and
consequently will reduce the required bit rate in a proper way.

Associated with each branch (i — 1,s,b), going out of the state (i — 1,s), is the codeword
C;(s,b). The set of codewords Cj(s,b), corresponding to the branches going out of the states of
stage ¢ — 1, form the codebook C;. The codewords of C; are related to LSF;. The BTQ codebook

is composed of ten such sets as follows
C ={C,Cy,...,Ci0}. (6)

A sequence of k branches (and their associated codewords), connecting a state in the stage (0) to
another state in the kth stage, provide candidate quantized values for the first k¥ LSF parameters.
The collection of the paths of the trellis starting at stage 0 and ending at the states of the last
stage determine the set of BTQ codevectors. The total number of these paths will determine the

bit-rate of the quantizer.

C. Trellis Search Algorithm

The ultimate goal of the BTQ search algorithm is to find the path which results in the minimum
distortion to quantize a particular sample LSF vector. This path is identified by a 10 dimensional
vector p = [p1, P2, - - -, p1o] of the states taken by this path in different stages of the trellis (these
states are given by (4,p;),1 < i < 10). The BTQ search algorithm starts from the first stage and
performs a set of operations in each stage until reaching the last stage. These operations include
calculating a metric for each branch (see section II-D) and assigning a cost to each state. This
specifies one surviving path reaching each state (¢, s), denoted by p;(s) = [p1,p2,...,pi = s,
where py,pa,...,p; are the sequence of states on the surviving path. In the last stage (stage
10), the state with the minimum cost is selected and the surviving path reaching that state will
determine the quantizer output.

The metric corresponding to branch (i — 1,s,b) is a measure of the distortion introduced in
the reconstructed LSF;, lA,'7 if this branch is taken. In its general form, this candidate value for

~

l; is given by

li(s +b) = £i(Ci(5,0), 1(p;_; (), L") (7)
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where f; is called the reconstruction function. The term 1(p;_,(s)) is the set of quantized LSF

parameters for the surviving path p;_;(s) reaching state (¢ — 1, s), and

£(-1) — {1 fm-2) ] ®)
is the set of reconstructed LSF vectors of the previous frames (n is the time index). We will
present three different algorithms which are all based on the same trellis model as described in
section II-B. The definition of the reconstruction function given in Equation (7) reflects the key
differentiation between the proposed algorithms. In the first and simplest proposed algorithm
called BTQ-LSFD, the branches (codewords) correspond to the LSF differences. We will first
explain this structure in section III-A and then extend it to more complex constructions in
sections III-B and IV.

It is important to note that the search algorithm just presented does not necessarily result
in the path with the minimum quantization error among the set of all paths of the trellis. The
reason is that the BTQ search algorithm does not follow a dynamic programming approach
[43], for the fact that the decision to be made to optimize an objective distance function in one
dimension depends not only on the previous state, but also on the surviving path reaching that
state. In section V, it is shown that the performance of the Block-based Trellis Quantizer with

this suboptimum search algorithm is very good.

D. Distance Measure

The simplest metric, usually used in quantization, is the Euclidean distance. In order to incor-
porate the characteristics of the human auditory system, different weighted Euclidean distance

measures have been proposed in the literature. These distance functions are generally of the

form:
Di(li, I;) = wici(l; —1;)?, (9)
10
DY) = ) D (10)
=1
The vector ¢ = [cy, ¢g,. .., c10] is a constant weight vector which prioritizes the LSF parameters.

These weights are meant to emphasize the lower frequency components which are more important
to the perceptual quality of speech. The vector w = [wy, wo, ..., wyg) is a variable weight, which

is derived from the LSF vector in each frame, and is meant to provide a better quantization of



11

LSF parameters in the formant regions. Paliwal and Atal in [20] suggested assigning a variable
weight w; to the ith LSF, which is proportional to the value of the LPC power spectrum at this
frequency. In [16], a simpler weight function was proposed which takes advantage of the fact that
formant frequencies are located at the position of two or three closely located LSF parameters.

