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Abstract

The delay-throughput of a single-hop wireless network withn randomly distributed links is

analyzed. We consider a general shadow-fading model, described by parameters(α, ̟), whereα

denotes the probability of shadowing and̟represents the average cross-link gains. The analysis

relies on the distributedon-off power allocation strategy(i.e., links with a direct channel gain

above a certain threshold transmit at full power and the restremain silent) for the deterministic and

stochastic packet arrival processes. In the first part of thepaper, we analyze the effective throughput

maximization of the network. It is proved that the effectivethroughput of the network scales as
log n

α̂
, with α̂ , α̟, despite the packet arrival process. Then, we present the delay characteristics

of the underlying network in terms of a packet dropping probability. We derive the necessary

conditions in the asymptotic case ofn → ∞ such that the packet dropping probabilities tend to

zero, while achieving the maximum effective throughput of the network. Finally, we study the trade-

off between the effective throughput of the network and delay-bounds for different packet arrival

processes. In particular, we determine how much degradation will be enforced in the throughput

by introducing other constraints.

∗ This work is financially supported by Nortel Networks and thecorresponding matching funds by the Natural Sciences

and Engineering Research Council of Canada (NSERC), and Ontario Centers of Excellence (OCE).
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Index Terms

Throughput maximization, delay-throughput tradeoff, dropping probability, Poisson arrival process.

I. INTRODUCTION

As the demand for higher data rates increases, effective resource allocation emerges

as the primary issue in wireless networks in order to satisfyQuality of Service (QoS)

requirements. Central to the study of resource allocation schemes, the distributed power

control algorithms for maximizing the network throughput have attracted significant research

attention [1]–[6]. Also, achieving a low transmission delay is an important QoS requirement

in buffer-limited networks [7]. In particular, for backlogged users1 with real-time services

(e.g., interactive games, live sport videos, etc), too muchdelay results in dropping some

packets. Therefore, the main challenge in wireless networks with real-time services is to

utilize an efficient power allocation scheme such that the delay is minimized, while achieving

a high throughput.

The throughput maximization problem in cellular and multihop wireless networks has

been extensively studied in [8]–[12]. In these works, delayanalysis is not considered.

However, it is shown that the high throughput is achieved at the cost of a large delay

[13]. This problem has motivated the researchers to study the relation between the delay

characteristics and the throughput in wireless networks [14]–[17]. In particular, in most

recent literature [13], [18]–[25], the tradeoffs between delay and throughput have been

investigated as a key measure of the network’s performance.The first studies on achieving

a high throughput along with a low delay in ad hoc wireless networks are framed in [16]

and [17]. This line of work is further expanded in [13], [19] and [20] by using different

mobility models. El Gamalet al. [13] analyze the optimal delay-throughput scaling for

some wireless network topologies. For a static random network with n nodes, they prove

that the optimal tradeoff between throughputTn and delayDn is given byDn = Θ(nTn).

Reference [13] also shows that the same result is achieved inrandom mobile networks, when

1For each user, there is always a packet available to be transmitted.
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Tn = O(1/
√
n logn). Neely and Modiano [20] consider the delay-throughput tradeoff for

mobile ad hoc networks under the assumption of redundant packets transmission through

multiple paths. Sharif and Hassibi [21] analyze the delay characteristics and the throughput

in a broadcast channel. They propose an algorithm to reduce the delay without too much

degradation in the throughput. This line of work is further extended in [22] by demonstrating

that it is possible to achieve the maximum throughput and short-term fairness simultaneously

in a large-scale broadcast network.

In [26], we addressed the throughput maximization of a distributed single-hop wireless

network withK links, where the links are partitioned into a fixed number (M) of clusters

each operating in a subchannel with bandwidthW
M

. We proposed a distributed and non-

iterative power allocation strategy, where the objective for each user is to maximize its

best estimate (based on its local information, i.e., directchannel gain) of the average sum-

rate of the network. Under the Rayleigh fading channel modelpossibly with shadowing

effect, it is proved that when the number of links is large, the optimum power allocation

strategy for each user is the threshold-based on-off power scheme (i.e., the links with a

direct channel gain above a certain thresholdτn transmit at full power and the rest remain

silent). It is also demonstrated that the maximum average sum-rate of the network for every

value of1 ≤ M ≤ K is achieved atM = 1 and it scales asΘ(logK). Also, the optimum

threshold level that achieves the maximum average sum-rateof the network is obtained

as τn = log n − 2 log logn + O(1), wheren = K
M

is the number of links in each cluster.

However, the delay related issues were not addressed in [26].

In this work, we follow the distributed single-hop wirelessnetwork model proposed in

[26] with M = 1 (which is the case with the maximum throughput) and address the delay-

throughput tradeoff of the network. In the first part, we define a new notion of throughput,

called effective throughput, which denotes theactual amount of data transmitted through

the links. In order to derive the effective throughput, we obtain the full buffer probability

of a link for the deterministic and stochastic packet arrival processes. Then, we compute

the optimum threshold levelτn, and the maximum effective throughput of the network, for
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each packet arrival process. It is proved that the effectivethroughput of the network scales

as logn
α̂

, with α̂ , α̟, despite the packet arrival process.

In the second part, we present the delay characteristics of the underlying network in

terms of a packet dropping probability, and for deterministic and stochastic packet arrival

processes. These are quite different from the delay analysis with the ON/OFF Bernoulli

scheme in [27]. Primarily, we utilize a distributed approach using local information, i.e.,

direct channel gains, while [27] relies on a central controller which studies the channel

conditions of all the links and decides accordingly. We use ahomogeneous network with

quasi-static block fadingwithout path loss. This differs from the geometric models proposed

in [13], [19] and [20], which are based on the distance between the source and the destination

(i.e., power decay-versus-distance law).

It is shown that increasing the number of links gives rise to increasing the network

throughput, at the cost of increasing the delay. This will cause the higher packet droppings in

the network with a limited buffer size. We derive the necessary conditions in the asymptotic

case ofn → ∞ such that the packet dropping probabilities tend to zero, while achieving

the maximum effective throughput of the network. Finally, we study the tradeoff between

the effective throughput of the network and other performance measures, i.e., dropping

probability and delay-bounds for different arrival processes. In particular, we determine

how much degradation will be enforced in the throughput by introducing other constraints,

and how much this degradation depends on the arrival process.

The rest of the paper is organized as follows. In Section II, the network model and ob-

jectives are described. The throughput maximization of theunderlying network is presented

in Section III. The delay characteristics in terms of the dropping probability are analyzed in

Section IV. Section V establishes the delay-throughput tradeoff for the network. In Section

VI, the simulation results are presented. Finally, in Section VII, an overview of the results

and conclusions are presented.

Notations:For any functionsf(n) andg(n) [28]:

• f(n) = O(g(n)) means thatlimn→∞

∣

∣

∣

f(n)
g(n)

∣

∣

∣
<∞.
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• f(n) = o(g(n)) means thatlimn→∞

∣

∣

∣

f(n)
g(n)

∣

∣

∣
= 0.

• f(n) = ω(g(n)) means thatlimn→∞
f(n)
g(n)

= ∞.

• f(n) = Ω(g(n)) means thatlimn→∞
f(n)
g(n)

> 0.

• f(n) = Θ(g(n)) means thatlimn→∞
f(n)
g(n)

= c, where0 < c <∞.

• f(n) ∼ g(n) means thatlimn→∞
f(n)
g(n)

= 1.

• f(n) ≈ g(n) means thatf(n) is approximately equal tog(n), i.e., if we replacef(n)

by g(n) in the equations, the results still hold.

Throughout the paper, we uselog(.) as the natural logarithm function andNn for

representing the set{1, 2, · · · , n}. Also, E[.] represents the expectation operator, andP{.}
denotes the probability of the given event.

