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Abstract

Schein and Gallager introduced the Gaussian parallel relaychannel in 2000. They proposed the

Amplify-and-Forward (AF) and the Decode-and-Forward (DF)strategies for this channel. For a long

time, the best known achievable rate for this channel was based on the AF and DF with time sharing

(AF-DF). Recently, a Rematch-and-Forward (RF) scheme for the scenario in which different amounts

of bandwidth can be assigned to the first and second hops were proposed. In this paper, we propose a

Combined Amplify-and-Decode Forward (CADF)scheme for the Gaussian parallel relay channel. We

prove that the CADF scheme always gives a better achievable rate compared to the RF scheme, when

there is a bandwidth mismatch between the first hop and the second hop. Furthermore, for the equal

bandwidth case (Schein’s setup), we show that the time sharing between the CADF and the DF schemes

(CADF-DF) leads to a better achievable rate compared to the time sharing between the RF and the DF

schemes (RF-DF) as well as the AF-DF.

I. INTRODUCTION

A. Motivation

The continuous growth in wireless communication has motivated information theoretists to

extend Shannon’s information theoretic arguments for a single user channel to the scenarios

that involve communication among multiple users. In this regard, cooperative communication in
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which a source exploits some intermediate nodes as relays, to transmit its data to an intended

destination has received significant attention during recent years. Relays can emulate distributed

transmit antennas to combat the multi-path fading effect and increase the physical coverage area.

Since constructing a large-scale wireless network is very expensive, it is important to under-

stand how to efficiently utilize the available power and bandwidth resources. The parallel relay

channel is the basic building block of a general network. Here, our goal is to study and analyze

the performance limits of this channel.

B. History

The Relay channel is a three terminal network which was introduced for the first time by Van

der Meulen in 1971 [1]. The most important capacity result ofthe relay channel was reported

by Cover and El Gamal [2]. They proposed the Decode-and-Forward (DF) scheme based on

block Markov encoding in which the relays decode the transmitted message. These authors also

proposed the Compress-and-Forward (CF) strategy in which relays do not decode the message,

but send the compressed received values to the destination.Zahedi and El Gamal considered two

different cases of the frequency division Gaussian relay channel. They derived lower and upper

bounds on the capacity of this channel, which in turn translates to upper and lower bounds on

the minimum required energy per bit for the reliable transmission [3]. The authors also derived a

single letter characterization of the capacity of the frequency division Additive White Gaussian

Noise (AWGN) relay channel with simple linear relaying scheme [4] [5]. Recently, Cover and

Young-Han Kim in [6] studied a class of deterministic relay channel and derived its capacity

with the hash-and-forward and CF schemes. Marko Aleksic, Peyman Razaghi, and Wei Yu in

[7] derived the capacity of a class of modulo-sum relay channels using the CF scheme of [2].

They showed that the capacity of this channel is strictly below the cut-set bound.

There are also several works on the multi-relay channel in the literature (See [8]–[16], [18]–

[20], [23]). Xie and Kumar generalized the block Markov encoding scheme of [2] for a network

of multiple relays [10]. Furthermore, Gastpar, Kramer, andGupta extended the CF scheme

in [2] to a multiple relay channel by introducing the conceptof antenna polling in [12] and

[13]. They showed that when the relays are close to the destination, this strategy achieves the

antenna-clustering capacity. On the other hand, when relays are close to the source, the DF

strategy can achieve the capacity in a wireless relay network [14]. In [15], Amichai, Shamai,
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Steinberg and Kramer considered the problem of a nomadic terminal sending information to a

remote destination via agents with lossless connections. They investigated the case that these

agents do not have any decoding capability, so they must compress what is received. This case

is also fully characterized for the Gaussian channel. In [16], we completely characterized the

asymptotic capacity of the half-duplex Gaussian parallel relay channel with two relays using

the Dirty Paper Coding scheme. Moreover, assuming successive relaying protocol, we derived

the optimum input distribution for the source and relays. Recently, Salman Avestimehr, Suhas

Diggavi and David Tse in [18]–[20] further studied the capacity of wireless relay networks. The

authors in [18] [19], proposed a deterministic model for a multiuser communication channel

and generalized the max-flow min-cut theorem from the wire-line to the wireless networks. In

[20], they proposed an achievable rate for the Gaussian relay networks and showed that their

achievable rate is within a constant bit (determined by the graph topology of the network) from

the cut-set bound.

