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Abstract

In this manuscript, we introduce a technique for sequential decor-
relation of vector sources. This is useful for efficient quantization of
vector sources where there is memory between the components. This
method uses a triangular transform matrix for optimal decorrelation
of source samples. It is shown that this technique is equivalent to the
case where for each vector component all the previous components
are used for prediction and the prediction error is quantized instead.
The new method, which we refer to as Sequential Vector Decorrelation
Technique is employed for scalar quantization of LSF parameters in
Linear Predictive Coding of speech. Substantial improvements over
DPCM and scalar quantization techniques are achieved.

*The authors wish to thank Dr. E. Jernigan for his valuable comments on an initial
version of this work.



1 Introduction

Suppose we have a random vector process X' and would like to efficiently
quantize it with a certain quota of bits. Each sample of this process is
an N-tuple vector x = {xy,zq,...,2x}. In general, different components
of vector x are not independent. Consequently, separate quantization of
each component would be an inefficient approach. Different methods such
as transform coding and vector quantization have been introduced in the
literature for efficient quantization of such a source. The idea of transform
coding is to remove the source correlation by performing a linear transform
A on the input vector x.

y = Ax (1)

The output vector y is a vector with the same size as x with its components,
called transform coefficients, much less correlated or uncorrelated. Having
in this sense removed the redundancy, it is believed that we will be able to
quantize the components of y more efficiently. In general, this process results
in a non-uniform distribution of energy between the transform coefficients.
The KL transform is optimum in the sense that it completely decorrelates the
vector components [1]. This transform is based on eigenvector decomposition
and 1s data dependent.

2 The Structure

In this work, we are interested in a linear transformation that optimally

decorrelates the vector components in a causal manner. We are particularly

interested in a causal form since it can be easily incorporated in the struc-

ture of some advanced vector quantizers, such as Trellis-Based Quantizers [4]

or Lattice-Based QQuantizers. We call this technique the Sequential Vector

Decorrelation Technique or SVDT and we will explain it briefly below.
Consider the linear transform A defined as
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where a;, is a row vector and we have:
k
Y — a.X = Zakja:j, 1 S k S N (3)
Jj=1

The quantizer then encodes yi to 7. Our objective in determining the com-
ponents of transform matrix A, is to remove the correlation between different
components of the input vector x and produce optimally decorrelated trans-
formed coefficients y = {y1,v2,...,yn}, i.€.,

ryii = Elyy;]l =0, P # 7, (4)
ry.i = Elyiyi] >0, 1<i,7<N. (5)

or equivalently, the autocorrelation matrix of y is diagonal,
Ry = Ely"y] = Diagonal(ryi1,7y22, - - -, Ty NN) (6)

We begin here with a simple example.

2.1 A simple second-order case

Consider 2-dimensional vector x, output of a random source:

x = (z1,22)" (7)

We assume that the samples of this random vector are correlated and the
autocorrelation matrix is given by Ry:

r
Ry = [ Hn P ] rxai,Tx2e >0 (8)
P rx, 22
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in which we have benefited form the fact that the autocorrelation matrix is
symmetric and non-negative definite. Now assume that we want to employ
transform A to decorrelate the two samples and we are particularly interested
in a causal (lower triangular) form for the matrix A. The transform matrix

A has the form:

g1 Q22

A:[a” 0} (9)

The equation which needs to be solved is as follows:

Ry = AR AT = { ryar 0 ] (10)

0 Ty722
in which diagonal elements of Ry are required to be nonnegative so that, this
matrix is non-negative definite. Expanding the equation (10) and solving for
a1, apz and azy, we find out that there is only one constraint on the choice
of the unknown parameters. A solution to the problem can be the addition
of two more constraints to normalize the basis vectors. We choose here, the
parameters aq; and @y to be 1 and solve for ag;. This results in the following
solution:

A:[_lp (1)] (11)

TX 11

and the following autocorrelation matrix Ry:

0
s .| (12)