II. NETWORK MODEL AND PROBLEM DESCRIPTION

A. Network Model

In this work, we consider a distributed single-hop wirelessnetwork, in whichn pairs

of nodes2, indexed by{1, ..., n}, are located within the network area (Fig. 1). We assume

the number of links,n, is known information for the users. All the nodes in the network

are assumed to have a single antenna. Also, it is assumed thatall the transmissions occur

over the same bandwidth. In addition, we assume that each receiver knows its direct channel

gain with the corresponding transmitter, as well as the interference power imposed by other

users. However, each transmitter is assumed to be only awareof the direct channel gain to

its corresponding receiver. The power of Additive White Gaussian Noise (AWGN) at each

receiver is assumed to beN0.

We assume that the time axis is divided into slots with the duration of one transmission

block, which is defined as the unit of time. The channel model is assumed to be flat Rayleigh

fading with the shadowing effect. The channel gain3 between transmitterj and receiveri at

2The term “pair” is used to describe the transmitter and the related receiver, while the term “user” is used only for the

transmitter.
3In this paper,channel gainis defined as the square magnitude of thechannel coefficient.
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Fig. 1. A distributed single-hop wireless network withn = 4.

time slot t is represented by the random variableL(t)
ji

4. For j = i, the direct channel gain

is defined asL(t)
ji , h

(t)
ii , whereh(t)

ii is exponentially distributed with unit mean (and unit

variance). Forj 6= i, the cross channel gainsare defined based on a shadowing model as

follows5:

L(t)
ji ,







β
(t)
ji h

(t)
ji , with probability α

0, with probability 1 − α,
(1)

whereh(t)
ji s have the same distribution ash(t)

ii s, 0 ≤ α ≤ 1 is a fixed parameter, and the

random variableβ(t)
ji , referred to as theshadowing factor, is independent ofh(t)

ji and satisfies

the following conditions:

• βmin ≤ β
(t)
ji ≤ βmax, whereβmin > 0 andβmax is finite,

• E
[

β
(t)
ji

]

, ̟ ≤ 1.

All the channels in the network are assumed to be quasi-static block fading, i.e., the channel

gains remain constant during one block and change independently from block to block. In

4In the sequel, we use the superscript(t) for some events to show that the events occur in time slott.
5For more details, the reader is referred to [29] and [30] and references therein.
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other words,L(t)
ji is independent ofL(t′)

ji for t 6= t′. This model is also used in [17], [21]

and [22].

Assuming that the transmitted signals are Gaussian, the interference term seen by

receiveri ∈ Nn at time slott will be Gaussian with power

I
(t)
i =

n
∑

j=1
j 6=i

L(t)
ji p

(t)
j , (2)

wherep(t)
j is the transmission power of userj at time slott. Under these assumptions, the

achievable data rate of each linki ∈ Nn is expressed as

R
(t)
i = E

I
(t)
i

[

log

(

1 +
h

(t)
ii p

(t)
i

I
(t)
i +N0

)]

nats/channel use, (3)

assuming no constraint on the decoding delay, i.e., decoding can be performed over an

arbitrarily large number of blocks.

B. On-Off Power Allocation Strategy

We consider a homogeneous network in the sense that all the links have the same

configuration and use the same protocol. Thus, the transmission strategy for all users are

agreed in advance. We assume a limited buffer network, whereeach link has a buffer size

equal to one packet. Also, the transmission blocks of the users are assumed to be synchronous

with each other with the same duration. In this work, we assume that all the links utilize

the threshold-based on-off power allocation strategy proposed in [26]. In this reference, it

is shown that the on-off power allocation scheme is asymptotically (in terms of the number

of links) optimum in terms of the sum-rate throughput, assuming the availability of direct

channel gains at the transmitters. Unlike most of the works in the literature that assume

backlogged users, here we assume a practical model for the packet arrivals in which the

buffer of each link is not necessarily full (of packet) all the time. Based on this observation,

we adopt the on-off power allocation scheme during each timeslot t as follows:
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1- Based on the direct channel gain, the transmission policyis6

p
(t)
i =







1, if h
(t)
ii > τn and the buffer of linki is full at time slott

0, Otherwise,
(4)

whereτn is a prespecified threshold level that is a function ofn and also depends on the

channel model and packet arrival process.

2- Knowing its corresponding direct channel gain, each active useri transmits with

full power and the rate (3).

C. Packet Arrival Process

One of the most important parameters in the network analysisis the model for the

packet arrival process. The packet arrival process is a random process which is described by

either the arrival time of the packets or the interarrival time between the subsequent packets.

These quantities may be modeled by the deterministic or stochastic processes (Fig. 2). In

this paper, we consider the following packet arrival processes:

• Poisson Arrival Process (PAP):In this process, the number of arrived packets in any

interval of unit length is assumed to have a Poisson distribution with the parameter1
λ
.

This process is a commonly used model for random and mutuallyindependent packet

arrivals in queueing theory [31].

• Bernoulli Arrival Process (BAP):In this process, in any given time slot, the probability

that a packet arrives isρ , 1
λ

7. Moreover, the arrival of the packets in different slots

occurs independently. This model has been used in many worksin the literature such

as [20] and [32].

• Constant Arrival Process (CAP):In this process, packets arrive continuously with a

constant rate of1
λ

packets per unit length (Fig. 2-b) [33].

It is assumed that the packet arrival process for all links isthe same. Let us denotet(i)Ak as

the time instant of thekth packet arrival into the buffer of linki. It is observed from Fig.

6In fact, if there is no packet in the buffer, it does not make sense for the user to be active, even if its channel is good.
7We choose the parameterρ as 1

λ
to be consistent with other packet arrival processes.
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Fig. 2. A schematic figure for a) stochastic packet arrival process,b) constant packet arrival process.

2-a thatt(i)Ak =
∑k−1

j=1 x
(i)
j + t

(i)
0 where t(i)0 is the starting time for linki, and the random

variablex(i)
j is the interarrival time defined as

x
(i)
j , t

(i)
Aj+1

− t
(i)
Aj
, (5)

with E[x
(i)
j ] = λ. For the CAP,x(i)

j = λ andt(i)Ak = (k− 1)λ+ t
(i)
0

8, while for the PAP,x(i)
j ’s

are independent samples of an exponential random variablex with the probability density

function (pdf)

fX(x) =
1

λ
e−

1
λ
x, x > 0. (6)

Also for the BAP,x(i)
j ’s are independent samples of a geometric random variableX with

the probability mass function (pmf)

pX(m) , P{X = m} = (1 − ρ)m−1ρ, m = 1, 2, ..., (7)

with ρ , 1
λ
.

We representt(i)Dk as the time instant at which either thekth arriving packet departs

the buffer of linki for the transmission or drops from the buffer. In such configuration, we

have the following definition:

8For analysis simplicity, we assume thatλ is an integer number.
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Definition 1 (Delay): The random variableD (i)
k , t

(i)
Dk

− t
(i)
Ak

for each linki is defined as

the delay between the departure and the arrival time of each packetk, expressed in terms

of the number of time slots.

Due to the finite buffer size and the on-off power allocation strategy, the existing

buffered packet may be dropped. The dropping happens when one packet arrives before the

previous arrived packet has any chance to be served. Therefore, the event that the dropping

of packetk occurs in linki ∈ Nn is defined as

Bi ≡
{

D
(i)
k ≥ t

(i)
Ak+1

− t
(i)
Ak

}

(8)

≡
{

D
(i)
k ≥ x

(i)
k

}

. (9)

The packet dropping probability in each linki ∈ Nn, denoted byP {Bi}, can be obtained

as

P {Bi} = P

{

D
(i)
k ≥ x

(i)
k

}

(10)

=

∫ ∞

0

P

{

D
(i)
k ≥ x

(i)
k

∣

∣

∣
x

(i)
k = x

}

fX(x)dx, for PAP, (11)

=

∞
∑

m=1

P

{

D
(i)
k ≥ x

(i)
k

∣

∣

∣
x

(i)
k = m

}

pX(m), for BAP, (12)

= P

{

D
(i)
k ≥ λ

}

, for CAP. (13)

wherefX(x) and pX(m) are defined as (6) and (7), respectively. In Section IV, we will

obtainP {Bi} for different packet arrival processes.

