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Abstract

The delay-throughput of a single-hop wireless network withandomly distributed links is
analyzed. We consider a general shadow-fading model, idescby parameter&y, @), wherea
denotes the probability of shadowing aadrepresents the average cross-link gains. The analysis
relies on the distribute@dn-off power allocation strategyi.e., links with a direct channel gain
above a certain threshold transmit at full power and therezatin silent) for the deterministic and
stochastic packet arrival processes. In the first part opépeer, we analyze the effective throughput
maximization of the network. It is proved that the effectiheoughput of the network scales as
1‘{%" with & £ aw, despite the packet arrival process. Then, we present thg dearacteristics
of the underlying network in terms of a packet dropping philitg. We derive the necessary
conditions in the asymptotic case of— oo such that the packet dropping probabilities tend to
zero, while achieving the maximum effective throughputaf hetwork. Finally, we study the trade-
off between the effective throughput of the network and yidlaunds for different packet arrival
processes. In particular, we determine how much degradatilb be enforced in the throughput

by introducing other constraints.
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. INTRODUCTION

As the demand for higher data rates increases, effectivaures allocation emerges
as the primary issue in wireless networks in order to sat@fality of Service (Qo0S)
requirements. Central to the study of resource allocatchemes, the distributed power
control algorithms for maximizing the network throughpatk attracted significant research
attention [1]-[6]. Also, achieving a low transmission deigs an important QoS requirement
in buffer-limited networks [7]. In particular, for backlggd userswith real-time services
(e.g., interactive games, live sport videos, etc), too mdelay results in dropping some
packets. Therefore, the main challenge in wireless netsvarith real-time services is to
utilize an efficient power allocation scheme such that tHaydes minimized, while achieving
a high throughput.

The throughput maximization problem in cellular and muphwireless networks has
been extensively studied in [8]-[12]. In these works, detmalysis is not considered.
However, it is shown that the high throughput is achievedhat ¢ost of a large delay
[13]. This problem has motivated the researchers to studyrehation between the delay
characteristics and the throughput in wireless networlkg—17]. In particular, in most
recent literature [13], [18]-[25], the tradeoffs betweeslay and throughput have been
investigated as a key measure of the network’s performartoe first studies on achieving
a high throughput along with a low delay in ad hoc wirelessvoeks are framed in [16]
and [17]. This line of work is further expanded in [13], [191ca[20] by using different
mobility models. EI Gamakt al. [13] analyze the optimal delay-throughput scaling for
some wireless network topologies. For a static random métwath » nodes, they prove
that the optimal tradeoff between through@it and delayD,, is given by D,, = ©(nT,,).

Reference [13] also shows that the same result is achiewashdom mobile networks, when

1For each user, there is always a packet available to be tittadm



T, = O(1/+/nlogn). Neely and Modiano [20] consider the delay-throughputecdfifor
mobile ad hoc networks under the assumption of redundarkepa¢ransmission through
multiple paths. Sharif and Hassibi [21] analyze the delagrabteristics and the throughput
in a broadcast channel. They propose an algorithm to recheelelay without too much
degradation in the throughput. This line of work is furthetemded in [22] by demonstrating
that it is possible to achieve the maximum throughput andtgkan fairness simultaneously
in a large-scale broadcast network.

In [26], we addressed the throughput maximization of a itisted single-hop wireless
network with K links, where the links are partitioned into a fixed numbg&f)(of clusters
each operating in a subchannel with bandwi¢fh We proposed a distributed and non-
iterative power allocation strategy, where the objectioe éach user is to maximize its
best estimate (based on its local information, i.e., dioketnnel gain) of the average sum-
rate of the network. Under the Rayleigh fading channel maguieisibly with shadowing
effect, it is proved that when the number of links is larges tptimum power allocation
strategy for each user is the threshold-based on-off posleerse (i.e., the links with a
direct channel gain above a certain threshgldransmit at full power and the rest remain
silent). It is also demonstrated that the maximum averagerste of the network for every
value of1 < M < K is achieved at\/ = 1 and it scales a®(log K). Also, the optimum
threshold level that achieves the maximum average sumefatBe network is obtained
asT, = logn — 2loglogn + O(1), wheren = % is the number of links in each cluster.
However, the delay related issues were not addressed in [26]

In this work, we follow the distributed single-hop wirelesstwork model proposed in
[26] with M = 1 (which is the case with the maximum throughput) and addtessléelay-
throughput tradeoff of the network. In the first part, we defaanew notion of throughput,
called effective throughputwhich denotes theactual amount of data transmitted through
the links. In order to derive the effective throughput, weami the full buffer probability
of a link for the deterministic and stochastic packet atrpacesses. Then, we compute

the optimum threshold level,, and the maximum effective throughput of the network, for



each packet arrival process. It is proved that the effe¢tiveughput of the network scales

as 1"2”, with & £ aw, despite the packet arrival process.

In the second part, we present the delay characteristiceeotihderlying network in
terms of a packet dropping probability, and for determiaisind stochastic packet arrival
processes. These are quite different from the delay asalygh the ON/OFF Bernoulli
scheme in [27]. Primarily, we utilize a distributed approacsing local information, i.e.,
direct channel gains, while [27] relies on a central cofgrovhich studies the channel
conditions of all the links and decides accordingly. We udeomogeneous network with
guasi-static block fadingvithout path loss. This differs from the geometric modelspaosed
in [13], [19] and [20], which are based on the distance betwibe source and the destination
(i.e., power decay-versus-distance law).

It is shown that increasing the number of links gives risertareéasing the network
throughput, at the cost of increasing the delay. This willseathe higher packet droppings in
the network with a limited buffer size. We derive the necgssanditions in the asymptotic
case ofn — oo such that the packet dropping probabilities tend to zerdlewdichieving
the maximum effective throughput of the network. Finallye study the tradeoff between
the effective throughput of the network and other perforoeameasures, i.e., dropping
probability and delay-bounds for different arrival proses. In particular, we determine
how much degradation will be enforced in the throughput lyoohucing other constraints,
and how much this degradation depends on the arrival process

The rest of the paper is organized as follows. In Sectiorh#,nietwork model and ob-
jectives are described. The throughput maximization ofuthéerlying network is presented
in Section Ill. The delay characteristics in terms of thepghiag probability are analyzed in
Section IV. Section V establishes the delay-throughputetodf for the network. In Section
VI, the simulation results are presented. Finally, in SectIl, an overview of the results
and conclusions are presented.