C. Contributions and Relation to Previous Works

In this paper, we consider the Gaussian parallel relay channel with a source, a destination,

and a set of relays. There is no direct link from the source to the destination. This parallel relay

channel is a special case of a multiple relay network in whichthe source broadcasts its data to

all the relays, and the relays transmit their data coherently to the destination.

Schein and Gallager introduced the parallel relay channel in [8] [9]. They considered the

parallel relay channel with two relays and studied possiblecoding schemes for this channel. For

the Gaussian case, they proposed the Amplify-and-Forward (AF) and Decode-and-Forward (DF)

schemes and also another scheme based on the time sharing of those schemes. Gastpar in [11]

showed that in a Gaussian parallel relay channel with infinite number of relays, the optimum

coding scheme is the AF.

For many years, Schein and Gallager’s achievable rate basedon the time sharing between the

AF and DF schemes (AF-DF) was the best known achievable scheme for the Gaussian parallel

relay channel with two relays. Since then there was no reported improvement in the literature.

However, more recently, Yuval Kochman, Anatoly Khina, Uri Erez, Ram Zamir in [23], proposed

the Rematch-and-Forward (RF) scheme for this channel. Thisscheme is based on the use of

analog modulo-lattice modulation (See [22]), and is used for the scenarios in which there is
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a bandwidth mismatch between the source-relays and relays-destination channels. Furthermore,

the authors showed that the time sharing between the RF and DFscheme (RF-DF), in certain

scenarios, achieves a better rate than the Schein and Gallager’s scheme.

In this paper, we propose a Combined Amplify-and-Decode (CADF) scheme, when there is a

bandwidth mismatch between the source-relays (Broadcast:BC) and relays-destination (Multiple

Access: MAC) channels. We prove that this scheme always achieves a better rate than the RF

scheme. Furthermore, we show that time sharing between the CADF and DF schemes (CADF-

DF) always outperforms the RF-DF and the AF-DF.

This paper is organized as follows: The system model is introduced in section II. In section III,

the CADF scheme for the bandwidth mismatch scenarios is explained. Also its achievable rate

is compared with that of the traditional coding schemes as well as the RF scheme. Simulation

results are presented in section IV, and section V concludesthe paper.

D. Notation

Throughout the paper, lowercase bold letters and regular letters represent vectors and scalars,

respectively. AndC(x) , 1
2
log2(1 + x). Furthermore, for the sake of brevity,A

(n)
ǫ denotes the

set of weakly jointly typical sequences for any intended setof random variables.

II. THE SYSTEM MODEL

The setup of the system model considered in this paper is similar to [23]. Here, we consider

a Gaussian network which consists of a source,M relays, and a destination with no direct link

between the source and the destination.

Nodes1, · · · , M represent relay 1 ,· · · , relay M , respectively. The transmitted vectors from

the source and the relays, and the received vectors at the relays and the destination are denoted

by xBC , xm(m = 1, · · · , M) andym(m = 1, · · · , M), andyMAC , respectively. Hence, we have

ym = xBC + zm, m ∈ {1, · · · , M}, (1)

yMAC =
M
∑

m=1

xm + zMAC . (2)

wherezm andzMAC are the AWGN terms. Throughout the paper, for the sake of simplicity, we

consider the symmetric case in which all the AWGN terms have zero mean and the variance

“1” per dimension.
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zMAC

Relay 1

Relay 2

Relay M

Destination
xBC

z2
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y1

y2

yM
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x2

xM

Source

zM

yMAC

Fig. 1. The Gaussian Parallel Relay Channel.

Furthermore, the average power constraintsPs, Pm (m ∈ {1, · · · , M}) should be satisfied for

the source and relay nodes:

1

n
E ‖ xBC ‖2≤ Ps, (3)

1

n
E ‖ xm ‖2≤ Pm, m ∈ {1, · · · , M}. (4)

wheren denotes the corresponding vector length.