Equation (9) is the definition of the metric used in this work. We employ a nonlinear weight

function to determine the variable weights. This weight for a sample LSF vector 1 is given by

1.0 if (27 (1, — 0.02) — 1) > 0,
w =
10(27 (I3 — 0.02) — 1)2 + 1 otherwise.
1.0 if 27T(l,’+1 — l,'_l) —-1>0,
w;, =
10027 (ligr — lioy) — )2+ 1 otherwise.
2<i<9
1.0 if (27(0.471— Ig) — 1) > 0,
wio =

10(27(0.471 — lg) — 1)2 + 1 otherwise.
(11)

which has been designed based on the same idea of emphasizing the closely positioned LSF
parameters. The constant weights ¢; in (9) are all set to one, except ¢4 and c¢5 which are set to
1.2. This weight function is the same as that used in the ITU-T G.729 standard [44]. The values
0.02 and 0.471 used in (11) are, respectively, the minimum value of LSF1 and the maximum

value of LSF10 for the codec for which our BT(Q LSF quantizer has been designed.

E. Block-based Trellis Quantizer Design

The ultimate goal of a quantizer design algorithm is to find the optimum quantizer codebook.
By an optimum codebook, we mean a set of codewords which produce the minimum quantiza-
tion distortion for a training database consisting of virtually all possible types of the data to
be quantized. The LBG algorithm [45] for vector quantizer design is widely used in various VQ
applications. Also, a number of modified versions of this algorithm have been employed to design
structured vector quantizers. Immediate application of the LBG algorithm to the proposed BT(Q
scheme faces several problems including lack of a proper initialization method and divergence
in the optimization process. In order to overcome these problems and to address some other

issues, such as incorporating the weighted Euclidean distance and handling the empty partition
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problem, a more sophisticated algorithm is required to design the BT(Q codebook.

The main reasons for most of the expected difficulties in the codebook design are the facts
that: (i) the statistics of the signal to be quantized, and hence the set of codewords of each
dimension, differ from those of the other dimensions; (ii) the signals to be quantized in each
dimension depend on the codewords chosen in the previous dimensions; and (iii) there is a dif-
ferent number of branches leaving the different states of the trellis. The algorithm that we found

to perform satisfactorily in the BT(Q) design takes the above features into account and is as follows:

e Step 1: Initialization

— Use the LBG algorithm to design a scalar quantizer for the first dimension of the LSF vector,
with the number of levels equal to the number of branches in the first stage of the trellis.

— Use these values to initialize the reconstruction levels of the first stage C;.

— Set stage i = 1.
« Step 2: Partitioning

— Partition the training database of the LSF vectors 7 into sets
Ti(1), Ti(2), ..., Ti(NS) (12)

corresponding to the state to which their ¢th components are quantized.

e Step 3: Initialization

— To initialize the codewords of the outgoing branches of each state (¢,s), apply the LBG
algorithm to the vectors of each set 7;(s) to design scalar quantizers for the signal to be quantized
in the 1+ 1th dimension. This will depend on the definition of the codeword or the reconstruction
function (7). The number of levels of each quantizer is equal to the number of outgoing branches
from the state (i, s).

— Use the resulting reconstruction levels to initialize the codewords of the 7 + 1th dimension
Cit1.

e Step 4: Block-based Trellis Quantization

— Apply the Block-based Trellis Quantization algorithm, discussed earlier, and the LBG algo-
rithm to design the BTQ of dimension 7+ 1 (only the first ¢ + 1 stages are considered).

e Step 5: End

— Increment 7, if + < 10 go to step 2. Otherwise, if 7 = 10 the design of the BTQ codebook is
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complete.