Notations:For any functionsf(n) and g(n) [28]:

e f(n)=0(g(n)) means thatim,,_.., ‘% < 0.




e f(n) = o(g(n)) means thatim,, .., % —0

e f(n) =w(g(n)) means thatim,,_ . % - 0.

e f(n)=9Q(g(n)) means thatim,, % < 0.

e f(n)=©(g(n)) means thatim, .., L4 = ¢, where0 < ¢ < cc.

e f(n) ~ g(n) means thatim,,_.., % — 1.

e f(n)~ g(n) means thaif(n) is approximately equal tg(n), i.e., if we replacef(n)
i

by ¢g(n) in the equations, the results still hold.
Throughout the paper, we udeg(.) as the natural logarithm function arid, for
representing the sdtl, 2,--- ,n}. Also, E[.] represents the expectation operator, &jd

denotes the probability of the given event.

[I. NETWORK MODEL AND PROBLEM DESCRIPTION
A. Network Model

In this work, we consider a distributed single-hop wirelasswork, in whichn pairs
of node$, indexed by{1,...,n}, are located within the network area (Fig. 1). We assume
the number of linksy, is known information for the users. All the nodes in the rakwv
are assumed to have a single antenna. Also, it is assumedlthhé transmissions occur
over the same bandwidth. In addition, we assume that eaelvee&nows its direct channel
gain with the corresponding transmitter, as well as theffietence power imposed by other
users. However, each transmitter is assumed to be only avfdhe direct channel gain to
its corresponding receiver. The power of Additive White &aan Noise (AWGN) at each
receiver is assumed to bg,.

We assume that the time axis is divided into slots with thetoin of one transmission
block, which is defined as the unit of time. The channel moslassumed to be flat Rayleigh

fading with the shadowing effect. The channel daietween transmittej and receiver at

2The term “pair” is used to describe the transmitter and tieted receiver, while the term “user” is used only for the

transmitter.
®In this paperchannel gainis defined as the square magnitude of thannel coefficient
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Fig. 1. A distributed single-hop wireless network with= 4.

time slott is represented by the random varialzﬂg) 4 For j = i, the direct channel gain

is defined asC!? £ 1!, whereh!! is exponentially distributed with unit mean (and unit

variance). Forj # i, the cross channel gainare defined based on a shadowing model as

follows®:
r® 2 A9\, with probability a o
g 0, with probability 1 — «,
where hg.?s have the same distribution a,&;)s, 0 < a < 1is a fixed parameter, and the

random variable”)’](.?, referred to as thehadowing factaris independent o/fzg? and satisfies

the following conditions:

o Bmin < ﬁ](-? < Binaz, Wheres,,, > 0 and 3,,.. is finite,

- B[] £w <1,
All the channels in the network are assumed to be quasedikick fading, i.e., the channel
gains remain constant during one block and change indepdpdeom block to block. In

“In the sequel, we use the supersciipt for some events to show that the events occur in timetslot
SFor more details, the reader is referred to [29] and [30] afdrences therein.
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other words,£' is independent of{’ for ¢ # . This model is also used in [17], [21]
and [22].
Assuming that the transmitted signals are Gaussian, tresfénénce term seen by

receiver: € N,, at time slott will be Gaussian with power

10 =3 L, )
7j=1
J#i
wherepy) is the transmission power of usgrat time slott. Under these assumptions, the

achievable data rate of each link N,, is expressed as

B0
log | 1+ 7(# Pi

assuming no constraint on the decoding delay, i.e., degodam be performed over an

RY =K, nats/channel use (3)

arbitrarily large number of blocks.

B. On-Off Power Allocation Strategy

We consider a homogeneous network in the sense that all ike have the same
configuration and use the same protocol. Thus, the traneEmissrategy for all users are
agreed in advance. We assume a limited buffer network, wiacé link has a buffer size
equal to one packet. Also, the transmission blocks of thesuse assumed to be synchronous
with each other with the same duration. In this work, we asstinat all the links utilize
the threshold-based on-off power allocation strategy @sed in [26]. In this reference, it
is shown that the on-off power allocation scheme is asyngatity (in terms of the number
of links) optimum in terms of the sum-rate throughput, assgnthe availability of direct
channel gains at the transmitters. Unlike most of the workshe literature that assume
backlogged users, here we assume a practical model for ttleetparrivals in which the
buffer of each link is not necessarily full (of packet) alettime. Based on this observation,

we adopt the on-off power allocation scheme during each shoet as follows:



1- Based on the direct channel gain, the transmission pafcy

S0 _ 1, if h!"” > 7, and the buffer of linki is full at time slott @
' 0, Otherwise
where, is a prespecified threshold level that is a functionnofdnd also depends on the
channel model and packet arrival process.
2- Knowing its corresponding direct channel gain, eachvactiser: transmits with

full power and the rate (3).

C. Packet Arrival Process

One of the most important parameters in the network analgsitee model for the
packet arrival process. The packet arrival process is eoramatocess which is described by
either the arrival time of the packets or the interarrivaldibetween the subsequent packets.
These quantities may be modeled by the deterministic ohasic processes (Fig. 2). In
this paper, we consider the following packet arrival preess

« Poisson Arrival Process (PAP)n this process, the number of arrived packets in any
interval of unit length is assumed to have a Poisson digtabwith the parameteﬁ.
This process is a commonly used model for random and mutualgpendent packet
arrivals in queueing theory [31].

« Bernoulli Arrival Process (BAP)In this process, in any given time slot, the probability
that a packet arrives ig = 1+ 7. Moreover, the arrival of the packets in different slots
occurs independently. This model has been used in many viorlkee literature such
as [20] and [32].

« Constant Arrival Process (CAP)n this process, packets arrive continuously with a
constant rate o& packets per unit length (Fig. 2-b) [33].

It is assumed that the packet arrival process for all linkhéssame. Let us denot&i as

the time instant of thé'® packet arrival into the buffer of link. It is observed from Fig.

®In fact, if there is no packet in the buffer, it does not makessefor the user to be active, even if its channel is good.
"We choose the parametpras% to be consistent with other packet arrival processes.
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Fig. 2. A schematic figure for a) stochastic packet arrival procksgonstant packet arrival process.
2-a thatt!] = 314! + 1)) wheret{ is the starting time for linki, and the random

variablexy) is the interarrival time defined as

: (@) (@) (@) (1)8 i i)
with E[z;’] = A. For the CAPz;” = X andt, = (k—1)A+t;"°, while for the PAPz;"’s

are independent samples of an exponential random variablgh the probability density

(i
Ly

function (pdf)

fx(z) = %eix, x> 0. (6)

Also for the BAP,xg.i)’s are independent samples of a geometric random varigbigith

the probability mass function (pmf)
px(m)EP{X =m}=(1-p) " 'p, m=12,.., ()

i Al
with p = 1.