Due to the symmetry assumption, we have

P1 = P2 = · · · = PM = Pr. (5)

It should be noted that for the bandwidth mismatch casePs and Pr are the power constraints

per unit of bandwidth.

III. T HE BANDWIDTH M ISMATCH CASE

In this section, we study the problem of bandwidth mismatch between the first and second

hop. This problem may arise in many practical situations. For instance, the available bandwidth

for the source and the relays to transmit their signals may not be equal. As another example,

consider a half-duplex parallel relay channel, assuming a constant bandwidth from the source to

the destination, the optimum amount of bandwidth for the first and second hops is not necessarily
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the same. Hence, theCombined Amplify-and-Decode Forward (CADF)scheme is proposed for

these types of situations in the sequel.

Here we assume that for eachρ uses of BC channel, one use of the MAC channel is allowed.

ρ can be either less or greater than “1”. According to the cut-set bound Theorem (See [17]), on

the cuts corresponding to the first and second hop, the upper bound,Cup, on the capacity of this

channel,Cs, is (See [23]):

Cs ≤ Cup , min
(

ρC (MPs) , C
(

M2Pr

))

. (6)

A. The Combined Amplify-and-Decode Forward (CADF)

In this section, CADF scheme is studied. This scheme is illustrated in Figs. 2 and 3. In this

strategy, the intended message is split into AF and DF messages. The AF message itself is split

into L AF sub-messages. Each AF sub-message is transmitted in2αl(l = 1, · · · , L) fraction of

the available bandwidth from the source to the destination.The DF message is superimposed

on the AF message and transmitted from the source to the relays in
∑L

l=1 αl + β1 dimensions.

Having decoded the DF message, each relay transmits the re-encoded version on top of the AF

message in
∑L

l=1 αl + β2 dimensions (See Fig. 3). Due to the water-filling result of the DF

message on the AF message and from (3) and (4), inαl band from the source to each relay, we

have

Ps,AFl
+ Ps,DFl

= Ps, l = 1, · · · , L. (7)

Similarly, for the relay side we have

Pr,AFl
+ Pr,DFl

= Pr, l = 1, · · · , L. (8)

Furthermore, due to the bandwidth constraint for the BC and MAC channel (See Fig. 3), we

have
L
∑

l=1

αl + β1 = ρ, (9)

L
∑

l=1

αl + β2 = 1. (10)

The above discussions result in the following Theorem.
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Ps,AFL

Pr

α2 α3α1 β1
αL α2 α3α1 αL

at the source side.
a) Power distribution of the “AF” and “DF” messages

at the relay side.

1

b) Power distribution of the “AF” and “DF” messages

1

Ps

Pr,DF2

Pr,AF2

Pr,DF3

Pr,AF3

Pr,DFL

Pr,AFL

Pr,DF1

Pr,AF1

β2

Ps,DF1

Ps,AF1

Ps,DF2

Ps,AF2

Ps,DF3

Ps,AF3

Ps,DFL

Fig. 2. Power distribution of the “AF” and “DF” messages at the source and relay sides.

Relay m

α1 α2 α3 β1 α1 α2 α3 β2

Source

Relay 1

Relay 2

Destination

Relay M-1

Relay M

ρ 1

αL αL

Fig. 3. Bandwidth allocation for the “AF” and “DF” messages for the Gaussian Parallel Relay Channel.
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Theorem 1 For the Gaussian parallel relay channel, the CADF achieves the following rate:

RCADF ≤ max min

(

L
∑

l=1

αl

(

C

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

+ C

(

Ps,DFl

Ps,AFl
+ 1

))

+ β1C (Ps) ,

L
∑

l=1

αlC

(

M2PrPs,AFl
+ M2Pr,DFl

MPr,AFl
+ Ps,AFl

+ 1

)

+ β2C
(

M2Pr

)

)

, (11)

subject to:
L
∑

l=1

αl + β1 = ρ,

L
∑

l=1

αl + β2 = 1,

Ps,AFl
+ Ps,DFl

= Ps,

Pr,AFl
+ Pr,DFl

= Pr,

0 ≤ αl, β1, β2,

0 ≤ Ps,AFl
, Ps,DFl

≤ Ps, 0 ≤ Pr,AFl
, Pr,DFl

≤ Pr, l = 1, · · · , L.