D. Objectives

Part I: Throughput Maximization: The main objective of the first part of this paper

is to maximize the throughput of the underlying network. To address this problem, we first

define a new notion of throughput, calledeffective throughput, which denotes theactual

amount of data transmitted through the links. In order to derive the effective throughput, we

obtain thefull buffer probabilityof a link for the deterministic and stochastic packet arrival
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processes. Then, we compute the optimum threshold levelτn, and the maximum effective

throughput of the network, for each packet arrival process.

Part II: Delay Characteristics: The main objective of the second part is to analyze

the delay characteristics of the underlying network in terms of the number of links (n)

andλ. For this purpose, we first formulate the packet dropping probabilities based on the

aforementioned packet arrival processes. Then, we derive the necessary conditions in the

asymptotic case ofn → ∞ such that the packet dropping probabilities tend to zero, while

achieving the maximum effective throughput of the network.

Part III: Delay-Throughput Tradeoff: The main goal of the third part is to study the

tradeoff between the effective throughput of the network and other performance measures,

i.e., the dropping probability and the delay-bound (λ) for different packet arrival processes.

In particular, we are interested to determine how much degradation will be enforced in the

throughput by introducing the other constraints, and how much this degradation depends on

the packet arrival process.

III. T HROUGHPUT MAXIMIZATION

In this section, we aim to derive the maximum throughput of the network with a

large number (n) of links, based on using the distributed on-off power allocation strategy.

The throughput of the network is defined as the average sum-rate of all links. However,

to capture the effect of the packet arrival process, we definea new notion of throughput,

calledeffective throughput, which denotes theactualamount of data transmitted through the

links. In order to derive the effective throughput, we first obtain thefull buffer probability

of each linki ∈ Nn for different packet arrival processes. Then, we compute the optimum

threshold levelτn, and the maximum effective throughput of the network, for each packet

arrival process.

A. Effective Throughput

In this section, we present a new performance metric in the network, calledeffective

throughput, which is a function of the threshold levelτn andλ. Let us start with the following
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definition.

Definition 2 (Effective Throughput): Under the on-off power allocation strategy, the ef-

fective throughput of each linki, i ∈ Nn, is defined (on a per-block basis) as

Ti , lim
L→∞

1

L

L
∑

t=1

R
(t)
i I(t)

i , (14)

whereR(t)
i is defined as (3) andI(t)

i is an indicator variable which is equal to1, if user

i transmits at time slott, and 0 otherwise. Furthermore, the effective throughput of the

network is defined as

Teff ,

n
∑

i=1

Ti. (15)

The quantityTi represents the average amount of information conveyed through link

i in a long period of time. This metric is suitable for real-time applications, where the

packets have a certain amount of information and certain arrival rates. It should be noted

that I(t)
i = 1 is equivalent to the case in which the buffer is full and the channel gainh(t)

ii

is greater than the threshold levelτn at time slott. Defining the full buffer event as follows

C
(t)
i ≡ {Buffer of link i is full at time slott}, (16)

we have

P

{

I(t)
i = 1

}

= P

{

h
(t)
ii > τn, C

(t)
i

}

(17)

(a)
= P

{

h
(t)
ii > τn

}

P

{

C
(t)
i

}

(18)

= qn∆n, (19)

whereqn , P

{

h
(t)
ii > τn

}

, and∆n , P

{

C
(t)
i

}

is the full buffer probability. In the above

equations,(a) follows from the fact that the full buffer event depends on the packet arrival

process as well as the direct channel gainsh
(t

′

)
ii , for t

′

< t, which is independent of the

channel gainh(t)
ii (due to the block fading channel model). Thus,

I(t)
i =







1, with probability qn∆n,

0, with probability 1 − qn∆n.
(20)
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It is observed thatI(t)
i is a Bernoulli random variable with parameterqn∆n. In fact, qn∆n

is the probability of the link activation which is a functionof n. In the sequel, we derive

∆n for the aforementioned packet arrival processes.

B. Full Buffer Probability

Let us denotet(i)a as the time instant the last packet has arrived in the buffer of link i

before or at the same timet. The eventC (t)
i implicitly indicates that duringX (t)

i , t− t
(i)
a

time slots, the channel gain of linki is less than the threshold levelτn. Clearly,X (t)
i is a

random variable which varies from zero to infinity for the stochastic packet arrival processes

and is finite for the CAP9. Under the on-off power allocation scheme and using the block

fading model property, the full buffer probability can be obtained as10

∆n = E

[

(1 − qn)
X

(t)
i

]

, (21)

where the expectation is computed with respect toX
(t)
i , andqn , P

{

h
(t)
ii > τn

}

= e−τn .

Lemma 1 Let us denote the full buffer probability of an arbitrary link i ∈ Nn, for the

Poisson, Bernoulli and constant arrival processes as∆PAP
n , ∆BAP

n and∆CAP
n , respectively.

Then,

∆PAP
n =

1

1 + λ log(1 − qn)−1
, (22)

∆BAP
n =

1

1 + (λ− 1)qn
, (23)

∆CAP
n =

1 − (1 − qn)
λ

λqn
. (24)

Proof: For the PAP, sinceX (t)
i is an exponential random variable, (21) can be

simplified as

∆PAP
n =

∫ ∞

0

1

λ
(1 − qn)

xe−
1
λ
xdx (25)

=
1

1 + λ log(1 − qn)−1
. (26)

9Note that, here we assume that if a packet arrives at timet and the channel gain is greater thanτn at this time, the

packet will be transmitted.
10As we will show in Lemma 1,∆n is independent of indexi.
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Also for the BAP,X (t)
i is a geometric random variable with parameterρ = 1

λ
. Thus,

(21) can be simplified as

∆BAP
n =

∞
∑

m=0

(1 − qn)
mρ(1 − ρ)m (27)

(a)
=

1

1 + (λ− 1)qn
, (28)

where(a) follows from the following geometric series:
∞
∑

m=0

xm =
1

1 − x
, |x| < 1. (29)

For the CAP, the full buffer probability in (21) can be written as

∆CAP
n

(a)
=

λ−1
∑

m=0

(1 − qn)
m

P{X (t)
i = m} (30)

(b)
=

λ−1
∑

m=0

(1 − qn)
m 1

λ
(31)

(c)
=

1 − (1 − qn)
λ

λqn
, (32)

where(a) follows from Fig. 2-b, in whichX (t)
i varies from zero toλ− 1 and (b) follows

from the fact that for the deterministic process,X
(t)
i has a uniform distribution. In other

words, for every value ofm ∈ [0, λ − 1], P{X (t)
i = m} = 1

λ
. Also, (c) comes from the

following geometric series:
s
∑

m=0

xm =
1 − xs+1

1 − x
. (33)

Having derived the full buffer probability, we obtain the effective throughput of the network

in the following section.
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C. Effective Throughput of the Network

Rewriting (14), the effective throughput of linki can be obtained as

Ti = lim
L→∞

1

L

L
∑

t=1

R
(t)
i I(t)

i (34)

(a)
= E

[

R
(t)
i I(t)

i

]

(35)

= E

[

R
(t)
i I(t)

i

∣

∣

∣
I(t)
i = 1

]

P

{

I(t)
i = 1

}

+ E

[

R
(t)
i I(t)

i

∣

∣

∣
I(t)
i = 0

]

P

{

I(t)
i = 0

}

(36)

(b)
= qn∆nE

[

R
(t)
i

∣

∣

∣
h

(t)
ii > τn,C

(t)
i

]

(37)

(c)
= qn∆nE

[

log

(

1 +
h

(t)
ii

I
(t)
i +N0

)∣

∣

∣

∣

∣

h
(t)
ii > τn

]

, (38)

where the expectation is computed with respect toh
(t)
ii and the interference termI(t)

i . In the

above equations,(a) follows from the ergodicity of the channels (due to the blockfading

model), which implies that the average over time is equal to average over realization.(b)

results from (17)-(19) andE
[

R
(t)
i I(t)

i

∣

∣I(t)
i = 0

]

= 0. Finally, (c) results from the fact that

the termlog

(

1 +
h
(t)
ii

I
(t)
i +N0

)

is independent ofC (t)
i .