We represent%’k as the time instant at which either ti#&" arriving packet departs
the buffer of link: for the transmission or drops from the buffer. In such comagan, we

have the following definition:

8For analysis simplicity, we assume thatis an integer number.
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Definition 1 (Delay): The random variabl@,ﬁ") £ t%’k - tfji for each link: is defined as
the delay between the departure and the arrival time of eamtkgik, expressed in terms

of the number of time slots.

Due to the finite buffer size and the on-off power allocatidrategy, the existing
buffered packet may be dropped. The dropping happens whepacket arrives before the
previous arrived packet has any chance to be served. Theré¢fie@ event that the dropping

of packetk occurs in link: € N,, is defined as

# = {9 =10, -} 8)
= {9 >}, ©)
The packet dropping probability in each linke N,,, denoted byP {#;}, can be obtained
as
P{z} = P{9 >} (10)
- [ p {9,9 > ]2 = x} fx(x)dz,  for PAP, (11)
0
- 3P {9,5” > 2|2 = m} px(m),  for BAP, (12)
m=1
_ P {9,5}’ > )\} , for CAP. (13)

where fx(z) and px(m) are defined as (6) and (7), respectively. In Section IV, wé wil
obtainP {#,} for different packet arrival processes.

D. Objectives

Part I: Throughput Maximization: The main objective of the first part of this paper
is to maximize the throughput of the underlying network. Toless this problem, we first
define a new notion of throughput, calledfective throughputwhich denotes thactual
amount of data transmitted through the links. In order toveethe effective throughput, we

obtain thefull buffer probabilityof a link for the deterministic and stochastic packet afriva
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processes. Then, we compute the optimum threshold tleyednd the maximum effective
throughput of the network, for each packet arrival process.

Part Il: Delay Characteristics: The main objective of the second part is to analyze
the delay characteristics of the underlying network in terof the number of links~()
and \. For this purpose, we first formulate the packet droppingabdities based on the
aforementioned packet arrival processes. Then, we ddmenécessary conditions in the
asymptotic case of — oo such that the packet dropping probabilities tend to zeralewh
achieving the maximum effective throughput of the network.

Part Ill: Delay-Throughput Tradeoff: The main goal of the third part is to study the
tradeoff between the effective throughput of the networet ather performance measures,
i.e., the dropping probability and the delay-boundl for different packet arrival processes.
In particular, we are interested to determine how much dksgien will be enforced in the
throughput by introducing the other constraints, and howelmhis degradation depends on

the packet arrival process.

[1I. THROUGHPUTMAXIMIZATION

In this section, we aim to derive the maximum throughput & tlretwork with a
large number ) of links, based on using the distributed on-off power aloan strategy.
The throughput of the network is defined as the average stamefaall links. However,
to capture the effect of the packet arrival process, we defimew notion of throughput,
calledeffective throughputvhich denotes thactualamount of data transmitted through the
links. In order to derive the effective throughput, we firstain thefull buffer probability
of each linki € N,, for different packet arrival processes. Then, we computeoitimum
threshold levelr,,, and the maximum effective throughput of the network, fothepacket

arrival process.

A. Effective Throughput

In this section, we present a new performance metric in theork, calledeffective

throughput which is a function of the threshold leve] and ). Let us start with the following
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definition.

Definition 2 (Effective Throughput): Under the on-off power allocation strategy, the ef-

fective throughput of each link i € N,,, is defined (on a per-block basis) as

Lh—%lo T Z R (14)

where Rl(f) is defined as (3) an(TZ. Is an indicator variable which is equal to, if user
i transmits at time slot, and 0 otherwise. Furthermore, the effective throughput of the

network is defined as

T2 )T (15)
=1

The quantity®; represents the average amount of information conveyedighrdink
¢ in a long period of time. This metric is suitable for real-enapplications, where the
packets have a certain amount of information and certainahnmates. It should be noted
that Z\" = 1 is equivalent to the case in which the buffer is full and tharotel gainh.”

is greater than the threshold levgl at time slott. Defining the full buffer event as follows

‘é(t) = {Buffer of link 7 is full at time slott}, (16)
we have
IP’{IZ@ - 1} - P{hﬁ? > %}“} (17)
@ p{nl > p{e"} (18)
= WAy, (19)

whereg, 2 P {hg? > Tn}, andA, 2 P {%}t)} is the full buffer probability In the above
equations{a) follows from the fact that the full buffer event depends oa tracket arrival
process as well as the direct channel gaﬁﬁQ, for ' < ¢, which is independent of the

channel gairhgf) (due to the block fading channel model). Thus,

1, with probability ¢, A,,,
0, with probability 1 — ¢,A,.



13

It is observed thaJZZ(t) is a Bernoulli random variable with parametgrA,,. In fact, ¢, A,
is the probability of the link activation which is a functi@f »n. In the sequel, we derive

A,, for the aforementioned packet arrival processes.

B. Full Buffer Probability

Let us denote!” as the time instant the last packet has arrived in the buffénlo i
before or at the same time The evenffi(t) implicitly indicates that during%(t) T
time slots, the channel gain of linkis less than the threshold leve]. Clearly, 3&@(“ is a
random variable which varies from zero to infinity for thedtastic packet arrival processes
and is finite for the CAP. Under the on-off power allocation scheme and using thekbloc

fading model property, the full buffer probability can betaibed a&’
A,=E [(1 —~ qn)%(”} : (21)
. . - (St) é (t) — o Tn
where the expectation is computed with respec2(0’, andgq, =P h;;” > 7, e ™.
Lemma 1 Let us denote the full buffer probability of an arbitrary kin € N,,, for the

Poisson, Bernoulli and constant arrival processesgs'”, ABAP and AY4” | respectively.
Then,

1
APAP _ 22
" 14+ Mog(l —g,)~ " (22)
1
APAP = 23
" 1+(A=1)g, (23)
1—(1—gqy)*
AGAP — L T 24
: v (24)
Proof: For the PAP, since%.(t) is an exponential random variable, (21) can be
simplified as
1 1
apr =[S0 - i (25)
0
1
= (26)

1+ Aog(1 —gn)~"

°®Note that, here we assume that if a packet arrives at timed the channel gain is greater thanat this time, the

packet will be transmitted.
10As we will show in Lemma 1A, is independent of index
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Also for the BAP,%Z.“) is a geometric random variable with parameger % Thus,

(21) can be simplified as

AP = (1= g)"p(1 = p)" (27)
m=0
(a) 1
1+ (A =1Dg,’ (28)

where (a) follows from the following geometric series:
- 1
me:—, lz| < 1. (29)
— 1—z