Proof: See Appendix A.

Remark 1 For the half-duplex scenarios, instead of the constraints
∑L

l=1 αl + β1 = ρ and
∑L

l=1 αl + β2 = 1 for the bandwidths of the first and second hops separately, weassume a

constant bandwidth from the source to the destination, i.e., 2
∑L

l=1 αl + β1 + β2 = 1.

Proposition 1 The CADF scheme achieves the same rate, assuming successivedecoding of the

DF and AF messages at the receiver side.

Proof: At band αl in (11), from Appendix A, we consider the AF and the DF messages

as the messages of a MAC with the following inequalities

RAFl
≤ αlC

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

, (12)

RDFl
≤ αlC

(

M2Pr,DFl
(Ps,AFl

+ 1)

MPr,AFl
+ Ps,AFl

+ 1

)

, (13)

RAFl
+ RDFl

≤ αlC

(

M2PrPs,AFl
+ M2Pr,DFl

MPr,AFl
+ Ps,AFl

+ 1

)

. (14)

It can be readily verified that subject to the constraintPr,AFl
+Pr,DFl

= Pr, the right-hand side of

(14) is a decreasing function ofPr,AFl
or equivalently an increasing function ofPr,DFl

. Now, let
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us equateRAFl
in (14) with the AF rateŔAFl

of another MAC which is achieved by successive

decoding of the DF and AF messages. Therefore, we have

RAFl
= ŔAFl

= αlC

(

M2Ṕr,AFl
Ps,AFl

MṔr,AFl
+ Ps,AFl

+ 1

)

≤ αlC

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

. (15)

According to (15), (See Fig. 4) we have

Ṕr,AF ≤ Pr,AF =⇒

RAFl
+ RDFl

≤ ŔAFl
+ ŔDFl

,

RDFl
≤ ŔDFl

.

Hence,(RAFl
, RDFl

) lies in the corner point of the MAC with parameters(ŔAFl
, ŔDFl

), i.e.

successive decoding of the DF and AF messages achievesRCADF .

ŔAFl
= RAFl

Jointly Decoding

Successive Decoding

AF Rate

DF Rate
RDFl

ŔDFl

Fig. 4. The order of decoding the DF and AF messages.

Proposition 2 The optimum number of bandsL in the CADF scheme is at most equal to two.

Furthermore, for the half-duplex scenarios assuming one ofthe αl’s is non-zero, depending on

ρ < 1 or ρ > 1, eitherβ1 = 0 and β2 6= 0 or β1 6= 0 and β2 = 0.

Proof: Assuming variablesPs,AFl
, Ps,DFl

, Pr,AFl
, andPr,DFl

in (11) as constant parameters,

one can cast the optimization problem (11) in a linear form with variablesαl, β1, and β2 as

the optimization parameters. In order to do that, we introduce a parameterλ ∈ R to (11), and

assume that the difference between the two terms in the minimization (11) isλ. Hence, we have

the following linear optimization problem which is equivalent to (11):

RCADF ≤ max
λ∈R

(min(−λ, 0) + f(λ)), (16)
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where

f(λ)= max

L
∑

l=1

αl

(

C

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

+ C

(

Ps,DFl

Ps,AFl
+ 1

))

+ β1C (Ps) , (17)

subject to:
L
∑

l=1

αl

(

C

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

+ C

(

Ps,DFl

Ps,AFl
+ 1

)

−C

(

M2PrPs,AFl
+ M2Pr,DFl

MPr,AFl
+ Ps,AFl

+ 1

))

+ β1C (Ps) − β2C
(

M2Pr

)

= λ, (18)

L
∑

l=1

αl + β1 = ρ, (19)

L
∑

l=1

αl + β2 = 1, (20)

0 ≤ αl, β1, β2, l = 1, · · · , L. (21)

For ρ < 1, from (19), (20), and knowingβ1 ≥ 0, β2 > 0 can be concluded. Hence, substituting

β2 from (20) into (17) and (18), (17)-(21) becomes

f(λ)= max cT y, (22)

subject to:

Ay = b, (23)

y � 0. (24)

where

y = [α1, α2, α3, · · · , αL, β1]
T

,

cl = C

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

+ C

(

Ps,DFl

Ps,AFl
+ 1

)