Ry =
Y [ 0 rxi1irtx —p

We know from matrix theory that the determinant of an autocorrelation
matrix (which is non-negative definite) is always nonnegative. This along
with (12) guarantees that Ry is nonnegative definite and is a true solution.
Figure (1) shows the result of a numerical example. The sample vectors
plotted in the 2-D plane are uniformly distributed in the area shown and there
is a correlation between the two components. Both KLT and the transform
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Figure 1: Decorrelation in KLT and the proposed transform

in (11) were used to decorrelate these components. Each of these transforms
choose their own basis vectors which have been shown in this figure. Both
figure (1) and equation (11) show that the basis vectors of the proposed
transform are not orthogonal. We will discuss this problem further in the
next section.

2.2 Problem of Orthogonality

The assumption of orthogonality is vital in the theory of transform coding.
It is the base of the variance-preserving property of linear transforms. This
property is used to model the bit allocation problem and to subsequently de-
rive the maximum achievable coding gain equation [2]. When this property
holds, the average variance of the quantization noise introduced while quan-
tizing a vector of transform coefficients is equal to that of the error produced
while reconstructing the input vector from these coefficients.

In the last section, we observed that the proposed method, although di-
agonalizes the autocorrelation matrix Ry, but chooses non-orthogonal basis
vectors for the transformation. The special form of the transformation chosen
in equation (2) guarantees the independence of basis vectors and hence pre-
vents from information loss (a; # 0,1 < i < N). However, non-orthogonality
can cause the propagation of quantization error to other dimensions while



reconstructing the data. To avoid this problem, we benefit from special form
of the transformation matrix. This matrix has a lower triangular form which
allows us to transform and hence encode the source samples sequentially. In
other words, the only components of vector x used to determine the transform
coefficient number &k are the k’th component and the ones before that (see
equation (3)).This allows us to employ a closed-loop-DPCM-based scheme to
encode the transform coefficients. This scheme will take into consideration
the noise produced in the quantization of elements up to a certain time and
hence prevents from propagation of the noise in the elements to be quantized
next. This will transform the equation (3) to:

k-1
Y = Zakj:%j + ApETL, 1 S k g N (13)

=1

in which #; is the reconstructed version of z;. This is a very interesting
feature which allows this technique to benefit from other effective properties
of closed-loop DPCM schemes as well. However, one can observe that by
replacing equation (3) by (13) and considering the sequential encoding of
the vector components, this technique will not be a transform any more.!
The optimum decorrelation property still holds if the vector components are
quantized finely enough?.

2.3 The General N’th order case

A similar approach as presented in the above example, was taken to find the
transforms of higher orders. According to Equation (3), yx is given by

k
Y — a.X = Zakj:(;j, 1 S k S N. (14)

=1

We derive the transform matrix such that the transform coefficients y =

[Y1,Y2, - ., yn]| are decorrelated, i.e.,
Tyij = E[ylyj] = 07 i 7£ ja (15)
Tyi = E[yzyz] > 07 1< Za] < N7 (16)

"We will continue to use the term transform for the matrix given in equation (2).
Zsee fine quantization for DPCM systems in [2]



or equivalently, the autocorrelation matrix of y, Ry, is diagonal. It is straight
forward to see that (15) holds if the transform coefficients and the source
samples are orthogonal, i.e.,

Ely:z;] = 0, 1<j<i<N. (17)

Equations (14) and (17) provide the necessary means to calculate the matrix
A. Since the number of unknowns are larger than the number of constraints,
we assume

ajjzl, 1§]§N (18)

To calculate the remaining unknowns, we multiply Equation (14) by z;, 1 <
1 < k, and compute the expectation. This results in k — 1 equations for each
corresponding k. We have

k
E[ykl’,] = ZakjE[l’,'l’j], 2 < k < N,l <1< k. (19)

=1

Considering Equations (17) and (18), this will result in

Elz}] = =) ag;Elzizj], 2<k<N,1<i<k (20)