In order to derive the effective throughput, we need to find the statistical behavior of

I
(t)
i which is performed in the following lemmas:

Lemma 2 Under the on-off power scheme, we have

E

[

I
(t)
i

]

= (n− 1)α̂qn∆n, (39)

Var
[

I
(t)
i

]

≤ (n− 1)(2ακqn∆n), (40)

whereα̂ , α̟ and κ , E

[

(

β
(t)
ji

)2
]

.

Proof: See Appendix I.

Lemma 3 The maximum effective throughput is achieved atλ = o(n) and the strong

interference regime which is defined asE[I
(t)
i ] = ω(1), i ∈ Nn.
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Proof: Suppose thatλ 6= o(n) which implies thatλ = Ω(n). Using (38), we have

Ti ≤ qn∆nE

[

log

(

1 +
h

(t)
ii

N0

)∣

∣

∣

∣

∣

h
(t)
ii > τn

]

(41)

(a)

≤ qn∆n log



1 +
E

[

h
(t)
ii

∣

∣

∣
h

(t)
ii > τn

]

N0



 (42)

= qn∆n log

(

1 +
τn + 1

N0

)

, (43)

where(a) comes from the concavity oflog(.) function andJensen’s inequality, E [log x] ≤
log(E [x]), x > 0. Following (22) - (24), it is revealed that∆n ≤ min

(

1, 1
λqn

)

for all packet

arrival processes. Substituting in (43), we have

Ti ≤ 1

λ
log

(

1 +
log λ+ 1

N0

)

∼ log log λ

λ
, (44)

which follows from the fact that the maximum value ofqn∆n log
(

1 + τn+1
N0

)

with the

condition of ∆n ≤ min
(

1, 1
λqn

)

is attained atqn = 1
λ
. Noting thatλ = Ω(n), we have

Ti ≤ Θ
(

log logn
n

)

.

Now, suppose thatλ = o(n) but E[I
(t)
i ] 6= ω(1), or equivalently,E[I

(t)
i ] = O(1) for

somei. SinceE[I
(t)
i ] = (n−1)α̂qn∆n, the conditionE[I

(t)
i ] = O(1) implies that there exists

a constantc such thatqn∆n ≤ c
n
. Noting (22) - (24), it follows that either∆n ∼ 1

λqn
or

∆n = Θ(1). In the first case, the conditionqn∆n ≤ c
n

implies thatn ≤ cλ which cannot

hold due to the assumption ofλ = o(n). Therefore, we must haveqn ≤ c′

n
, for some constant

c′. Substituting in (43) yields

Ti ≤ c′

n
log

(

1 +
τn + 1

N0

)

(a)

≤ c′

n
log

(

1 +
log(n/c′) + 1

N0

)

= Θ

(

log log n

n

)

, (45)

where(a) results from the fact thatqn log
(

1 + τn+1
N0

)

is an increasing function ofqn and

reaches its maximum at the boundary which isc′

n
.
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In the sequel, we present a lower-bound on the effective throughput of link i in the

regionλ = o(n) andE[I
(t)
i ] = ω(1) and show that this lower-bound beats the upper-bounds

derived in the other regions, proving the desired result. For this purpose, using (38), we

write

Ti

(a)

≥ qn∆n log



1 +
τn

E

[

I
(t)
i

∣

∣

∣
h

(t)
ii > τn

]

+No





(b)
= qn∆n log

(

1 +
τn

(n− 1)α̂qn∆n +No

)

(c)
≈ qn∆n log

(

1 +
τn

(n− 1)α̂qn∆n

)

, (46)

where (a) follows from the convexity of the functionlog(1 + b
x+a

) with respect tox and

Jensen’s inequality,(b) results from the independency ofI(t)
i from h

(t)
ii , and (c) follows

from neglecting the termN0 with respect to(n − 1)α̂qn∆n due to the strong interference

assumption. Settingqn = log2 n
n

andλ = n
log2 n

, it is easy to check that τn
(n−1)α̂qn∆n

= o(1) and

hence,log
(

1 + τn
(n−1)α̂qn∆n

)

≈ τn
(n−1)α̂qn∆n

which gives the effective throughput asτn
(n−1)α̂

=

Θ
(

logn
n

)

which is greater than the throughput obtained in the other regimes.

Due to the result of Lemma 3, we restrict ourselves to the caseof λ = o(n) and the strong

interference regime in the rest of the paper.

Lemma 4 Let us assume0 < α ≤ 1 is fixed and we are in the strong interference regime

(i.e., E

[

I
(t)
i

]

= ω(1)). Then with probability one (w. p. 1), we have

I
(t)
i ∼ (n− 1)α̂qn∆n, (47)

asn→ ∞. More precisely, substitutingI(t)
i by (n−1)α̂qn∆n does not change the asymptotic

effective throughput of the network.

Proof: See Appendix II.

Lemma 5 The effective throughput of the network for large values ofn can be obtained as

Teff ≈ nqn∆n log

(

1 +
τn

nα̂qn∆n

)

. (48)
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Proof: Using (38), the effective throughput of the network in the asymptotic case of

n→ ∞ is obtained as

Teff =
n
∑

i=1

Ti (49)

(a)
≈ nqn∆nE

[

log

(

1 +
h

(t)
ii

(n− 1)α̂qn∆n +N0

)∣

∣

∣

∣

∣

h
(t)
ii > τn

]

(50)

(b)
≈ nqn∆nE

[

log

(

1 +
h

(t)
ii

nα̂qn∆n

)∣

∣

∣

∣

∣

h
(t)
ii > τn

]

, (51)

where (a) results from the strong interference assumption and Lemma 4, and (b) follows

from approximating(n−1)α̂qn∆n+N0 by nα̂qn∆n due to the strong interference assumption

and large values ofn. A lower-bound on (51) can be written as

T
l
eff = nqn∆n log

(

1 +
τn

nα̂qn∆n

)

. (52)

Furthermore, due to the concavity oflog(.) function and Jensen’s inequality, an upper-bound

on Teff can be given as

T
u
eff = nqn∆n log



1 +
E

[

h
(t)
ii

∣

∣

∣
h

(t)
ii > τn

]

nα̂qn∆n





= nqn∆n log

(

1 +
τn + 1

nα̂qn∆n

)

. (53)

In order to prove that the above upper and lower bounds have the same scaling, it is sufficient

to show that the optimum threshold value (τn) is much larger than one. For this purpose, we

note that ifτn = O(1), then the effective throughput of the network will be upper-bounded

by

Teff

(a)

≤ τn + 1

α̂
(54)

= O(1), (55)

where (a) follows from log(1 + x) ≤ x. In other words, the effective throughput of the

network does not scale withn, while the throughput ofΘ(logn), as will be shown later, is

achievable. This suggests that the optimum threshold valuemust grow withn, and hence,
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the bounds given in (52) and (53) are asymptotically equal tonqn∆n log
(

1 + τn
nα̂qn∆n

)

and

this completes the proof of the lemma.

Lemma 6 The maximum effective throughput of the network is obtainedin the region that

τn = o (nα̂qn∆n).

Proof: Rewriting the expression of the effective throughput of thenetwork from (48)

and noting the fact thatlog(1 + x) ≤ x, for x ≥ 0, we have

Teff ≈ nqn∆n log

(

1 +
τn

nα̂qn∆n

)

≤ τn
α̂
. (56)

It can be shown that if the conditionτn = o (nα̂qn∆n) is not satisfied, the ratio
log(1+ τn

nα̂qn∆n
)

τn
nα̂qn∆n

is strictly less than one. Havingτn = o (nα̂qn∆n) results inlog
(

1 + τn
nα̂qn∆n

)

≈ τn
nα̂qn∆n

yielding the upper-boundτn
α̂

. This means that to achieve the maximum throughput, the

interference should not only be strong but also be much larger than τn.

Having the expression for the effective throughput of the network in (48), in the next

theorem, we find the optimum value ofqn (or equivalentlyτn) in terms ofn andλ for the

aforementioned packet arrival processes, i.e.:

q̂n = arg max
qn

Teff . (57)

As shown in the proof of Lemma 5, since the optimum threshold value is much larger than

one, the optimizer̂qn is sufficiently small, i.e.,̂qn = o(1).