, l = 1, · · · , L,

cL+1 = C (Ps) ,

A1l = C

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

+ C

(

Ps,DFl

Ps,AFl
+ 1

)

− C

(

M2PrPs,AFl
+ M2Pr,DFl

MPr,AFl
+ Ps,AFl

+ 1

)

+ C
(

M2Pr

)

, l = 1, · · · , L,

A1L+1 = C (Ps) , A2l = 1, l = 1, · · · , L + 1,

b =
[

λ + C
(

M2Pr

)

, ρ
]T

.
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The optimum solution of (22),yopt, is an extreme point of the regionF = {Ay = b, y � 0}. On

the other hand,yopt is an extreme point ofF if and only if it is a basic feasible solution of (22).

Since the rank of matrixA is at most 2, the basic feasible solution ofF has at most 2 non-zero

entries (See [25]). Therefore, the only possible cases areαi 6= 0, αj 6= 0 (where i 6= j), and

β2 6= 0 or αi 6= 0, β1 6= 0, andβ2 6= 0.

Having the similar argument forρ > 1, we can easily prove that the only possible cases are

αi 6= 0, αj 6= 0 (wherei 6= j), andβ1 6= 0 or αi 6= 0, β1 6= 0, andβ2 6= 0. Hence, the optimum

number of bandsL is at most equal to two.

For the half-duplex scenarios, from Remark 1, the optimization problem (17) becomes a linear

optimization problem with two constraints. Using the similar argument as in the bandwidth

mismatch case, only two optimization parameters would be non-zero. Hence, assuming one of

the αl’s is non-zero andρ 6= 1, depending onρ < 1 or ρ > 1, either β1 = 0 and β2 6= 0

or β1 6= 0 and β2 = 0. Therefore, from the above argument, for the half-duplex scenarios the

optimum number of bandsL is at most equal to one.
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By considering the appropriate order of decoding for the DF message and the AF message at

the destination and from Proposition 2, the achievable ratecan be simplified as

RCADF ≤ max

2
∑

l=1

αlC

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

+ min

(

2
∑

l=1

αlC

(

Ps,DFl

Ps,AFl
+ 1

)

+ β1C (Ps) ,

2
∑

l=1

αlC

(

M2Pr,DFl
(Ps,AFl

+ 1)

M2Pr,AFl
Ps,AFl

+ MPr,AFl
+ Ps,AFl

+ 1

)

+ β2C
(

M2Pr

)

)

, (25)

subject to:
2
∑

l=1

αl + β1 = ρ, (26)

2
∑

l=1

αl + β2 = 1, (27)

Ps,AFl
+ Ps,DFl

= Ps, (28)

Pr,AFl
+ Pr,DFl

= Pr, (29)

0 ≤ αl, β1, β2, (30)

0 ≤ Ps,AFl
, Ps,DFl

≤ Ps, 0 ≤ Pr,AFl
, Pr,DFl

≤ Pr, l = 1, 2. (31)

B. The Traditional Coding Schemes

The achievable rates for the traditional coding schemes such as the Decode-and-Forward (DF),

the Amplify-and-Forward (AF), and the Compress-and-Forward (CF) are derived in [23]. These

are highlighted for comparison purposes:

1) Decode-and-Forward (DF):In this scheme, the codewordxm in (2) is a re-encoded version

of the decoded message at relaym. Hence, the source transmits its message such that each relay

can decode it. Hence, the DF scheme achieves

RDF = min
(

ρC (Ps) , C
(

M2Pr

))

. (32)

2) Amplify-and-Forward (AF):In the AF scheme, the relaym transmits a re-scaled version

of the signal received from the BC channel. Hence, the AF scheme achieves

RAF = γC

(

M2PrPs

MPr + Ps + 1

)

. (33)

whereγ = min(ρ, 1).
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3) Compress-and-Forward (CF):In the CF scheme, the relaym estimates the transmitted

codeword and digitally compresses its estimation. Then, itencodes the compressed value to an

appropriate channel codeword and sends it over the MAC channel [23]. Hence, the CF scheme

achieves

RCF = ρC (PCF ) , (34)

subject to:

(1 + MPr)
1

ρ = 1 + PCF

(

MPs

MPs − PCF + 1

)M

.