Jj=1

and subsequently,

-1

4231 Tz11 Tz12 cee Tz1k-1 Tz 1k
a2 Tz,21 Tz,22 cee Tz2k-1 Tz, 2k
= 2<EkE<N
M) 9
(21)
A k-1 ek—11 Tzk-12 -+ Tzk-1k-1 Tz k—1k

where r,;; = Elz;z;],1 <1i,7 < N. Considering the Orthogonality Principle
[1] [6], Equation (17) also result in the minimization of the transform coef-
ficients’ power in Equation (16), or the maximization of the corresponding
gains (see next section). We can observe that the transform coefficients yy
are, in fact, the linear prediction errors when all the components of vector
x prior to z are employed to predict the current component xy. We also



note that these derivations are fundamentally different from the case where
we intend to design a predictive coder for a causal sequence [6], since those
derivations rely on the stationarity of the source and attempt to exploit the
temporal correlations, however, in our case we are interested in exploiting the
spatial correlations where the assumption of stationarity no longer exists.

In general, there are two different approaches to determine the matrix
A; the closed-loop approach and the open-loop approach. In the open-loop
scenario, the matrix is calculated using the training database. In the closed-
loop scenario, an iterative scheme, which includes quantization of the source
samples of the training database and calculating the matrix based on the
quantized database, 1s employed. In this work, we consider the open-loop
scheme for simplicity.

3 Quantization of LSF parameters

In this section, we report the result of applying the SVDT to quantization of
LSF parameters for speech coding applications. For more information on LSF
parameters, their properties and applications refer to [3] [4] [7]. The applica-
tion of this technique to our formerly proposed Block-based Trellis Quantizer
[4][3] is given in [5]. One immediate advantage of the causal structure of
SVDT for quantization of LSF parameters is the fact that, the quantization
operation is performed sequentially and hence the quantized parameters can
be reconstructed right away. Therefore, the stability of the filter can be easily
verified. This will keep the overhead complexity due to the use of the SVDT
at a very low level. However, this is not the case in transform coding.

3.1 Scalar Quantization with SVDT

Figure 2, compares the gains (G = 10logios* i dB) achieved by employing

SVDT with those achieved using dlfferentlal encodlng of LSF parameters
where the differences of consecutive LSF parameters are encoded, i.e.

Y = Tk — Tk-1, QSI{?SN (23)
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Figure 2: The Gain achieved using (1) Differential Encoding (2) Sequential
Vector Decorrelation Technique

The gains achieved by SVDT shown in figure 2 are the mazimum achiev-
able by any linear function of the LSF parameters. Figure 1 demonstrates
the performance of 3 schemes for quantization of LSF parameters. The first
scheme is plain scalar quantization of LSF parameters. The second scheme
is a closed-loop DPCM scheme using scalar quantization. The third one is
scalar quantization using the SVDT. It is seen that the scalar quantization
employing SVDT achieves the best performance among others and this com-
ply with what we expected based on the gains in figure 2. The bit allocation

| Performance || SD [dB] | 2dB OL [%] |

| Bitrate [ 26 | 28 [ 30 | 26 | 28 [ 30
Scalar 1.75 [ 1.59 | 1.41 || 28.83 | 18.51 | 9.39
DPCM  [1.31[1.21 [1.03] 6.20 | 4.11 | 1.88
SVDT 128 [1.10 [ 0.99 [ 5.71 | 2.82 | 1.55

Table 1: Average spectral distortion and 2 dB outliers percentage for (1)
scalar quantization (2) DPCM and scalar quantization (3) SVDT and scalar
quantization

between different LSF parameters in all the schemes are performed based on
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their variance. The higher the variance the more bits are allocated to them.

4

Conclusions

In this work, a technique for optimal decorrelation of random vector sources

is described. The application of this technique to quantization of LSF pa-
rameters in CELP speech coding using scalar quantizers is studied. It is
observed that the bit rate at which the transparent quantization is achieved
is substantially reduced.
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