Theorem 1 Assuming the Poisson packet arrival process and large values ofn, the optimum

solution for (57) is obtained as

qPAPn = δ
log2 n

n
(58)

for some constantδ. Furthermore, the maximum effective throughput of the network asymp-

totically scales aslogn
α̂

, for λ = o
(

n
logn

)

.

Proof: See Appendix III.
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Theorem 2 Assuming the Bernoulli packet arrival process and large values of n, the

optimum solution for (57) is obtained as

qBAPn = δ
log2 n

n
(59)

for some constantδ. Furthermore, the maximum effective throughput of the network asymp-

totically scales aslogn
α̂

, for λ = o
(

n
logn

)

.

Proof: See Appendix IV.

Theorem 3 Assuming a deterministic packet arrival process, the optimum solution of (57)

and the corresponding maximum effective throughput of the network are asymptotically

obtained as

i) qCAPn = δ log2 n
n

and Teff ≈ logn
α̂

, for λ = o
(

n
log2 n

)

,

ii) qCAPn = δ′ log
2 n
n

and Teff ≈ logn
α̂

, for λ = Θ
(

n
log2 n

)

,

iii) qCAPn =
log

„

λ log2 λ
nα̂

«

λ
and Teff ≈ logn

α̂
, for λ = ω

(

n
log2 n

)

and λ = o
(

n
logn

)

,

for some constantsδ and δ′.

Proof: See Appendix V.

The above theorems imply that the effective throughput of the network scales aslogn
α̂

,

despite the packet arrival process. Note that this value is the same as the sum-rate scaling

of the same network with backlogged users [26], which is an upper-bound on the effective

throughput of the current setup. In other words, the effect of the real-time traffic in the

throughput (which is captured in the full buffer probability) is asymptotically negligible.

However, we did not consider the effect of dropping on the calculations. In the subsequent

section, we include the dropping probability in the analysis and find the maximum effective

throughput of the network such that the dropping probability approaches zero.

IV. DELAY ANALYSIS

In this section, we analyze the delay characteristics of theunderlying network in terms

of the number of links (n) andλ. First, we formulate the packet dropping probabilities based
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on the aforementioned packet arrival processes. Then, we derive the necessary conditions

in the asymptotic case ofn → ∞ such that the packet dropping probabilities tend to zero,

while achieving the maximum effective throughput of the network.

Lemma 7 Let us denote the packet dropping probability of a linki, i ∈ Nn, for the Pois-

son, Bernoulli and constant arrival processes asP
{

BPAP
i

}

, P
{

BBAP
i

}

and P
{

BCAP
i

}

,

respectively. Then,

P
{

B
PAP
i

}

=
1

1 + λ log(1 − qn)−1
, (60)

P
{

B
BAP
i

}

=
(1 − qn)(λqn)

−1

1 + (1 − qn)(λqn)−1
, (61)

P
{

B
CAP
i

}

= (1 − qn)
λ. (62)

Proof: Recallingt(i)Ak as the time instant of thekth packet arrival into the buffer of link

i, each useri is active at time slott ≥ t
(i)
Ak

only whenh(t)
ii > τn. In other words, assuming

the buffer is full, no transmission (or no service) occurs ineach slot with probability1−qn.

From (5) and (8)-(12), since the time duration between subsequent packet arrivals isx(i)
k ,

the packet dropping probability for a linki is obtained as

P {Bi} = E

[

(1 − qn)
x
(i)
k

]

, (63)

where the expectation is computed with respect tox
(i)
k . For the PAP, sincex(i)

k is an

exponential random variable, (63) can be simplified as

P
{

B
PAP
i

}

=

∫ ∞

0

1

λ
(1 − qn)

xe−
1
λ
xdx (64)

=
1

1 + λ log(1 − qn)−1
. (65)
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Also for the BAP,x(i)
k is a geometric random variable with parameterρ =

1

λ
. Thus,

(63) can be simplified as

P
{

B
BAP
i

}

=
∞
∑

m=1

(1 − qn)
mρ(1 − ρ)m−1 (66)

=
ρ

1 − ρ

∞
∑

m=1

[(1 − qn)(1 − ρ)]m (67)

(a)
=

(1 − qn)(λqn)
−1

1 + (1 − qn)(λqn)−1
, (68)

where(a) comes from the following geometric series:
∞
∑

m=1

xm =
x

1 − x
, |x| < 1. (69)

According to Fig. 2-a,x(i)
k for the CAP is a deterministic quantity and is equal toλ.

Thus, we have

P
{

B
CAP
i

}

= (1 − qn)
λ. (70)

It should be noted that (65), (68) and (70) are valid for everyvalue of qn ∈ [0, 1]. In

particular, in the extreme case ofqn = 1, P
{

BCAP
i

}

= P
{

BPAP
i

}

= P
{

BBAP
i

}

= 0.

We are now ready to prove the main result of this section. In the next theorem, we derive

the necessary conditions onλ, such that the corresponding packet dropping probabilities tend

to zero, while achieving the maximum effective throughput of the network.

Theorem 4 For the optimumqn obtained in Theorems 1-3 resulting in the maximum effective

throughput of the network,

i) limn→∞ P
{

BPAP
i

}

= 0, if λPAP = ω
(

n
log2 n

)

and λPAP = o
(

n
logn

)

,

ii) limn→∞ P
{

BBAP
i

}

= 0, if λBAP = ω
(

n
log2 n

)

and λBAP = o
(

n
logn

)

,

iii) limn→∞ P
{

BCAP
i

}

= 0, if λCAP = ω
(

n
log2 n

)

and λCAP = o
(

n
logn

)

.

Proof: i) From (60), we have

P
{

B
PAP
i

}

=
1

1 − λPAP log(1 − qPAPn )
. (71)
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It follows from (71) that achievingP
{

BPAP
i

}

= ǫ results in

λPAPǫ =
1 − ǫ−1

log(1 − qPAPn )
(a)
≈ ǫ−1 − 1

qPAPn

, (72)

where(a) comes fromqPAPn = o(1) and the following approximation:

log(1 − z) ≈ −z, |z| ≪ 1. (73)

Noting the fact that the optimum value ofqPAPn scales asΘ
(

log2 n
n

)

, having λPAP =

ω
(

n
log2 n

)

results in limn→∞ P
{

BPAP
i

}

= 0. On the other hand, from Theorem 1, the

conditionλPAP = o
(

n
logn

)

is required to achieve the maximumTeff , and this completes

the proof of the first part of the Theorem.

ii) It is realized from (61) that achievingP
{

BBAP
i

}

= ǫ results in

λBAPǫ =
1

qBAPn

[

(1 − qBAPn )ǫ−1 − (1 − qBAPn )
]

≈ ǫ−1

qBAPn

, (74)

for small enoughǫ. Noting the fact that the optimum value ofqBAPn scales asΘ
(

log2 n
n

)

,

having λBAP = ω
(

n
log2 n

)

results in limn→∞ P
{

BBAP
i

}

= 0. On the other hand, from

Theorem 2,λBAP = o
(

n
logn

)

guarantees achieving the maximum effective throughput of

the network.

iii) From (62), we have

P
{

B
CAP
i

}

= eλ
CAP log(1−qCAPn ) (75)

(a)
≈ e−q

CAP
n λCAP (76)

where(a) follows from (73) forqCAPn = o(1). To achieveP
{

BCAP
i

}

= ǫ, we must have

λCAPǫ =
1

qCAPn

log ǫ−1. (77)

It follows from (76) that settingqCAPn λCAP = ω(1) makese−q
CAP
n λCAP → 0. Using part(iii)

in Theorem 3, it turns out that choosingλCAP = ω
(

n
log2 n

)

satisfiesqCAPn λCAP = ω(1)
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which yields limn→∞ P
{

BCAP
i

}

= 0. We also need the conditionλCAP = o
(

n
logn

)

to

ensure achieving the maximum effective throughput of the network.

Remark 1-It is worth mentioning that the delay-bound (λ) in each link for the CAP

scales the same as that of the PAP and the BAP. However,P
{

BCAP
i

}

decays faster than

P
{

BPAP
i

}

andP
{

BBAP
i

}

, whenn tends to infinity.