C. The Rematch-and-Forward (RF) scheme

The RF scheme can be briefly explained as follows. Depending on ρ > 1 or ρ < 1, the source

conducts the up-sampling or down-sampling operation, and the relays do the reverse operation

and then estimate the transmitted signal. Indeed, this scheme matches a colored source to a

channel and is implemented using the modulo lattice operation. For further details see [21] [22]

[23]. The following Theorem is proved in [23].

Theorem 2 For the Gaussian parallel relay channel with expansion factor ρ, assumingPs > 1,

the RF scheme achieves the following rate

RRF = C

(

M2Pr(P
ρ
s − 1)

(P ρ
s + MPr)γ(P ρ

s + M2Pr)1−γ

)

. (35)

Theorem 3 The CADF scheme achieves a better rate than the RF scheme, i.e., RCADF ≥ RRF .

Proof: Throughout the proof we assume thatL = 1 and depending onρ < 1 or ρ > 1,

eitherβ1 = 0 andβ2 6= 0 or β1 6= 0 andβ2 = 0.

Case 1 :ρ ≤ 1

Consider the proposed scheme withPs,AF = P ρ
s − 1, Ps,DF = Ps − P ρ

s + 1, and assume that no

DF message is superimposed on the AF message at the relay, i.e. Pr,AF = Pr and Pr,DF = 0.

Hence, the achievable rate of the CADF scheme can be simplified to

RCADF = ρC

(

M2Pr (P ρ
s − 1)

MPr + P
ρ
s

)

+ min

{

ρC

(

Ps − P ρ
s + 1

P
ρ
s

)

, (1 − ρ)C(M2Pr)

}

(36)

Now, let us defineSNRAF ,
M2Pr(P

ρ
s −1)

MPr+P
ρ
s

andSNRKF ,
M2Pr(P

ρ
s −1)

P
ρ
s +M2Pr

. It is easy to show that

RCADF ≥ ρC(SNRAF ) + (1 − ρ)C(SNRKF ). (37)
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To prove this, consider the fact thatSNRKF ≤ M2Pr and on the other hand, sincePs > 1

as in [23], we have
(

Ps+1
Ps

)ρ (
P

ρ
s +M2Pr

1+M2Pr

)1−ρ

≥ 1 which results in(1 − ρ) log

(

P
ρ
s (1+M2Pr)
P

ρ
s +M2Pr

)

≤

ρ log
(

Ps+1
P

ρ
s

)

or equivalently(1 − ρ)C(SNRKF ) ≤ ρC
(

Ps−P
ρ
s +1

P
ρ
s

)

. Now, we can lower-bound

the right-hand-side of (37) as follows

ρC(SNRAF ) + (1 − ρ)C(SNRKF ) = ρ log(1 + SNRAF ) + (1 − ρ) log(1 + SNRKF )

= log
(

(1 + SNRAF )ρ (1 + SNRKF )1−ρ
)

(a)

≥ log
(

1 + SNR
ρ
AF SNR

1−ρ
KF

)

= RRF . (38)

Here, (a) follows from applying Holder’s inequality withp = 1
ρ

and q = 1
1−ρ

(See [24]).

Comparing (37) and (38) completes the proof.

Case 2 :ρ ≥ 1

For the sake of simplicity we assume that no DF message is superimposed on the AF message

at the source, i.e.Ps,AF = Ps andPs,DF = 0. Here two cases are considered:

i) (ρ − 1)C(Ps) > C(M2Pr). In this case, we haveRCADF = RDF = C(M2Pr) which is

obviously greater thanRRF . In fact, RCADF is also equal to the capacity of the channel.

ii) otherwise, we have

RCADF = C

(

M2 (Pr,AF + Pr,DF )Ps

MPr,AF + Ps

)

, (39)

where re-scaling the AF portion of the received signal at therelay with
√

Pr,AF

Ps
, we have

Pr,AF + Pr,DF +
Pr,AF

Ps
= Pr. Simplifying (39), we have

RCADF = C

(

MPs (1 + MPr)

MPr,AF + Ps

− M

)

, (40)