F. Inder Generation

Consider the Block-based Trellis Quantization of the LSF sample vector 1. In this process,
a path through the trellis, representing a codevector i, is identified. This path is specified by
the path vector p = [p1, p2,. .., p1o] comprised of the states taken by this path in each stage of
the trellis. The index generator receives this vector and produces the corresponding index of
this path in the set of all paths of the trellis. Having received this index by the receiver, the
decoder performs the reverse set of operations (see Figure 2). It translates the index back to the
corresponding integer vector p from which it reconstructs the quantized vector I

Note that in a BTQ structure, as shown in the trellis of Figure 1, the number of outgoing

1
. BTQ L> Index L.-_ | Decoder L>
Generator

Encoder

Fig. 2. Overview of the system

branches from the different states of each stage are not equal, and therefore, the traditional
indexing methods cannot be applied here. The BTQ index generating/decoding algorithms are
designed with very low complexity by defining a new parameter for each state. The number of
chooseable paths of state s at stage i, CP;(s), is defined as the total number of paths we can
choose from this state to reach the last stage. The number of chooseable paths from state (0, 0) is
equal to the total number of the paths which determines the bit rate. The number of chooseable
paths of the states in the stage 10 is defined as 1. Figure 3 shows the flowchart of the BTQ
encoding and decoding algorithms. The recursive algorithms presented here are similar in spirit
to the earlier work of Fischer in addressing the points of the pyramid vector quantizer [46], as
well as the works of Lang et al. [47] and Khandani et al. [48] in addressing the points of a signal

constellation (shell mapping).

III. INTRAFRAME CODING OF LSF PARAMETERS

Using the Block-based Trellis Quantization scheme described above, two intraframe coding

schemes are presented in this section. In the intraframe mode, the reconstruction function of (7)
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(a) BTQ Index Generator (b) BTQ Decoder

Fig. 3. Index Generation and Decoding in BTQ

or the candidate quantized LSF; provided by branch (i — 1, s,b) is given by

A~

fi(s ) = £(Ci(s.0),1(p,_, ())) (13)

~

where 1(p,_,(s)), determines the reconstructed LSF parameters corresponding to the surviv-
ing path reaching state (¢ — 1,s). This information can be used to enhance the quantization
performance through exploiting the intraframe correlations.

We are particularly interested in the linear forms of function f; given by

Bi(s +b) = Ci(s,5) + gi(1(p,_, (5))) (14)

where the function g;(.) is a linear function providing a prediction of the LSF value to be quantized
l;, and the codeword Cj(s,b), will compensate for the corresponding prediction error.
Figure 4 depicts the intraframe correlation of the LSF parameters. It is seen that there is

substantial correlation between the LSF parameters of one frame and specifically among the



15

neighboring ones. In the following sections, we will consider two approaches based on the pro-
posed BTQ to exploit this correlation and to define a more appropriate parameter to be quantized

than the LSF parameters in their direct form.

1 1
05 \\—kﬂ\\ 05 V//A\\,\
No.1 No.6
00 5 10 00 5 10
1 1
0.5 /\\\HA—O\.\ 0.5 4/*/"_4//\\
No.2 No.7
00 5 10 00 5 10
1 1
05 % 05 //’\‘//\\
No.3 No.8
GO 5 10 GO 5 10
1 1
05 ‘//\\\'\;_\ 05 M
No.4 No.9
G0 5 10 G0 5 10
1 1
0.5 /\\\ 05 B
No.5 No.10
0 0
0 5 10 0 5 10

Fig. 4. LSF parameter intraframe correlation. Each figure depicts the normalized cross-correlation of

one LSF parameter with respect to others.

A. Design 1: LSF Difference

In this scheme, we consider the Block-based Trellis Quantization of the LSF differences. Our
motivation is the fact that the neighboring LSF parameters are highly correlated (Figure 4) and
the differences of consecutive LSF parameters are expected to be of a small variance. Figure 5
shows that by encoding the LSF differences, as opposed to the LSF parameters, gains* as high
as 5bdB can be achieved.

In this scheme, the branches correspond to the difference of two consecutive LSF parameters

(LSED). Hence, the set of codewords of stage ¢, C;, corresponds to LSF D; which is given by

LSFD, = LSF,, (15)

LSFD; = LSF,—LSF_,, 2<i<I10. (16)

The reconstruction function (14) for the candidate quantized value l}, provided by branch (i —
1,s,b) is now given by

A~ ~

li(s 4+ b) = Ci(s,b) + l_1(s), (17)

2
*The gain is defined as G = 10log, %dB or the ratio of the variance of a parameter to that of its transformed
Yk

version (here difference).
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which indicates a closed-loop differential quantization scheme to avoid magnification of the quan-
tization error [51]. The performance of this scheme, labeled by BTQ-LSFD, is studied in section
V.