An interesting conclusion of Theorem 4 is the possibility ofachieving the maximum

effective throughput of the network while making the dropping probability approach zero.

More precisely, there exists someǫ≪ 1 such thatP {Bi} ≤ ǫ, ∀i ∈ Nn, while achieving the

maximumTeff of logn
α̂

. This is true for all arrival processes. However, for arbitrary values

of ǫ, there is a tradeoff between increasing the throughput, anddecreasing the dropping

probability and the delay-bound (λ). This tradeoff is studied in the next section.

V. DELAY-THROUGHPUT TRADEOFF

In this section, we study the tradeoff between the effectivethroughput of the network

and other performance measures, i.e., the dropping probability and the delay-bound (λ) for

different packet arrival processes. In particular, we would like to know how much degradation

will be enforced in the throughput by introducing the other constraints, and how much this

degradation depends on the packet arrival process.

A. Tradeoff Between Throughput and Dropping Probability

In this section, we assume that a constraintP {Bi} ≤ ǫ must be satisfied for the

dropping probability. It can be easily shown that the constraint P {Bi} ≤ ǫ is equivalent to

P {Bi} = ǫ. The aim is to characterize the degradation on the effectivethroughput of the

network in terms ofǫ for different packet arrival processes. First, we considerPAP.

Looking at the equations (22) and (60), it turns out thatP
{

BPAP
i

}

= ∆PAP
n . Hence,

the conditionP
{

BPAP
i

}

= ǫ is translated to∆PAP
n = ǫ. Therefore, using (48), the effective

throughput of the network can be written as

Teff ≈ nqnǫ log

(

1 +
τn

nα̂qnǫ

)

. (78)
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From the above equation, it can be realized that the effective throughput of the network

is equal to the average sum-rate of the network withnǫ users in the case of backlogged

users, which is given in [26] aslog(nǫ)
α̂

for the case ofnǫ ≫ 1 or ǫ = ω( 1
n
). Also, the

optimum value ofqn is shown to scale asδ log2(nǫ)
nǫ

for some constantδ and hence, the

optimum value ofλ is given as ǫ
−1

qn
= n

δ log2(nǫ)
. Let us denote∆Teff as the degradation

in the effective throughput of the network, which is defined as the difference between the

maximum effective throughput in the case of no constraint onP {Bi} (Theorem 1-3) and

the case with constraint onP {Bi}. Using Theorem 1,∆Teff for the PAP can be written as

∆Teff ≈ logn

α̂
− log(nǫ)

α̂

=
log(ǫ−1)

α̂
, (79)

for ǫ = ω
(

1
n

)

11. Moreover, for values ofǫ such thatlog(ǫ−1) = o(logn), it can be shown

that the scaling of the effective throughput of the network is not changed, i.e.,Teff ∼ logn
α̂

.

For the BAP, and using (23) and (61), we have

P
{

B
BAP
i

}

=
1 − qn

1 + (λ− 1)qn
(a)
≈ 1

1 + (λ− 1)qn

= ∆BAP
n , (80)

where(a) follows from the fact thatqn = o(1). Therefore, similar to the case of the PAP, we

haveP
{

BBAP
i

}

≈ ∆BAP
n = ǫ and as a result, the rest of the arguments hold. In particular,

∆Teff ≈ log(ǫ−1)

α̂
. (81)

For the CAP, and using (24) and (62), we have

(1 − qn)
λ = ǫ =⇒ λqn ≈ log(ǫ−1), (82)

11In the case ofǫ = O( 1
n
), it is easy to see that the effective throughput of the network does not scale withn.
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which gives

∆CAP
n =

1 − (1 − qn)
λ

λqn
(83)

≈ 1

log(ǫ−1)
. (84)

Hence, using (48), the effective throughput of the network can be written as

Teff ≈ n

log(ǫ−1)
qn log

(

1 +
τn

n
log(ǫ−1)

α̂qn

)

, (85)

which is equal to the average sum-rate of a network withn
log(ǫ−1)

backlogged users and is

asymptotically equal to
log

“

n

log(ǫ−1)

”

α̂
, for values ofǫ satisfying log(ǫ−1) = o(n). Therefore,

the degradation in the effective throughput of the network for the CAP can be expressed as

∆Teff ≈ log n

α̂
−

log
(

n
log(ǫ−1)

)

α̂

=
log log(ǫ−1)

α̂
. (86)

Comparing the expressions of∆Teff for the Poisson, Bernoulli and constant packet arrival

processes, it follows that the degradation in the effectivethroughput of the network in the

cases of PAP and BAP both grow logarithmically withǫ−1, while in the case of CAP it

grows double logarithmically. In other words, the degradation in the throughput in the cases

of the PAP and BAP is much more substantial compared to the CAP. This fact is also

observed in the simulation results in the next sections.

B. Tradeoff Between Throughput and Delay

In this section, we aim to find the tradeoff between the effective throughput of the

network and the delay-bound (λ), for a given constraint on the dropping probability, i.e.,

P {Bi} ≤ ǫ.

1) PAP: Using (22) and (60), it follows that for a givenλ and ǫ≪ 1, we have

qn ≈ ǫ−1

λ
,

=⇒ τn ≈ log(λǫ), (87)
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and

qn∆n ≈ 1

λ
. (88)

Substitutingqn∆n and τn from the above equations in (48) yields

Teff ≈ n

λ
log

(

1 +
λ log(λǫ)

nα̂

)

. (89)

It can be verified thatTeff has a global maximum atλPAPopt ≈ nα̂
log2(nα̂ǫ−1)

. In other words, for

λ < λPAPopt , there is a tradeoff between the throughput and delay, meaning that increasingλ

results in increasing both the throughput and delay. However, the increase in the throughput

is logarithmic while the delay increases linearly withλ. It should be noted that the regionλ >

λPAPopt is not of interest, since increasingλ from λPAPopt results in decreasing the throughput

and increasing the delay which is not desired.

2) BAP: Due to the similarity between the values ofP {Bi} and∆n for the PAP and

the BAP, the results obtained for the PAP are also valid for the BAP.

3) CAP: Using (24) and (62), it follows that for a givenλ and ǫ≪ 1, we have

qn ≈ log(ǫ−1)

λ
,

=⇒ τn ≈ log

(

λ

log(ǫ−1)

)

, (90)

and

qn∆n ≈ 1

λ
. (91)

As can be observed, all the results for the cases of PAP and BAPare extendable to the

case of CAP by substitutingǫ−1 with log(ǫ−1). In particular, the optimum value forλ can

be written asλCAPopt ≈ nα̂
log2(nα̂ log(ǫ−1))

, and forλ < λCAPopt , the effective throughput of the

network can be given asTeff ≈ 1
α̂

log
(

λ
log(ǫ−1)

)

. This means that in the regionλ < λCAPopt ,

which is the region of interest, there is a tradeoff between the throughput and delay such

that by increasingλ, Teff increases logarithmically, while the delay increases linearly with λ.

Furthermore, comparing the value ofλopt for the PAP and BAP with the CAP, it is realized

that λCAPopt > λPAPopt . This fact is also observed in the simulations.
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VI. NUMERICAL RESULTS

In this section, we present some numerical results to evaluate the tradoff between

the effective throughput of the network and other performance measures, i.e., dropping

probability and the delay-bound (λ) for different packet arrival processes. For this purpose,

we assume that all users in the network follow the threshold-based on-off power allocation

policy. In addition, the shadowing effect is assumed to belognormaldistributed with mean

̟ = 0.5, variance1 andα = 0.4. Furthermore, we assume thatn = 500 andN0 = 1.

Figures 3 and 4 show the effective throughput of the network versusλǫ for the PAP,

BAP and CAP and different values ofǫ. It is observed from these figures that for a given

constraint on the dropping probability (e.g.,ǫ = 0.05), and forλ < λopt, increasingλ results

in increasing both the throughput and delay. However, the increase in the throughput is

logarithmic while the delay increases linearly withλ as expected. Also, increasingλ from

λopt results in decreasing the throughput and increasing the delay which is not desired.