On the other hand, knowing

(ρ − 1)C(Ps) = C

(

M2Pr,DF

M2Pr,AF +
MPr,AF

Ps
+ 1

)

, (41)

we can derivePr,AF as

MPr,AF =
M2PsPr − P ρ

s

MP
ρ
s + P

ρ−1
s + MPs + M

. (42)

From (42), one can easily verify thatMPr,AF < MPr

P
ρ−1

s
. SubstitutingMPr,AF with MPr

P
ρ−1

s
in (40),

we conclude thatRCADF > RRF .
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IV. SIMULATION RESULTS

In this section, the achievable rates of the proposed CADF scheme with that of the traditional

coding schemes and the upper bound are compared.

Fig. 5 compares the achievable rates of different schemes when ρ = 0.5 < 1. On the other

hand, Fig. 6 compares the achievable rates of different schemes whenρ = 2 > 1. As we proved

in the previous sections and, from these figures, as the number of relays increases, the CADF

scheme always outperforms the RF scheme.

Figs. 7 and 8 compare the achievable rate of the CADF scheme with that of other schemes

for the half-duplex scenarios. Assuming a constant bandwidth from the source to the destination,

the optimum bandwidths for the first and second hops are obtained. Fig. 7 show that, as the

number of relays increases, the CADF scheme outperforms theother schemes considerably. On

the other hand, from Fig. 8, although the CADF scheme gives a better achievable rate compared

to the RF scheme, it eventually coincides with the AF scheme.
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Fig. 5. Rate versus number of relays (ρ = 0.5, Ps = 300, MPr = 10).
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Fig. 6. Rate versus number of relays (ρ = 2, Ps = 10, MPr = 300).

Fig. 9 compares the achievable rate of the CADF-DF with that of the RF-DF in [23], and

the AF-DF of [8] [9] in Schein’s parallel relay setup (i.e. parallel relay with two relays and no

bandwidth mismatch). Here, we assume thatPs = 20(dB). In this figure, we assume that the

total dimensions from the source to the destination is “2”. The assigned dimension to the BC

channel is equal to the one assigned to the MAC channel. In thetime sharing between the CADF

and DF schemes,t1 + t2 dimensions are assigned to the CADF scheme (t1 dimensions for the

BC channel, andt2 dimensions for the MAC channel) while2 − t1 − t2 is assigned to the DF

scheme (1 − t1 dimensions for the BC channel, and1 − t2 dimensions for the MAC channel)

with different peak powers. The same time sharing pattern isused for the time sharing between

the RF and the DF schemes [23].

As Fig. 9 shows, the CADF-DF considerably outperforms the RF-DF and AF-DF. It is worth

noting that as the Schein’s AF-DF can be considered as a special case of the CADF-DF, we

can expect that the achievable rate of the CADF-DF is always better than the AF-DF. On the

other hand, from the result of Theorem 3, the CADF-DF always outperforms the RF-DF in the
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Fig. 7. Rate versus number of relays for the half-duplex scenario (Ps = 300, MPr = 10).

Schein’s setup.

V. CONCLUSION

This paper considered the problem of data transmission for the Gaussian parallel relay channel

when there is a bandwidth mismatch between the BC channel andthe MAC channel. ACombined

Amplify-and-Decode Forward(CADF) scheme was proposed and it was proved that the CADF

always outperforms the RF scheme presented in [23]. It was also shown that the CADF scheme

always outperforms other traditional coding schemes, i.e., AF, DF, and CF. For the case in

which there exists no bandwidth mismatch between the BC and the MAC channels, using the

time sharing between the CADF and DF schemes (CADF-DF) always outperforms the RF-DF

in [23], and the AF-DF in [8] [9].
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Fig. 8. Rate versus number of relays for the half-duplex scenario (Ps = 10, MPr = 300).

APPENDIX A

Proof of Theorem 1

Codebook Construction:

At band αl, (l = 1, · · · , L) and β1, the source generates2nRAFl , 2nRDFl , and2nRDF sequences

vBCl
(wAFl

), uBCl
(wDFl

), andxBC (wDF ) according to
∏αln

i=1 p(vBCl,i),
∏αln

i=1 p(uBCl,i), and
∏β1n

i=1 p(xBC,i), respectively.VBCl
, UBCl

, andXBC are Gaussian random variables with zero mean

and variancesPs,AF l
, Ps,DF l

, andPs per dimension, wherePs,AF l
+Ps,DF l

= Ps. Furthermore, at

bandαl, the source generates i.i.d sequencesxBCl
, where we haveXBCl

= VBCl
+UBCl

. Hence,

XBCl
∼ N (0, Ps).