B. Design 2: Sequential Vector Decorrelation Technique

In the last section, we described the BTQ-LSFD scheme where only the information of the
previous LSF is used in reconstructing the current LSF. Here, we are interested in exploiting all
the intraframe information available at each stage. Equation (14) shows that this information
is provided by the surviving path p;_;(s) and concerns all the LSF parameters prior to stage
1. Figure 4 shows that beside the high correlation between the adjacent parameters, there is a
considerable correlation between the non-adjacent neighboring parameters as well.

In this approach, we are interested in a causal linear transform that exploits the intraframe
information and produces optimally decorrelated transform coefficients. We refer to this tech-

nique as the Sequential Vector Decorrelation Technique or SVDT [41]. We will explain it briefly

below.
Consider 10 dimensional LSF vector 1 = [Iy,1s, ..., l1]. The causal linear transform B produces
a vector of transform coefficients y = [y1, y2, . . ., y10], where,

y = Bl (18)
and we have,
TwT T T
B= b7bl ... bl (19)
in which b; = [b;1,...,0i,0,...,0] is a row vector and the matrix B is a 10 x 10 lower triangular
matrix. Equivalently, y; is given by
yi = bil = bil;, 1<1i<10. (20)
J=1
We derive the transform matrix B such that the transform coefficients y = [y1,y2, ..., y10] are
decorrelated, i.e.,
ryii = Elyiy] =0, (21)

Tyii = E[yzyz] > 0, 1<4,5 <10, 7£ Js (22)
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or equivalently, the autocorrelation matrix of y, Ry, is diagonal. It is straight forward to see

that (21) holds if the transform coefficients and the LSF parameters are orthogonal, i.e.,
E[y,l]] =0, 1 <7< <10. (23)

Considering the Orthogonality Principle [49], [50], this will also result in the minimization of the
transform coefficients’ power in Equation (22), or the maximization of the corresponding gains.
Figure 5 compares the gains achieved by employing SVDT for the LSF parameters with those
achieved by using differential encoding.

Equations (23) and (20) also provide the necessary means to calculate the matrix B [41]. We
can observe that the transform coefficients y; are, in fact, the linear prediction errors when all
the components of vector 1 prior to I; are employed to predict the current component ;. In
Equation (14), this prediction is provided by the function g;(.) using the 7’th row of matrix B

and the quantized LSF parameters corresponding to the previous stages.

Gain (dB)

Fig. 5. The Gain achieved using (1) Differential Encoding (2) Sequential Vector Decorrelation Technique

One immediate advantage of the causal structure of SVDT for the quantization of LSF
parameters is that, to reconstruct the :’th LSF parameter l}, only the transform coefficients
[J0, U1, - - -, Ui—1] are required. Therefore, the stability of the reconstructed filter can be easily
verified through the stage by stage quantization of these parameters. This will keep the overhead
complexity due to the use of the SVDT at a very low level.

In general, there are two different approaches to determine the matrix B; the closed-loop ap-
proach and the open-loop approach. In the open-loop scenario, the matrix is calculated using
the training database. In the closed-loop scenario, an iterative scheme, which includes quanti-
zation of the LSF parameters of the training database and calculating the matrix based on the

quantized database, is employed. In this work, we consider the open-loop scheme for simplicity.
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IV. INTERFRAME CoDING OF LSF PARAMETERS

There is considerable dependency in the sequence of speech spectra due to the slow variation
of the short-time spectrum of speech. To exploit these dependencies, we propose an interframe
predictive coding scheme (see Figure 6) in which intraframe and interframe coded frames are

interlaced for enhanced performance in the presence of channel errors. A Block-based Trellis

1(2n—1) BTQ1 1(2n=1)
Encoder
j(zn—1)
1(m) 1(m)
Predictor
f(zn)
127 BTQ2 1(2m)
Encoder