Furthermore, comparing the value ofλopt for the PAP and BAP with the CAP, it is realized

that λCAPopt > λPAPopt andλCAPopt > λBAPopt , as expected.

To evaluate the degradation in the effective throughput of the network in terms of

dropping probability, we plotTeff versuslog ǫ−1 for different packet arrival processes in

Fig. 5. It can be seen that the degradation in the throughput in the cases of the PAP and

BAP is much more substantial compared to the CAP, as expected. Hence, the performance

of the underlying network with the CAP is better than that of the PAP and BAP from the

delay-throughput tradeoff points of view.

VII. CONCLUSION

In this paper, the delay-throughput tradeoff of a single-hop wireless network in terms

of the number of links (n), and under the shadowing effect with parameters(α,̟) was

analyzed. It was proved that the effective throughput of thenetwork scales aslogn
α̂

, with

α̂ , α̟, despite the packet arrival process. Then, the delay characteristics of the underlying

network in terms of a packet dropping probability was presented. Also, the necessary
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Fig. 3. Effective throughput of the network vs.λǫ for N0 = 1, n = 500, α = 0.4, and different values ofǫ

a) PAP and b) BAP.
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Fig. 4. Effective throughput of the network vs.λǫ for the CAP andN0 = 1, n = 500, α = 0.4, and different values of

ǫ.

conditions in the asymptotic case ofn → ∞ was derived such that the packet dropping

probabilities tend to zero, while achieving the maximum effective throughput of the network.

Finally, the tradeoff between the effective throughput of the network and delay-bounds for

different packet arrival processes was studied. It was shown from the numerical results that

the performance of the deterministic packet arrival process is better than that of the Poisson

and the Bernoulli packet arrival processes, from the delay-throughput tradoff points of view.

APPENDIX I

PROOF OFLEMMA 2

Let us defineχ(t)
j , L(t)

ji p
(t)
j , whereL(t)

ji is independent ofp(t)
j , for j 6= i. Note that

P

{

p
(t)
j = 1

}

= P

{

h
(t)
jj > τn, C

(t)
j

}

(A-1)

(a)
= qn∆n, (A-2)
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Fig. 5. Effective throughput of the network vs.log ǫ−1 for different packet arrival processes andN0 = 1, n = 500,

α = 0.4.

where(a) follows from (19). Thus for the on-off power scheme, we have

E

[

p
(t)
j

]

= qn∆n. (A-3)

Under a quasi-static Rayleigh fading channel model, it is concluded thatχ(t)
j s are independent

and identically distributed (i.i.d.) random variables with

E

[

χ
(t)
j

]

= E

[

L(t)
ji p

(t)
j

]

= α̂qn∆n, (A-4)

Var
[

χ
(t)
j

]

= E

[

(

χ
(t)
j

)2
]

− E
2
[

χ
(t)
j

]

(A-5)

(a)

≤ 2ακqn∆n − (α̂qn∆n)
2, (A-6)

whereE

[

(

h
(t)
ji

)2
]

= 2, E

[

(

β
(t)
ji

)2
]

, κ andα̂ , α̟. Also, (a) follows from the fact that
(

p
(t)
j

)2

≤ p
(t)
j . Thus,E

[

(

p
(t)
j

)2
]

≤ E

[

p
(t)
j

]

= qn∆n. The interferenceI(t)
i =

∑n
j=1
j 6=i

χ
(t)
j is
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a random variable with meanµn and varianceϑ2
n, where

µn , E

[

I
(t)
i

]

= (n− 1)α̂qn∆n, (A-7)

ϑ2
n , Var

[

I
(t)
i

]

≤ (n− 1)(2ακqn∆n − (α̂qn∆n)
2) ≤ (n− 1)(2ακqn∆n). (A-8)

APPENDIX II

PROOF OFLEMMA 4

Using Lemma 2 and theCentral Limit Theorem[34, p. 183], we obtain

P

{

|I(t)
i − µn| < ψn

}

≈ 1 −Q

(

ψn
ϑn

)

(B-1)

(a)

≥ 1 − e
− ψ2

n

2ϑ2
n , (B-2)

for all ψn > 0 such thatψn = o
(

n
1
6ϑn

)

. In the above equations, theQ(.) function is

defined asQ(x) , 1√
2π

∫∞
x
e−u

2/2du, and (a) follows from the fact thatQ(x) ≤ e−
x2

2 ,

∀x > 0. Selectingψn = (nqn∆n)
1
8
√

2ϑn, we obtain

P{|I(t)
i − µn| < ψn} ≥ 1 − e−(nqn∆n)

1
4 . (B-3)

Therefore, definingε ,
ψn
µn

= O
(

(nqn∆n)
− 3

8

)

, we have

P{µn (1 − ε) ≤ I
(t)
i ≤ µn (1 + ε)} ≥ 1 − e−(nqn∆n)

1
4 . (B-4)

Noting thatnqn∆n → ∞, it follows that I(t)
i ∼ µn, with probability one.

APPENDIX III

PROOF OFTHEOREM 1

Taking the first-order derivative of (48) with respect toτn yields

∂Teff

∂τn

(a)
= nqn

[

∂∆n

∂τn
− ∆n

]

log

(

1 +
τn

nα̂qn∆n

)

+ nqn
(1 + τn)∆n − τn

∂∆n

∂τn

nα̂qn∆n + τn
(C-1)

(b)
≈ nqn

[

∂∆n

∂τn
− ∆n

]

τn
nα̂qn∆n

+ nqn
(1 + τn)∆n − τn

∂∆n

∂τn

nα̂qn∆n + τn
, (C-2)
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where (a) comes fromqn = e−τn and ∂qn
∂τn

= −qn. Also, (b) follows from Lemma 6 and

using the approximationlog(1 + x) ≈ x, for x≪ 1. Setting (C-2) equal to zero yields

nα̂qn∆
2
n =

(

∆n −
∂∆n

∂τn

)

τ 2
n . (C-3)

It should be noted that (C-3) is valid for every packet arrival process. Recalling from (22),

the full buffer probability for the PAP is given by

∆PAP
n =

1

1 + λ log(1 − qn)−1
(C-4)

(a)
≈ 1

1 + λqn
, (C-5)

where (a) follows from the fact that forqn = o(1), log(1 − qn)
−1 ≈ qn. In this case,

∂∆PAP
n

∂τn
= ∂∆PAP

n

∂qn

∂qn
∂τn

= λqn
(1+λqn)2

, which results in

∆PAP
n − ∂∆PAP

n

∂τn
≈ 1

(1 + λqn)
2 =

(

∆PAP
n

)2
. (C-6)

Thus for the Poisson arrival process, (C-3) can be simplifiedas

nα̂qn = τ 2
n . (C-7)

It can be verified that the solution for (C-7) is

τPAPn = log n− 2 log logn +O(1). (C-8)

Using qn = e−τn , we conclude that

qPAPn = δ
log2 n

n
, (C-9)

for some constantδ.