For the CAP, the full buffer probability in (21) can be writt@s

AP @ N1 g P2 = m) (30)
m=0
) — 1
2 2(1_%)7”X (31)
m=0
o o A
9 1-0-u) (32
Aqy,

where(a) follows from Fig. 2-b, in which%(t) varies from zero to\ — 1 and (b) follows
from the fact that for the deterministic proce%j(t) has a uniform distribution. In other
words, for every value ofn € [0, A — 1], IP’{E&Q“) = m} = 1. Also, (c) comes from the

following geometric series:

i _ s+l
Y= L (33)
1—=x
m=0
[
Having derived the full buffer probability, we obtain thdegtive throughput of the network

in the following section.
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C. Effective Throughput of the Network

Rewriting (14), the effective throughput of linkcan be obtained as

L
1
i LS po70
T o= lim - ZR I (34)
“ E|R"TY| (35)
= B[R] 70 = 1| P{z" =1} +E [RVT| 7 = 0| P {11 = 0} (36)

2 GAE [ROA > 7, 60| (37)

30
log 1 -+ %
I+ N,

where the expectation is computed with respedtﬁband the interference ternff). In the

h > Tn] : (38)

above equationga) follows from the ergodicity of the channels (due to the bldakling
model), which implies that the average over time is equalvierage over realizationb)
results from (17)-(19) and&[R\"Z" |7 = 0] = 0. Finally, (c) results from the fact that

S (®)
the termlog | 1 + m) is independent of5; .

In order to derive the effective throughput, we need to fingl statistical behavior of

Iz.(t) which is performed in the following lemmas:

Lemma 2 Under the on-off power scheme, we have
E [1}”] = (n — 1)agp A, (39)
Var [Jﬂ < (n—1)(2akgA,), (40)
whered £ aw andk £ E [(ﬁﬁ)ﬂ .
Proof: See Appendix I. [ |

Lemma 3 The maximum effective throughput is achieved\at o(n) and the strong

interference regime which is defined E{s[i(t)] =w(l), 7€ N,.
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Proof: Suppose thah # o(n) which implies that\ = (n). Using (38), we have

B
] 14 i
og( + No)

E [nf)

T, < ¢AE D> 7, (41)

hﬁf’ > Tni|
No

—
S
=

IN

¢ Aplog [ 1+ (42)

Tn +1
— A log (1 , 43
o (14 222 ) (43

0
where(a) comes from the concavity dbg(.) function andJensen’s inequalityE [log 2| <

log(E [z]), x > 0. Following (22) - (24), it is revealed tha,, < min (1, ﬁ) for all packet
arrival processes. Substituting in (43), we have

1 log A +1
T, < —log |14 —=22"—
< qos (145
N loglogA’ (44)
A
which follows from the fact that the maximum value @fA, log <1 + T"Ttl) with the

condition of A,, < min (1, ﬁ) is attained aty, = 5. Noting thatA = Q(n), we have
Ty < O ().

Now, suppose thak = o(n) but E[I"] # w(1), or equivalentlyE[I"] = O(1) for
somei. SinceE[I"] = (n—1)ag,A,, the conditionE[I!”] = O(1) implies that there exists
a constant: such thatg,A, < <. Noting (22) - (24), it follows that either\, ~ ﬁ or
A, = O(1). In the first case, the conditiof,A,, < = implies thatn < ¢\ which cannot
hold due to the assumption af= o(n). Therefore, we must havg < % for some constant
. Substituting in (43) yields

T, < %1og <1+T”NT1)

0

/ /
glog (1 N log(n/d) + 1)
n N()

_ 5 (loglogn) 7 (45)

n

INE

where (a) results from the fact thag, log (1 + %) is an increasing function af,, and

reaches its maximum at the boundary Whichj—;is
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In the sequel, we present a lower-bound on the effectiveutitiput of linki in the
region A = o(n) andIE[Ii(t)] = w(1) and show that this lower-bound beats the upper-bounds

derived in the other regions, proving the desired result. thts purpose, using (38), we

write
(a) Tn
E 1000 > 7| + N,
(b) Tn
- nAn 1 1 ~
E o8 < N (n - 1)QQnAn + No)

Qe

)
Aplog (1 4+ —- 4
wulog (14— ). (46)

where (a) follows from the convexity of the functiotog(1 + fia) with respect tar and
Jensen’s inequalityyd) results from the independency djft) from hﬁf.), and (¢) follows

from neglecting the termiV, with respect to(n — 1)ag,A,, due to the strong interference
assumption. Setting, = @ and)\ = ﬁ it is easy to check th%_lﬂé‘m = o(1) and

2na

hence log (1 + (n_l)qunAn) R Dags, Which gives the effective throughput ast;= =

© (1"%) which is greater than the throughput obtained in the othginres. [ |
Due to the result of Lemma 3, we restrict ourselves to the odse= o(n) and the strong

interference regime in the rest of the paper.

Lemma 4 Let us assumé < « < 1 is fixed and we are in the strong interference regime
(e, E [I}t)] = w(1)). Then with probability one (w. p. 1), we have

19~ (n = 1)ag Ay, (47)

asn — oo. More precisely, substituting(t) by (n—1)ag,A,, does not change the asymptotic

effective throughput of the network.

Proof: See Appendix II. [ |

Lemma 5 The effective throughput of the network for large values aan be obtained as

Teft =~ NG\, log (1 + ATn ) . (48)
nag, A,
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Proof: Using (38), the effective throughput of the network in thgmptotic case of

n — oo IS obtained as

zn: T, (49)

[ B®
ZALE |1 1 _
4 8 + (n —1)ag,A, + Ny

[ o
ng,ALE [log [ 1+ —2—
nagn Ay

seff

—
S
=

Q

RIS Tn] (50)

—
<
=

Q

) > Tn] , (51)

where (a) results from the strong interference assumption and Lempand (b) follows
from approximatingn—1)aq,A,+ Ny by nag,A,, due to the strong interference assumption

and large values of. A lower-bound on (51) can be written as

-
T =ng,A,1 1 o . 52
off = NG og ( + o, An) (52)

Furthermore, due to the concavity lof(.) function and Jensen’s inequality, an upper-bound

on T4 can be given as

E |nf

hﬁ? > Tn}

= ngpAylog [ 1+

naq, A,

— ngA,log (1+ T+ 1 ) (53)

In order to prove that the above upper and lower bounds havsdime scaling, it is sufficient
to show that the optimum threshold valug)(is much larger than one. For this purpose, we

note that ifr,, = O(1), then the effective throughput of the network will be uppetnded
by

(a)
Tg € Il (54)
(0%
— o), (55)

where (a) follows from log(1 + =) < z. In other words, the effective throughput of the
network does not scale with, while the throughput 0B(logn), as will be shown later, is

achievable. This suggests that the optimum threshold valust grow withn, and hence,
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the bounds given in (52) and (53) are asymptotically equalg\,, log (1 + aa An) and

this completes the proof of the lemma. [ |

Lemma 6 The maximum effective throughput of the network is obtaindtle region that

Tn = 0 (NG, Ay).