Fig. 6. BTQ interframe encoder

Quantizer of bit-rate Rprg is employed to encode the LSF parameters of frames 2n — 1, n =
1,2,..., denoted by 12=1) Next, an auto-regressive vector linear predictor of the first order is
employed to predict the LSF parameters of frames 2n, n = 1,2, . ... Finally, a second Block-based
Trellis Quantizer (BTQ2) with a bit-rate of Rprg2 is employed to encode the LSF residues or

the prediction errors of the even frames denoted by 1r(®>»). This can be formulated as

jen) —  Afjze-1) (24)

NCONSCRIS C0 n>0 (25)

in which 1 and 1 are the quantized and the predicted values of 1 respectively and the matrix A
is the matrix of the prediction coefficients. For simplicity, we employ a BTQ-LSFD as described
in section III-A for BTQ1 or quantization of LSF parameters of the odd frames. In BTQ2, for

quantization of LSF residues the reconstruction function (7) at time 2n is given by,

~

li(s 4+ b) = Cyi(s,b) +a; . 127~V (26)

where a; is the ¢th row of the prediction matrix A. This can be viewed as an adaptive quantizer

whose codebook at time 2n is formed by biasing the (fixed) LSF residue codebook by the predicted
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LSF vector from the previous frame. This allows us to define the same weighted distance measure
as was given in (9) and to easily check for the ordering property of the quantized LSF vectors.
Interlacing intraframe coded frames with interframe coded frames reduces both the propagation
of channel errors and the quantizer slope overload to the maximum of one frame. It is noteworthy
that error is propagated to the next frame only if it occurs in the interframe encoded (even) frames
and hence, this effect does not happen in approximately 50% of the error cases. The overall bit
rate of the interframe quantization system will then be equal to R = %(RBTQI + Rprg2) bits
per frame. Since the interframe prediction errors are of smaller variance, fewer bits are allocated
to the BTQ2 (Rprg1 < RBT@Q2). A similar interlacing approach was taken in [26] along with a

scalar quantization scheme.

V. PERFORMANCE EVALUATION

In this section, the proposed Block-based Trellis Quantization schemes for intraframe and in-
terframe coding of LSF parameters are examined for two important attributes of every LPC
quantization scheme, i.e., the quality of the encoded parameters and the encoding/decoding
complexity. The complexity considerations consist of computational complexity and memory re-
quirements (RAM and ROM). Also, various performance comparisons with several other methods

presented in the literature are provided.

A. BT(Q Complezity

In this section, we will analyze the complexity of the Block-based Trellis Quantizer. This
complexity comprises almost all of that of the BTQ encoder, and the complexity of the BTQ
index generation is negligible (see next subsection).

The dynamic memory requirement of the BTQ is the memory needed for the BT(Q search
algorithm to operate. Although the exact amount of the RAM required depends on the actual
software implementation, however, it can be seen that the number of the few parameters needed
to be stored in the RAM for the BTQ search algorithm is proportional to the number of states in
the trellis. The static memory (ROM) required in BTQ is mainly due to the codebook storage;
the number of BTQ codewords is equal to the total number of branches in the trellis. The BTQ
computational complexity is also proportional to the number of branches in the trellis, for the fact
that the BTQ search algorithm mainly consists of a set of operations for each branch of the trellis.

Table I presents the parameters describing the BT Q structure at different bit-rates. The number
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bit-rate | NS max. no. of branches NB

20 14 [14,14,14,14,13,6,6,6,6, 6]

21 15 | [15,15,15,15,15,15,15,15, 15, 15]

22 17 [17,17,17,8,6,6,6,6,6,6]

23 18 | [18,18,15,13,11,11,11,11,11, 11]

24 20 [20,20,20,9,9,8,7,7,7,7]

TABLE 1

TRELLIS PARAMETERS AT DIFFERENT BIT-RATES.

of stages is always 10. The number of states and the branches have been determined by trial
and error and by also keeping in mind that (i) the higher LSFs are less perceptually important
and (ii) in the higher indexed stages, the higher indexed states have a higher frequency of being
selected and therefore, assigning less branches to the higher indexed stages does not affect the
performance. In BTQ, at the bit-rates of our interest, the total number of states and branches
in the trellis is very limited. For example, consider a 23 bpf BTQ with 18 states in each stage.
The total number of states is 180 and the total number of branches is 1368. Therefore, we can
see that the BT(Q complexity is low. Detailed comparisons with other methods reported in the

literature are provided in the following sections.