All the relays, at bandαl, (l = 1, · · · , L), andβ2 generate2nRDFl and2nRDF i.i.d url
(wDFl

),

and xr (wDF ) sequences according to probabilities
∏αln

i=1 p(url,i), and
∏β2n

i=1 p(xr,i). Url
and Xr

are Gaussian random variables with zero mean and variancesPr,DF l
and Pr per dimension.
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Fig. 9. Achievable Rates by Time Sharing.

Furthermore, relaym generates i.i.d sequencesxml
, due to

Xml
=

√

Pr,AF l

Ps,AF l
+ 1

(VBCl
+ Zm) + Url

. (43)

Encoding:

Encoding at the source:

At band αl, the source encodeswAFl
∈ {1, · · · , 2nRAFl}, and wDFl

∈ {1, · · · , 2nRDFl} to

vBCl
(wAFl

) and uBCl
(wDFl

) and sendsxBCl
(wAFl

, wDFl
) to the relays. Furthermore, at band

β1, the source encodeswDF ∈ {1, · · · , 2nRDF } to xBC (wDF ) and sends it to the relays.

Encoding at relaym:

At bandαl, relay m encodeswDFl
∈ {1, · · · , 2nRDFl} to url

(wDFl
) and sendsxml

as obtained

in (43), to the destination. Furthermore, at bandβ2, relaym encodeswDF ∈ {1, · · · , 2nRDF} to

xr (wDF ) and sends it to the destination.

Decoding:

Decoding at relaym:
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At band αl, relay m declaresŵDFl
= wDFl

iff there exits a uniqueuBCl
(wDFl

), such that
(

uBCl
(wDFl

) , yml

)

∈ A
(n)
ǫ (See [17]). Hence, in order to make the probability of error zero, we

have

RDFl
≤ αlC

(

Ps,DFl

Ps,AFl
+ 1

)

. (44)

Similarly, at bandβ1, relay m declaresŵDF = wDF iff there exits a uniquexBC (wDF ), such

that (xBC (wDF ) , ym) ∈ A
(n)
ǫ . Hence, in order to make the probability of error zero, we have

RDF ≤ β1C (Ps) . (45)

Decoding at the final destination:

At band αl, the destination declareŝwAFl
= wAFl

and ŵDFl
= wDFl

iff there exits unique

vBCl
(wAFl

) andurl
(wDFl

), such that
(

vBCl
(wAFl

) , url
(wDFl

) , yMACl

)

∈ A
(n)
ǫ . Hence, in order

to make the probability of error zero, we have

RAFl
≤ αlC

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

, (46)

RDFl
≤ αlC

(

M2Pr,DFl
(Ps,AFl

+ 1)

MPr,AFl
+ Ps,AFl

+ 1

)

, (47)

RAFl
+ RDFl

≤ αlC

(

M2PrPs,AFl
+ M2Pr,DFl

MPr,AFl
+ Ps,AFl

+ 1

)

. (48)

However, as indicated in Proposition 1 the same rateRCADF is achievable by successive decoding

of the DF and AF messages, hence, we can assume

RAFl
= αlC

(

M2Pr,AFl
Ps,AFl

MPr,AFl
+ Ps,AFl

+ 1

)

. (49)

Now, from (48) and (49) inequality (47) is concluded. Hence,inequality (47) is extra.

Similarly at bandβ2, destination declareŝwDF = wDF iff there exits a uniquexr (wDF ), such

that (xr (wDF ) , yMAC) ∈ A
(n)
ǫ . Hence, in order to make the probability of error zero, we have

RDF ≤ β2C
(

M2Pr

)

. (50)

Noting the fact thatRCADF =
∑L

l=1(RAFl
+ RDFl

) + RDF , and from (44), (45), (48), (49), and

(50), Theorem 1 is proved.
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