Proof: Rewriting the expression of the effective throughput of tieéwork from (48)
and noting the fact thdbg(1 + z) < z, for x > 0, we have

T =~ nannlog(1+ ATn )
nag, Ay,

< (56)

el

It can be shown that if the condition = o (nag,A,) is not satisfied, the ratigw

néqnAn

is strictly less than one. Having, = o (nag,A,) results inlog (1 + = ) R o

nézqn An nden An

yielding the upper-boundz. This means that to achieve the maximum throughput, the

interference should not only be strong but also be much targen 7,,. [ |
Having the expression for the effective throughput of thevoek in (48), in the next

theorem, we find the optimum value @f (or equivalentlyr,) in terms ofn and A for the

aforementioned packet arrival processes, i.e.:
Gn = arg max .. (57)
qn

As shown in the proof of Lemma 5, since the optimum threshalderis much larger than

one, the optimizer, is sufficiently small, i.e.g, = o(1).

Theorem 1 Assuming the Poisson packet arrival process and large satfie, the optimum

solution for (57) is obtained as ,
PAP 1Og n (58)

4, =0———
n

for some constani. Furthermore, the maximum effective throughput of the adtwasymp-
totically scales as%”, for A = o < n )

logn

Proof: See Appendix Ill. [ |
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Theorem 2 Assuming the Bernoulli packet arrival process and largeueal of n, the

optimum solution for (57) is obtained as

1 2
qBAP — 6 og n (59)

" n
for some constant. Furthermore, the maximum effective throughput of the adtwasymp-
totically scales as%2, for A = o <L>

logn

Proof: See Appendix IV. [ |

Theorem 3 Assuming a deterministic packet arrival process, the optmsolution of (57)

and the corresponding maximum effective throughput of ttevark are asymptotically

obtained as
. 2
) g0AT = 62" and Tp ~ 182, for A = o (10;371),
.. 2
ii) §A7 = '8 and Top &~ 1222, for A = © (1ogn?n)’

A log logn
for some constants and ¢'.

iii) ¢gA" = @ and Toq ~ 8%, for A = w (#ﬂ) and A\ =o <L)

Proof: See Appendix V. [ |
The above theorems imply that the effective throughput efritatwork scales a@%
despite the packet arrival process. Note that this valueassame as the sum-rate scaling
of the same network with backlogged users [26], which is goewfpound on the effective

throughput of the current setup. In other words, the effdcthe real-time traffic in the
throughput (which is captured in the full buffer probalgiitis asymptotically negligible.
However, we did not consider the effect of dropping on thewations. In the subsequent
section, we include the dropping probability in the anayesnd find the maximum effective
throughput of the network such that the dropping probabdpproaches zero.

V. DELAY ANALYSIS

In this section, we analyze the delay characteristics ottigerlying network in terms
of the number of links+©{) and\. First, we formulate the packet dropping probabilitiesdahs
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on the aforementioned packet arrival processes. Then, weedbe necessary conditions
in the asymptotic case of — oo such that the packet dropping probabilities tend to zero,

while achieving the maximum effective throughput of thewwak.

Lemma 7 Let us denote the packet dropping probability of a link € N,,, for the Pois-
son, Bernoulli and constant arrival processes$%/ 4"}, P {#4"} and P {47},
respectively. Then,

1

PIATT = 3 Mog(1 — g,) 1 (60)
_ (1 - QH)()‘qn)_l

P{BPAP) = NPT AT (61)

P{#""} = (1-a¢) (62)

Proof: Recallingtﬁi as the time instant of the’" packet arrival into the buffer of link
i, each uset is active at time slot > tfji only Whenhg) > 7,. In other words, assuming
the buffer is full, no transmission (or no service) occurgach slot with probability — ¢,.
From (5) and (8)-(12), since the time duration between syleset packet arrivals is,ﬂf),
the packet dropping probability for a linkis obtained as

P} =E|(1-q)% |, (63)

where the expectation is computed with respectxi?). For the PAP, sincev,(j) IS an
exponential random variable, (63) can be simplified as

P {%ZPAP} = / %(1 — qn)xe’%”dx (64)
0
1

= : 65
1+ Aog(1 —g,)~ " (65)




22

i) - . . . 1
Also for the BAP,x,i) is a geometric random variable with parameter % Thus,

(63) can be simplified as

P{#P"} = Y (1—g)"p(1—p)" " (66)
m=1
- p Z (1—qu)(1—p)]" (67)
m:l

() ( — ¢) (M) !
S 68
I+ (= 0)(0) ©9

where(a) comes from the following geometric series:
Za:m = L, lz| < 1. (69)
— 1—2z

According to Fig. 2- ax ) for the CAP is a deterministic guantity and is equali\to
Thus, we have
P{B} = (1— g™ (70)

It should be noted that (65), (68) and (70) are valid for ewealpe of g, € [0, 1]. In
particular, in the extreme case @f = 1, P {#74F} = P{2/47} =P {847} =0. n

We are now ready to prove the main result of this section.eéméxt theorem, we derive
the necessary conditions ansuch that the corresponding packet dropping probalsiligad

to zero, while achieving the maximum effective throughpluthe network.

Theorem 4 For the optimumy, obtained in Theorems 1-3 resulting in the maximum effective

throughput of the network,
) Timy o P {247} = 0, i APAP = (1) and APAF = o (20,

log“n logn
i) T, o P{BPA} = 0, i AP =0 (5 ) and AP = o (),
i) T oo P {BATY = 0, i A = w (2 ) and XAF = o ().

Proof: i) From (60), we have

P{B "}

. 71
1= A\PAPlog(1 — ¢FAP) ()
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It follows from (71) that achieving® { 4"} = € results in

\PAP  _ 1—¢!
‘ log(1 — ¢74F)
(@ e'—1
~ GPAP (72)

where (a) comes fromg?4” = (1) and the following approximation:
log(l—2)~ -z, |z| <1 (73)

Noting the fact that the optimum value of 47 scales as9 <@> having A\PAP =

w( n ) results inlim,_... P {#/4”} = 0. On the other hand, from Theorem 1, the

log?n

condition \PAP = 0< n ) is required to achieve the maximu®g, and this completes

logn

the proof of the first part of the Theorem.
ii) It is realized from (61) that achievin® { 74"} = ¢ results in

1 _
APAP = AP (1= gPA")et = (1= gF*")]
-1
€
~ qBﬁ> (74)

for small enoughe. Noting the fact that the optimum value @f4” scales a® <@)

having \?47 = w (bgLQTJ results inlim,_... P {#747} = 0. On the other hand, from

Theorem 2 )\B4F = o <1Ogn) guarantees achieving the maximum effective throughput of

the network.
i) From (62), we have
P {%?AP} — M log(1-gfAT) (75)

g 67(1761‘AP \CAP

(76)

where (a) follows from (73) for¢{4” = o(1). To achieveP { Z/4”} = ¢, we must have

1
AAP = Joap 108 e (77)

CAP\CAP
n T

It follows from (76) that settingS 47 \“4” = w(1) makese ¢

in Theorem 3, it turns out that choosing“? = w( o ) satisfiesgCAPN\TAP = (1)

log? n

— 0. Using part(iii)




24

which yields lim,,_... P {#°4"} = 0. We also need the conditioh®" = o (bgn) to
ensure achieving the maximum effective throughput of thevok. [ |

Remark 1-t is worth mentioning that the delay-bound)(in each link for the CAP
scales the same as that of the PAP and the BAP. HowB® "} decays faster than
P {47} andP {74}, whenn tends to infinity.