B. BT(Q Index Generation/Decoding Complezity

Examining the algorithm given in Figure 3, we can see that the total number of operations
needed to generate the index of the path-vector of each frame is upper-bounded by the number of
states in each stage (18 for a 23 bpf BTQ). The total number of operations to decode a received
index to a path-vector is a multiple of the number of states in each stage. A block of ROM is
also needed to store the C'P;(s) values for each state of the trellis (180 for a 23 bpf). Hence, one

can see that the complexity of the BT(Q index generation and decoding algorithms is negligible.

C. Ezperimentation Setup

In assessing the performance of different quantization schemes of the LSF parameters, the
experimental setup is of vital importance. Since different schemes proposed in the literature use

different setups, direct comparison of the performance results is not possible. The factors that
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affect this setup and hence the simulation results include the training and test speech databases,
speech preprocessing, LP analysis and objective measurement. Different speech coding standards
suggest different preprocessing techniques such as high-pass filtering and down-scaling. There are
also different windowing operations that are used prior to the LP analysis. As for LPC analysis,
autocorrelation and covariance methods are the two popular approaches used [50]. To avoid
artificially sharp spectral peaks due to the LP analysis, a certain level of bandwidth expansion for
the LPC coefficients is also considered [1]. As well, different levels of high frequency compensation
of LPC coefficients can be used to reduce the quantization noise in the high frequency regions and
to stabilize the covariance method [52]. In the literature, various objective measures of speech
quality have been proposed [53]. The most popular approach for the evaluation of quantization
quality of the LSF parameters is the spectral distortion [1]. However, the definition of the
desired quality based on this measure still varies and depends on the frequency range over
which this measure is calculated. All of these issues make the comparison of different techniques
proposed in the literature a challenging task. In order to evaluate and compare the performance
of different LSF quantizers, we need to simulate and test the system using a common experimental
setup. In the next section, we outline the systems considered here for comparison using identical
experimental setups.

We use a training database of 175,726 LSF vectors derived from a 58.57 minute long recorded
speech (20ms frame). Another outside test database of 102,400 LSF vectors derived from a
34.13 minute long recorded speech is used to test the performance of the quantizers®. The
spectral distortion measure (measured in the frequency range of 60 Hz to 3500 Hz) is employed
to measure the objective quality of the quantized LPC coefficients. The transparent quality is
considered to be the average spectral distortion of about 1 dB, and 2 dB outliers of less than
2%6. Since our objective is to compare the performance of different quantization schemes, we
used the same weights as described in Equation (9) for all the systems considered. Nevertheless,
our experiments showed that the proposed weight function outperforms that of 1S-641 [42] and
Paliwal et al. [20].

5The speech databases used in this work were provided by Nortel Networks.

®In our experiments, when this condition was valid the 4dB outliers percentage was zero or negligible.
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bit-rate 26 30 34 40

SD (dB) 1.75 | 1.40 | 1.06 | 0.75

outliers >2dB (%) | 28.83 | 9.39 | 2.47 | 0.24

TABLE II
AVERAGE SPECTRAL DISTORTION AND 2 DB OUTLIERS FOR NONUNIFORM SCALAR QUANTIZATION OF

LSF PARAMETERS

D. Systems for Comparison: Scalar, Split-V@Q), TCQ), 15-641 EFRC

We consider four schemes for comparison with our proposed Block-based Trellis Quantization
schemes. Scalar quantization of LSF parameters is used as a baseline for comparisons. The
intraframe Split-VQ by Paliwal and Atal [20], and the Trellis-Coded Quantization (TCQ) based
scheme proposed by Pan and Fischer [19] are compared to our proposed intraframe BTQ schemes.
Also, the 3-part interframe Split-VQ as employed in the IS-641 EFRC [42] is simulated and
compared to our proposed interframe BTQ scheme.