To satisfy the condition of lemma 6, we should have

τn
nα̂qn∆PAP

n

≪ 1, (C-10)

Using (C-5), (C-8), and (C-9), it yields

λPAP = o

(

n

logn

)

. (C-11)

Thus, the maximum effective throughput of the network obtained in (48) can be written as

Teff ≈ τn
α̂
. (C-12)
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APPENDIX IV

PROOF OFTHEOREM 2

Using (23), we have∂∆BAP
n

∂τn
= ∂∆BAP

n

∂qn

∂qn
∂τn

= −qn ∂∆BAP
n

∂qn
= qn(λ−1)

(1+(λ−1)qn)2
. In this case,

∆BAP
n − ∂∆BAP

n

∂τn
=

1

(1 + (λ− 1)qn)
2 =

(

∆BAP
n

)2
. (D-1)

Thus for the Bernoulli arrival process, (C-3) can be simplified as

nα̂qn = τ 2
n . (D-2)

It can be observed that (D-2) is exactly equal to (C-7) and hence, its solution can be written

as

τBAPn = log n− 2 log logn +O(1), (D-3)

and

qBAPn = δ
log2 n

n
, (D-4)

for some constantsδ. Similarly, the maximum effective throughput of the network for the

BAP is obtained as

Teff ≈ τn
α̂
, (D-5)

which is achieved under the condition

λBAP = o

(

n

logn

)

. (D-6)

APPENDIX V

PROOF OFTHEOREM 3

Using (24), we have

∂∆CAP
n

∂τn
=

∂∆CAP
n

∂qn

∂qn
∂τn

(E-1)

= −qn
∂∆CAP

n

∂qn
(E-2)

=
1 − (1 − qn)

λ

λqn
− (1 − qn)

λ−1 (E-3)

= ∆CAP
n − (1 − qn)

λ−1. (E-4)
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Hence,∆CAP
n − ∂∆CAP

n

∂τn
= (1 − qn)

λ−1. In this case, (C-3) can be simplifies as

nα̂qn

[

1 − (1 − qn)
λ
]2

(λqn)
2 = (1 − qn)

λ−1τ 2
n . (E-5)

or

nα̂ =
τ 2
nλ

2qn(1 − qn)
λ−1

[1 − (1 − qn)λ]
2 . (E-6)

Sinceqn = o(1), we have(1 − qn)
λ−1 = e(λ−1) log(1−qn)

(a)
≈ e−λqn, and1 − (1 − qn)

λ
(b)
≈

1 − e−λqn . It should be noted that(a) and (b) are valid under the conditionλq
2
n

2
= o(1) 12.

Thus, (E-6) can be simplified as

nα̂ =
τ 2
nλ

2qne
−λqn

[1 − e−λqn ]2
, (E-7)

or
ν log ν−1

(1 − ν)2
= Ψ, (E-8)

whereν , e−λqn andΨ ,
nα̂

τ 2
nλ

. For this setup, we have the following cases:

Case 1:Ψ ≫ 1

It is realized from (E-8) that forΨ ≫ 1, ν = 1 − ǫ, whereǫ = o(1). Thus, (E-8) can

be simplified as

Ψ ≈ log(1 − ǫ)−1

ǫ2
(E-9)

(a)
≈ ǫ

ǫ2
(E-10)

=
1

ǫ
, (E-11)

where(a) follows from the Taylor series expansionlog(1−z) = −
∑∞

k=1

zk

k
≈ −z, |z| ≪ 1.

Sinceν , e−λqn andν = 1 − ǫ, we have

e−λqn = 1 − 1

Ψ
, (E-12)

=⇒ qn
(a)
≈ 1

Ψλ
=

τ 2
n

nα̂
, (E-13)

12As we will show the conditionλq
2

n

2
= o(1) is satisfied for the optimumqn and the correspondingλ.
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where (a) follows from the fact that asλqn = o(1), we havee−λqn ≈ 1 − λqn. It can be

verified that the solution for (E-13) is

τCAPn = log n− 2 log log n+O(1). (E-14)

Using qn = e−τn , we conclude that

qCAPn = δ
log2 n

n
, (E-15)

for some constantδ.

The above results are valid forΨ , nα̂
τ2
nλ

≫ 1 or λ = o
(

n
log2 n

)

. Also, it can be verified

that λq
2
n

2
= o(1), and therefore the approximations(1− qn)

λ−1 ≈ e−λqn and1− (1− qn)
λ ≈

1 − e−λqn are valid in this region.

To satisfy the condition of Lemma 6, we must have

τn
nα̂qCAPn ∆CAP

n

≪ 1. (E-16)

From (24), (E-14) and noting that asλ = o
(

n
log2 n

)

,
[

1 − (1 − qn)
λ
]

≈ 1 − e−λqn ≈ λqn,

we can write

τn
nα̂qCAPn ∆CAP

n

≈ λ logn

nα̂ [1 − (1 − qn)λ]
(E-17)

≈ logn

nα̂qn

= O

(

1

logn

)

, (E-18)

which means that the condition of Lemma 6 is automatically satisfied in this region. Thus,

the maximum effective throughput of the network obtained in(48) can be simplified as

Teff ≈ τn
α̂

≈ logn

α̂
. (E-19)

Case 2:Ψ = Θ(1)

From (E-8) which givesν log ν−1

(1−ν)2 = Ψ = Θ(1), we conclude thatν , e−λqn = Θ(1).

Thus,

qn =
c1
λ

(E-20)

(a)
=

c2τ
2
n

nα̂
(E-21)
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wherec1 andc2 are constants and(a) follows from Ψ , nα̂
τ2
nλ

= Θ(1). It can be verified that

the solution for (E-21) is

τCAPn = logn− 2 log log n+O(1). (E-22)

qCAPn = δ′
log2 n

n
, (E-23)

for some constantδ′.

The above results are valid forΨ , nα̂
τ2
nλ

= Θ(1) or λ = Θ
(

n
log2 n

)

. Also, it can

be verified thatλq
2
n

2
= o(1), and therefore, the approximations(1 − qn)

λ−1 ≈ e−λqn and

1 − (1 − qn)
λ ≈ 1 − e−λqn are valid in this region.

Similar to the argument in Case 1, the condition of Lemma 6 is satisfied, and therefore,

the maximum effective throughput of the network is obtainedas

Teff ≈ τn
α̂

≈ logn

α̂
. (E-24)

Case 3:Ψ ≪ 1

It is concluded from (E-8) thatν log ν−1

(1−ν)2 = Ψ, whereΨ = o(1). In this case,ν = o(1),

and therefore,ν log ν−1 ≈ Ψ. The solution for this equation isν ≈ Ψ
log(Ψ)−1 . In other words,

e−λqn ≈
nα̂
λτ2
n

log
(

λτ2
n

nα̂

) . (E-25)

Thus,

λqn ≈ log

(

λτ 2
n

nα̂

)

+ log log

(

λτ 2
n

nα̂

)

(E-26)

(a)
≈ log

(

λτ 2
n

nα̂

)

, (E-27)

where (a) follows from λqn = ω(1) which comes fromν = o(1). The solution for the

above equation can be written asτn = log λ− f(λ) or qn = ef(λ)

λ
= o(1), where we assume

f(λ) = o(log λ). Substituting in (E-27), we obtain

ef(λ) = log

(

λ(log λ− f(λ))2

nα̂

)

(E-28)

= log

(

λ log2 λ

nα̂

)

+ 2 log

(

1 − f(λ)

log λ

)

(E-29)

(a)
≈ log

(

λ log2 λ

nα̂

)

, (E-30)
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where(a) follows from the factf(λ) = o(log λ). Thus, usingτn = log λ− f(λ), it yields

τCAPn = log λ− log log

(

λ log2 λ

nα̂

)

. (E-31)

It should be noted that (E-31) is derived from (E-25) forΨ , nα̂
τ2
nλ

≪ 1. This translates the

condition nα̂
τ2
nλ

≪ 1 to nα̂
λ log2 λ

≪ 1, which incurs thatλ = ω
(

n
log2 n

)

.

Also, in the following we show that the conditionλq
2
n

2
= o(1) is satisfied. It follows

from (E-27) that

λq2
n =

log2
(

λτ2
n

nα̂

)

λ
(E-32)

(a)

≤
log2

(

λ log2 λ
nα̂

)

λ
(E-33)

(b)
= o(1), (E-34)

where(a) follows from (E-31) and(b) comes fromλ = ω
(

n
log2 n

)

.

To satisfy the condition of Lemma 6, we must have

τn
nα̂qCAPn ∆CAP

n

≪ 1. (E-35)

From (24) and (E-31), we can write

τn
nα̂qCAPn ∆CAP

n

≈ λ log λ

nα̂ [1 − e−λqn]
(E-36)

(a)
≈ λ log λ

nα̂
, (E-37)

where(a) follows from e−λqn = o(1). In order to haveλ log λ
nα̂

= o(1), one must haveλ =

o
(

n
logn

)

. In this case, the maximum effective throughput of the network can be simplified

as

Teff ≈ τn
α̂

≈ log λ

α̂
. (E-38)

Noting thatλ satisfiesλ = ω
(

n
log2 n

)

and λ = o
(

n
logn

)

, it follows that log λ ∼ logn. In

other words,Teff ≈ logn
α̂

.
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