An interesting conclusion of Theorem 4 is the possibilityachieving the maximum
effective throughput of the network while making the dragpprobability approach zero.
More precisely, there exists some« 1 such that? {%;} < ¢, Vi € N,,, while achieving the
maximum ¢ of 10% This is true for all arrival processes. However, for adoiyrvalues
of ¢, there is a tradeoff between increasing the throughput, dewleasing the dropping

probability and the delay-bound\). This tradeoff is studied in the next section.

V. DELAY-THROUGHPUT TRADEOFF

In this section, we study the tradeoff between the effedtiweughput of the network
and other performance measures, i.e., the dropping pidadnd the delay-bound)) for
different packet arrival processes. In particular, we wldikle to know how much degradation
will be enforced in the throughput by introducing the othenstraints, and how much this

degradation depends on the packet arrival process.

A. Tradeoff Between Throughput and Dropping Probability

In this section, we assume that a constrd{t#;} < ¢ must be satisfied for the
dropping probability. It can be easily shown that the caistrP {%;} < ¢ is equivalent to
P{%;} = e. The aim is to characterize the degradation on the effethix@ughput of the
network in terms ok for different packet arrival processes. First, we conskekep.

Looking at the equations (22) and (60), it turns out gt 4"} = AP4P. Hence,
the conditionP { /" 4”"} = ¢ is translated ta\!4”" = ¢. Therefore, using (48), the effective

throughput of the network can be written as

Toff = nqpelog (1 + ATn ) . (78)
naqne
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From the above equation, it can be realized that the efeedtivoughput of the network
is equal to the average sum-rate of the network withusers in the case of backlogged

users, which is given in [26] ag)% for the case ofne > 1 or e = w(%). Also, the
optimum value ofg, is shown to scale aélogg% for some constand and hence, the

n

optimum value of) is given asi;—n1 = ﬁg(m) Let us denoteAT .4 as the degradation
in the effective throughput of the network, which is definedtlae difference between the
maximum effective throughput in the case of no constrainfPdw;} (Theorem 1-3) and

the case with constraint dh{%;}. Using Theorem 1A% .4 for the PAP can be written as

AT, ~ lo%n B log(Ane)

(0] (07

~ log(e™) (79)

L

~ Y

(%
for e = w (1)*™. Moreover, for values of such thatlog(e™!) = o(logn), it can be shown
that the scaling of the effective throughput of the netwakot changed, i.eS.4 ~ log .

For the BAP, and using (23) and (61), we have

1- qn
PP = oo
(a) 1
1+ (A= 1)qg,
= A (80)

where(a) follows from the fact that,, = o(1). Therefore, similar to the case of the PAP, we

havelP { #5747} ~ ABAP = ¢ and as a result, the rest of the arguments hold. In particular

—1
ATy ~ 28l) (81)

A

«

For the CAP, and using (24) and (62), we have

(1-— qn))‘ =€ = A~ log(e’l), (82)

"n the case ok = O(2), it is easy to see that the effective throughput of the netvewes not scale with.
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which gives

1—(1—=g,)"
AgAP _ ()\ Q) (83)
Qn
1

log(e~!)
Hence, using (48), the effective throughput of the netwak be written as

Tar & g log | 1+ ——— | | (85)
log(e1) T

log(e~!)

which is equal to the average sum-rate of a network \%ggtg_—l) backlogged users and is

Q

(84)

lo + . .
asymptotically equal tow for values ofe satisfyinglog(e~!) = o(n). Therefore,

the degradation in the effective throughput of the netwarkthe CAP can be expressed as

logn log <1og(2—1) )

~ ~

& a
loglog(e™1)
—

A‘Zeff

Q

(86)

Comparing the expressions &t for the Poisson, Bernoulli and constant packet arrival
processes, it follows that the degradation in the effediiveughput of the network in the
cases of PAP and BAP both grow logarithmically witht, while in the case of CAP it
grows double logarithmically. In other words, the degramtain the throughput in the cases
of the PAP and BAP is much more substantial compared to the. CAR fact is also

observed in the simulation results in the next sections.

B. Tradeoff Between Throughput and Delay

In this section, we aim to find the tradeoff between the effecthroughput of the
network and the delay-bound)( for a given constraint on the dropping probability, i.e.,
1) PAP: Using (22) and (60), it follows that for a givehande < 1, we have
—1
Ta
— 7, ~ log(\e), (87)

an =~
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and

1
WA, = 88
q 3 (88)
Substitutingg, A,, and 7,, from the above equations in (48) yields
Alog(A
Top ~ n log (1 + w) ) (89)
A nao
It can be verified tha®.; has a global maximum atg;;“’ R % In other words, for

A < ALAF, there is a tradeoff between the throughput and delay, mgahat increasing\
results in increasing both the throughput and delay. Howeéle increase in the throughput
is logarithmic while the delay increases linearly withit should be noted that the region>
APAP is not of interest, since increasingfrom AJ4” results in decreasing the throughput
and increasing the delay which is not desired.

2) BAP: Due to the similarity between the values®f %;} and A, for the PAP and
the BAP, the results obtained for the PAP are also valid ferBAP.

3) CAP: Using (24) and (62), it follows that for a givenande < 1, we have
log(e™!)

A )
— ~ lo A (90)
™% log(e ) )
and
A, = ! (91)

As can be observed, all the results for the cases of PAP and @&8ARextendable to the
case of CAP by substituting™! with log(¢~'). In particular, the optimum value fox can

be written as\$;}” ~ m and for A\ < A\, the effective throughput of the

network can be given aS.¢ ~ < log (ﬁ) This means that in the regioh < XS47,

which is the region of interest, there is a tradeoff betwden throughput and delay such
that by increasing\,, T.¢ increases logarithmically, while the delay increasesalityewith \.
Furthermore, comparing the value bf,, for the PAP and BAP with the CAP, it is realized

that A" > AP This fact is also observed in the simulations.
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VI. NUMERICAL RESULTS

In this section, we present some numerical results to etaltiee tradoff between
the effective throughput of the network and other perforogameasures, i.e., dropping
probability and the delay-bound) for different packet arrival processes. For this purpose,
we assume that all users in the network follow the threshalsied on-off power allocation
policy. In addition, the shadowing effect is assumed tddgmormaldistributed with mean
w = 0.5, variancel anda = 0.4. Furthermore, we assume that= 500 and N, = 1.