Table II depicts the results of our simulation for the non-uniform Scalar Quantization of LSF
parameters at different bit-rates. This simple approach, is used in the federal standard FS-1016
[6] at the high rate of 34 bpf.

Table III presents the results of our simulation for the intraframe 2-part Split Vector Quanti-
zation of LSF parameters [20]. In this scheme, each LSF vector is split into two parts of (4, 6)
dimensions. Next, each part is quantized by using a full search vector quantizer. The bits are
divided equally between the two parts, and for odd rates, the first part is given an extra bit.
Although the transparent coding quality is achieved at a low rate of 24 bpf, the complexity of
Split-VQ is very high. At 24 bpf, it requires 164,000 floating point operations per frame’ to
locate the appropriate codeword in a codebook of 40,960 codewords®.

Several LSF quantization schemes based on Trellis Coded Quantization [22] were proposed in
[19]. The best performance was achieved by a scheme denoted by TCQ-NLP which utilizes a
5 stage trellis with 2 dimensional codebooks and nonlinear intraframe prediction. This scheme

was reported to have comparable performance with the 2-part Split-V(Q in terms of the spectral

"Each addition, multiplication or comparison is considered as one floating point operation (fHop).

#The memory unit considered here is float. The number of codewords is equivalent to the number of floating

point numbers needed to be stored in ROM.



AVERAGE SPECTRAL DISTORTION, 2 DB OUTLIERS, CODEBOOK SIZE (ROM) AND COMPUTATIONAL

COMPLEXITY FOR 2-PART SPLIT VECTOR QUANTIZATION oF LSF PARAMETERS

CoDEBOOK SIZE (ROM) AND COMPUTATIONAL COMPLEXITY OF TRELLIS-CODED QUANTIZATION

bit-rate 24
ROM (floats) 2560
comp. (kflops/f) | 16.2

TABLE 1V

WITH NONLINEAR PREDICTION

bit-rate | SD | outliers | ROM comp.
(dB) | >2dB (%) | (floats) | (kflops/f)
22 1.16 3.00 20480 82
23 1.13 2.69 28672 114
24 1.05 1.27 40960 164
25 1.02 1.17 57344 229
26 0.95 0.59 81920 328
27 0.91 0.45 114688 459
TABLE 111
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distortion and the outliers. At 24 bpf, a 16 state trellis is used and 4 bits are allocated to each

stage [54]. Table IV presents the complexity of the TCQ-NLP method at this rate. We observe

that, this scheme is much less complex than the Split-VQ both in terms of the codebook size

and the number of computations. As we will see in the next part, the proposed BT(Q schemes

offer a similar performance with a further substantial reduction of complexity.

Table V presents the performance of the 3-part interframe Split Vector Quantization of LSF

parameters as employed in IS-641. In this scheme the LSF vector is split into three parts with

the dimensions 3, 3 and 4. Also, a first order Moving Average scalar linear predictor is employed.

The selected bit-rate in IS-641 is 26 bpf distributed as (8,9, 9) bits among the three parts [42].
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bit-rate SD | outliers | ROM | comp.

(dB) | >2dB (%) | (floats) | (kflops/f)

22
23
24

78,7) | 1.20 |  4.06 1664 6.6
7,8,8
8,8,8
8,9,8
8,9,9

9,9,9

1.12 2.96 2176 8.7
1.07 2.37 2560 10.2
25
26
27

1.01 1.68 3328 13.3
0.95 1.20 4352 17.4

(7,8,7)
(7,8,8)
(8,8,8)
(8,9,8)
(8,9,9)
(9,9,9)

0.90 0.96 5120 20.5

TABLE V
AVERAGE SPECTRAL DISTORTION, 2 DB OUTLIERS, CODEBOOK SIZE (ROM) AND COMPUTATIONAL

COMPLEXITY FOR INTERFRAME SPLIT VECTOR QUANTIZATION (IS-641) oF LSF PARAMETERS

E. BT() Numerical Results

Table VI shows the numerical results of Block-based Trellis Quantization of the LSFD param-
eters at different bit-rates using the weighted Euclidean distance measure given in Equation (9).