Figures 3 and 4 show the effective throughput of the netwaisws). for the PAP,
BAP and CAP and different values ef It is observed from these figures that for a given
constraint on the dropping probability (e.g.+ 0.05), and forA < A, increasing\ results
in increasing both the throughput and delay. However, tloeesse in the throughput is
logarithmic while the delay increases linearly withas expected. Also, increasingfrom
Aopt results in decreasing the throughput and increasing thaydehich is not desired.
Furthermore, comparing the value bf,; for the PAP and BAP with the CAP, it is realized
that \s7 > ADAP and ACA” > ADAP, as expected.

To evaluate the degradation in the effective throughputhef metwork in terms of
dropping probability, we plof.s versusloge=! for different packet arrival processes in
Fig. 5. It can be seen that the degradation in the throughpthe cases of the PAP and
BAP is much more substantial compared to the CAP, as expeditce, the performance
of the underlying network with the CAP is better than that leéd PAP and BAP from the

delay-throughput tradeoff points of view.

VIlI. CONCLUSION

In this paper, the delay-throughput tradeoff of a single-areless network in terms
of the number of links), and under the shadowing effect with parametersc) was
analyzed. It was proved that the effective throughput of ibvork scales aé‘i%—”, with
& £ aw, despite the packet arrival process. Then, the delay deaistics of the underlying

network in terms of a packet dropping probability was préseénAlso, the necessary
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Fig. 3. Effective throughput of the network v3. for Ny = 1, n = 500, o = 0.4, and different values of

a) PAP and b) BAP.
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Fig. 4. Effective throughput of the network v&. for the CAP andNy = 1, n = 500, a = 0.4, and different values of

€.

conditions in the asymptotic case of — oo was derived such that the packet dropping
probabilities tend to zero, while achieving the maximuneefiive throughput of the network.
Finally, the tradeoff between the effective throughputled hetwork and delay-bounds for
different packet arrival processes was studied. It was showm the numerical results that
the performance of the deterministic packet arrival pregsdetter than that of the Poisson

and the Bernoulli packet arrival processes, from the d#teyughput tradoff points of view.

APPENDIX |

PROOF OFLEMMA 2
Let us definey” 2 £\, where£!! is independent op!", for j # i. Note that
P =1} = P{nl)>nr, ¢} (A-1)

- QTLATU (A-Z)
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11

Fig. 5. Effective throughput of the network viag e ' for different packet arrival processes an® = 1, n = 500,
a=0.4.

where (a) follows from (19). Thus for the on-off power scheme, we have

J

E [p(.t)} — A\, (A-3)

Under a quasi-static Rayleigh fading channel model, it rctaded thatyf)s are independent

and identically distributed (i.i.d.) random variables hwit

EN| = B[] = aqa,, (A-4)
] = e [()]-m ] =
(%) 20K, A, — (GgnA,)?, (A-6)

(1>

x anda = aw. Also, (a) follows from the fact that

whereE {(hﬁ?)? —2 E {(ﬂﬁ))z

2 2
(p§t)> < pi. Thus,E {(p?) } <E [pg-t)] = ¢,A,. The interferencd” = 71\ is
it
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a random variable with meam, and variance)?, where

>

iy 2 E [I}“} — (n — 1)agnAn, (A-7)

lI>

192

Var [Ii(t)} < (n—1DQakg,A, — (g, A,)?) < (n —1)(2akg,A,).  (A-8)

APPENDIX Il

PROOF OFLEMMA 4

Using Lemma 2 and th€entral Limit Theoren{34, p. 183], we obtain

PLIY - ol < 60} ~ 1—@(%) (B-1)
(a) _ vn
Z 1—e 207 5 (B-2)

for all ¢, > 0 such thaty, = o (n%ﬁn>. In the above equations, th@(.) function is

defined asQ(z) £ = [~ e~*/2du, and (a) follows from the fact thatQ(z) < e 7,
Va > 0. Selectingy,, = (ng,A,)® v/29,, we obtain

e

]P){uz(t) - ,Un‘ < wn} Z - 67(nann) : (B'B)
Therefore, defining £ % =0 <(nann)—%), we have
1
Plun(1—2) < IV < pp(142)} > 1— e (andn)? (B-4)
Noting thatng,A, — oo, it follows that 7" ~ 1, with probability one.
APPENDIX II
PROOF OFTHEOREM 1
Taking the first-order derivative of (48) with respect#pyields
Ot (@) N, ™ (14 7)A, — 7, %22
= n — An l 1 N n = = C'l
or, " or, g\t nag, A, g naq, A, + T, (C-1)
(b) (9An Tn (1 + Tn)An — Tn %An
= ng, A —— | C-2
" [ 0T, } aq, A, g naq, A, + 1, (C-2)
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where (a) comes fromg, = e~ ™ and g% = —q,. Also, (b) follows from Lemma 6 and

using the approximatiotog(1 + z) ~ x, for x < 1. Setting (C-2) equal to zero yields

nag, A2 = (An — %) 72 (C-3)

o, ) "
It should be noted that (C-3) is valid for every packet atrpmacess. Recalling from (22),
the full buffer probability for the PAP is given by

1
APAP — C-4
" 1+ Mog(1l —gp) ! (c-4)
(a) 1
~ C-5
1+ Mgy’ (C-5)
where (a) follows from the fact that forg, = o(1), log(1 — ¢,)"' = ¢,. In this case,
087" agfj”g%; = sz, which results in
APAP _ aASAP ~ 1 _ (APAP)Q‘ (C-6)

Omn (14 Agn)?
Thus for the Poisson arrival process, (C-3) can be simpld®d

nag, = 7'3 . (C-7)

It can be verified that the solution for (C-7) is

7PAP —Jogn — 2loglogn + O(1). (C-8)
Using g, = e~ ™, we conclude that
1 2
gAr =551 (C-9)
n

for some constani.

To satisfy the condition of lemma 6, we should have

Tn
W < 1, (C-lO)
Using (C-5), (C-8), and (C-9), it yields
APAP _ ( " ) . (C-11)
logn

Thus, the maximum effective throughput of the network otediin (48) can be written as

Tn

seff ~ . (C-12)
(6%



34

APPENDIX IV

PROOF OFTHEOREM 2

: ‘:@AEAP _ OABAP 5q, dABAP qn(A—1) :
Using (23), we have—r— = D or = g = IO In this case,
ONBAP 1
A EAP n ( A EAP)Q . (D-1)

o (1+(\=1)g)’
Thus for the Bernoulli arrival process, (C-3) can be simgdifas

nag, = 7. (D-2)

It can be observed that (D-2) is exactly equal to (C-7) ancégits solution can be written
as
7BAP — logn — 2loglogn + O(1), (D-3)

and ,
BAP _ 5109; n

n Y

(D-)
n

for some constants. Similarly, the maximum effective throughput of the netwdor the
BAP is obtained as

T ~ 2, (D-5)
(0%
which is achieved under the condition
ABAP _ ( n ) . (D-6)
logn
APPENDIX V

PROOF OFTHEOREM 3

Using (24), we have

CAP CAP
OAGAP DASAP oy, (1)
aTn aqn aTn
aACAP
= g, E-2
"B (E-2)
1—(1—g,) N
— —()\q ) —(1- qn)A 1 (E-3)

= AP _ (1 —g )M (E-4)
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Hence,A94P — RV (1 — g,)*"1. In this case, (C-3) can be simplifies as

OTn
nag, L= 0 —a)']” 1— g )72 E-5
dn ()\qn>2 ( QR) n: ( )
or 212 A—1
ng = oA 01— ) - (E-6)
[1— (1= gqn)

a b
Sinceq, — o(1), we have(l — g, ! — eO-Dloz(-20) 2 =dan and1 — (1 — g,

1 — e~ |t should be noted that) and (b) are valid under the conditiofZ: = o(1) 12,

—
=

Thus, (E-6) can be simplified as

2v2 . -\
TiN Qe "

T (&)
or
vlogy~!
(i =

na . .
wherey £ ¢ and U £ —~ - For this setup, we have the following cases:
T,

n

Case 1.V > 1
It is realized from (E-8) that foll > 1, v = 1 — ¢, wheree = o(1). Thus, (E-8) can

be simplified as

log(1 —¢€)~!
(a) €
~ 5 (E-10)
1
= Z (E-11)
€
Zk
where(a) follows from the Taylor series expansitig(1—z) = — > ., it 2] < 1.
Sincer £ e 2 andr = 1 — ¢, we have
VN (E-12)
\117
@ 1 7
N o—=— E-13

2
2ps we will show the conditionﬁ—“ = o(1) is satisfied for the optimurg,, and the corresponding.
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where (a) follows from the fact that as\g, = o(1), we havee 2" ~ 1 — \g,. It can be
verified that the solution for (E-13) is

794P — logn — 2loglogn + O(1). (E-14)

n

Using ¢, = e~ ™, we conclude that

log®n
CAP _ 5 & 7

n

(E-15)

for some constan.

The above results are valid fdr £ 2% > 1 or A = o <1ogL2n) Also, it can be verified
that% = o(1), and therefore the approximatiofls— ¢,)* ! ~ e and1 — (1 — ¢,)* ~
1 — e~ are valid in this region.

To satisfy the condition of Lemma 6, we must have

Tn
W < 1. (E-16)
From (24), (E-14) and noting that as= o <logL2n> [1—(1—g)] m1—e " = Mgy,
we can write
Tn Alogn

-~ E-17
naqSAr ACAP na [l — (1 —gn)? ( )

N logn

" ndg,

1
_ 0 ( ) | (E-18)
logn

which means that the condition of Lemma 6 is automaticaltisBad in this region. Thus,

the maximum effective throughput of the network obtained4@) can be simplified as

T 0 0BT (E-19)

(0] 0]

Case 2:¥ = O(1)
From (E-8) which gives/2%- = W = ©(1), we conclude thay £ ¢~ = ©(1).
Thus,

C1
pr— _ E'2
n 3 (E-20)

2
w2 (E-21)
no
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wherec; andc, are constants ang:) follows from ¥ £ 2% = ©(1). It can be verified that
the solution for (E-21) is

79AP = logn — 2loglogn + O(1). (E-22)
loo?

quP = 08 n’ (E-23)
n

for some constant’.
The above results are valid for = 2% = O(1) or A = © (%) Also, it can

TN - og’n
be verified that% = o(1), and therefore, the approximatiofis — ¢,)* ' ~ ¢~ and
1—(1—gq,)*~1—e " are valid in this region.
Similar to the argument in Case 1, the condition of Lemma @&isted, and therefore,

the maximum effective throughput of the network is obtaiasd

T log
Teff N R N

(0% (0%

(E-24)

Case 3:UV <« 1
It is concluded from (E-8) tha% = U, whereV = o(1). In this casey = o(1),

and thereforey log v~ ~ . The solution for this equation ig ~ ﬁ In other words,
NPT (E-25)
AT2
log (TZJ)
Thus,
AT2 AT2
A, =~ log <Lf‘) +10glog( TA”) (E-26)
no no
a 72
9 log < Tf‘) , (E-27)
no

where (a) follows from Ag, = w(1) which comes fromv = o(1). The solution for the

above equation can be written as= log A — f(\) or ¢, = ef;” = o(1), where we assume
f(A) = o(log \). Substituting in (E-27), we obtain
B 2
N = og ()\(log)\ Af(A)) ) (E-28)
no
Mog® A A
— log ( 8 ) +2log (1 - M) (E-29)
na log A\

na

a log?
Y log (A o8 A) , (E-30)
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where (a) follows from the factf(\) = o(log A). Thus, usingr, = log A — f(A), it yields
)\log )\)

74P —Jog A — loglog ( (E-31)

It should be noted that (E-31) is derived from (E-25) for= ”f; < 1. This translates the

condltlon ”O‘ < 1to < 1, which incurs that\ = w <1 o )

1 2,\
Also, in the following we show that the condltloﬁ\% = o(1) is satisfied. It follows

from (E-27) that

2 log ("0‘> )
= —— (E-32)
o log2 ()\lzga ,\)
< S (E-33)
O o), (E-34)

where (a) follows from (E-31) and(b) comes from\ = w (10;371).

To satisfy the condition of Lemma 6, we must have

Tn
W < 1. (E-35)
From (24) and (E-31), we can write
Tn Alog A

_— E-36
naqCAP ACAP ni [l — e an| ( )

a 1
W AlogA (E-37)

no

where (a) follows from e~ = o(1). In order to have*!%2 = o(1), one must have\ =

) <lo n) In this case, the maximum effective throughput of the neétwean be simplified
as
Tl  — & : (E-38)

Noting that\ satisfiesA = w <log”2n

) and \ = 0< L ) it follows thatlog A ~ logn. In

other words T ¢ ~ &2,
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