Figure 7 shows that with the use of weights for the Euclidean distance, the performance of the

BTQ-LSFD is enhanced by 0.7 bpf on the average.

rrrrrrr

Fig. 7. Average spectral distortion [dB] and 2 dB outliers for the Block-based Trellis Quantization
(BTQ-LSFD) of the test database LSF vectors with unweighted/weighted distance at different rates

Table VII presents the performance of BTQ for quantization of the LSF parameters using the
Sequential Vector Decorrelation Technique. The results demonstrate a noticeable improvement
compared to the BTQ-LSFD scheme. The increase in complexity is marginal and there is no
other cost associated with using the SVDT. Our experiments revealed that the BT(Q schemes

achieve their best performance when there is only one state in the first stage of the trellis.
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bit-rate | SD | outliers | ROM | comp.

(dB) | >2dB (%) | (floats) | (kflops/f)

20 1.45 11.10 778 4.7
21 1.36 6.97 1095 6.6
22 1.25 3.84 953 5.7

23 1.18 2.26 1368 8.2
24 1.09 1.28 1336 8.0
25 1.04 0.74 2100 12.6
26 0.97 0.47 2507 15.0
27 0.89 0.24 2950 17.7

TABLE VI
AVERAGE SPECTRAL DISTORTION, 2 DB OUTLIERS, CODEBOOK SIZE (ROM) AND COMPUTATIONAL

COMPLEXITY FOR BLOCK-BASED TRELLIS QQUANTIZATION (BTQ-LSFD) oF LSF PARAMETERS

Compared to the 24 bpf 2-part Split-VQ (Table III), the BTQ-SVDT achieves comparable
performance at significantly lower level of complexity. It requires only 8896 floating point oper-
ations/frame to search for the corresponding codevector in a codebook of 1,336 floating point
codewords. This denotes more than 20 times reduction of computational complexity and 30
times reduction of memory requirements (codebook size). Compared to the 24 bpf TCQ-NLP
[19], the proposed BTQ-SVDT reduces both the search complexity and the codebook size by
almost 50%.

Our simulation results show that (Table VIII) by employing the BTQ interframe coding scheme
presented in section IV, an average reduction of 1 bpf is achieved over the BTQ-LSFD intraframe
coder. Comparing to the interframe 3-part Split-VQ described in the previous section, the
proposed interframe BTQ reduces the bit-rate by 1 bpf. Specifically, a comparable performance to
the 26 bpf quantizer in IS-641 is achieved at 25 bpf with a reduction in computational complexity
of 30% and a smaller codebook size. We also note that by using the proposed BTQ-SVDT instead
of BTQ-LSFD for the BTQ1 (Figure 6), the performance of the interframe scheme is expected

to improve even further.
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Bit-rate | SD | outliers | ROM | comp.

(dB) | >2dB (%) | (floats) | (kflops/f)

20 1.38 8.51 778 5.3
21 1.31 6.00 1095 7.2
22 1.21 3.60 953 6.5
23 1.14 2.12 1368 9.0
24 1.05 1.40 1336 8.9
25 1.00 1.07 2100 13.5
26 0.95 0.83 2507 16.0
27 0.88 0.53 2950 18.8

TABLE VII
AVERAGE SPECTRAL DISTORTION, 2 DB OUTLIERS, CODEBOOK SIZE (ROM) AND COMPUTATIONAL

COMPLEXITY FOR BLOCK-BASED TRELLIS QUANTIZATION OF LSF PARAMETERS WITH SVDT

VI. CONCLUSIONS

A new low bit-rate low-complexity Block-based Trellis Quantization (BTQ) scheme is presented
for the quantization of Line Spectral Frequencies. An efficient recursive algorithm to index the
paths of the trellis is proposed and solutions to efficiently exploit the intraframe correlations are
presented. Numerical results show that the proposed BT(Q offers efficient high-quality solutions
for the quantization of LSF parameters in both the intraframe mode and the interframe mode.
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