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Abstract

This study investigates the problem of communication for a network composed of two half-duplex parallel relays

with additive white Gaussian noise. Two protocols, i.e.,Simultaneousand Successiverelaying, associated with two

possible relay orderings are proposed. The simultaneous relaying protocol is based onDynamic Decode and Forward

(DDF) scheme. For the successive relaying protocol: (i) aNon-Cooperativescheme based on theDirty Paper Coding

(DPC), and (ii) aCooperativescheme based on theBlock Markov Encoding (BME)are considered. Furthermore, the

composite scheme of employing BME at one relay and DPC at another always achieves a better rate when compared

to the Cooperativescheme. A“Simultaneous-Successive Relaying based on Dirty paper coding scheme” (SSRD)is

also proposed. The optimum ordering of the relays and hence the capacity of the half-duplex Gaussian parallel relay

channel in the low and high signal-to-noise ratio (SNR) scenarios is derived. In the low SNR scenario, it is revealed

that under certain conditions for the channel coefficients,the ratio of the achievable rate of the simultaneous relaying

based on DDF to the cut-set bound tends to be 1. On the other hand, as SNR goes to infinity, it is proved that

successive relaying, based on the DPC, asymptotically achieves the capacity of the network.

I. I NTRODUCTION

A. Motivation

The continuous growth in wireless communication has motivated information theoretists to extend shannon’s

information theoretic arguments for a single user channel to the scenarios that involve communication among

multiple users.
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In this regard, cooperative wireless communication has been the focus of attention during recent years. Due

to rapid decrease of the transmitted signal power with distance, the idea of multi-hopped communication has

been proposed. In multi-hopped communication, some intermediate nodes as relays are exploited to facilitate data

transmission from the source to the destination. Using thistechnique leads to saving battery power as well as

increasing the physical coverage area. Moreover, relays byemulating distributed transmit antenna, can form spatial

diversity and combat the multi-path fading effect of the wireless media.

Motivated by practical constraints, half-duplex relays which cannot transmit and receive at the same time and in

the same frequency band are of great importance. Here, our goal is to study and analyze the performance limits of

a half-duplex parallel relay channel.

B. History

Relay channel is a three terminal network which was introduced for the first time by Van der Meulen in 1971

[1]. The most important capacity results of the relay channel were reported by Cover and El Gamal [2]. Two

relaying strategies are proposed in [2]. In one strategy, the relay decodes the transmitted message and forwards the

re-encoded version to the destination, while in another onethe relay does not decode the message, but sends the

quantized received values to the destination.

Moreover, several works on multi-relay channels exist in the literature (See [3]–[11], [23], [29]–[36]). Schein

in [3], [4] establishes upper and lower bounds on the capacity of a full-duplex parallel relay channel in which the

channel consists of a source, two relays and a destination, where there is no direct link between the source and the

destination, and also between the two relays. Generally, the best rate reported for the full-duplex Gaussian parallel

relay channel is based on the Decode-Forward (DF) or Amplify-Forward (AF) schemes, with time sharing [3], [4].

Xie and Kumar generalize the block Markov encoding scheme in[2] for a network of multiple relays [5]. Gastpar,

Kramer, and Gupta extend compress and forward scheme to a multiple relay channel by introducing the concept

of antenna polling in [6]–[8]. In [9], Amichai, Shamai, Steinberg and Kramer consider a parallel relay setup, in

which a nomadic source sends its information to a remote destination via some relays with lossless links to the

destination. They investigate the case that these relays donot have any decoding capability, so signals received at the

relays must be compressed. The authors also fully characterize the capacity of this case for the Gaussian channel.

In [10], Maric and Yates investigate DF and AF schemes in a parallel-relay network. Motivated by applications in

sensor networks, they assume large bandwidth resources allowing orthogonal transmissions at different nodes. They

characterize optimum resource allocation for AF and DF and show that the wide-band regime minimizes the energy

cost per information bit in DF, while AF should work in the band-limited regime to achieve the best rate. Razaghi

and Yu in [11] propose a parity-forwarding scheme for full-duplex multiple relay. They show that parity-forwarding

can achieve the capacity in a new form of degraded relay networks.

Radios that can receive and transmit simultaneously in the same frequency band require complex and expensive

components [18]. Hence, Khojastepour and Aazhang in [13], [14] call the half-duplex relay as “Cheap Relay”.

Recently, half-duplex relaying has drawn a great deal of attention (See [13]–[19], [23], [29]–[36]). Zahedi and
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El Gamal consider two different cases of frequency divisionGaussian relay channel, deriving lower and upper

bounds on the capacity [15]. They also derive single letter characterization of the capacity of frequency division

additive white Gaussian noise (AWGN) relay channel with simple linear relaying scheme [16], [17]. The problem

of time division relaying is also considered by Host-Madsenand Zhang [18]. By considering fading scenarios,

and assuming channel state information (CSI), they study upper and lower bounds on the outage capacity and the

Ergodic capacity. In [19], Liang and Veeralli present a Gaussian orthogonal relay model, in which the relay-to-

destination channel is orthogonal to the source-to-relay and source-to-destination channel. They show that when the

source-to-relay channel is better than the source-to-destination channel and the signal-to-noise ratio (SNR) of the

relay-to-destination is less than a given threshold, optimizing resource allocation causes the lower and the upper

bounds to coincide with each other.

C. Contributions and Relation to Previous Works

In this paper, we study transmission strategies for a network with a source, a destination, and two half-duplex

relays with additive white Gaussian noise which cooperate with each other to facilitate data transmission from the

source to the destination. Furthermore, it is assumed that no direct link exists between the source and the destination.

Half-duplex relaying, in multiple relay networks, is studied in [23], [29]–[36]. Gastpar in [23] shows that in a

Gaussian parallel relay channel with infinite number of relays, the optimum coding scheme is AF. Rankov and

Wittneben in [29], [30] further study the problem of half-duplex relaying in a two-hop communication scenario.

In their study, they also consider a parallel relay setup with two relays where there is no direct link between the

source and the destination, while there exists a link between the relays. Their relaying protocols are based on either

AF or DF, in which the relays successively forward their messages from the source to the destination. We call this

protocol “Successive Relaying” in the sequel. Xue and Sandhu in [31] further study different half-duplex relaying

protocols for the Gaussian parallel relay channel. Since they assume that there is no link between the relays, they

refer to their parallel channel as aDiamond Relay Channel.

In this work, our primary objective is to find the best ordering of the relays in the intended set-up. We consider

two relaying protocols, i.e., simultaneous relaying versus successive relaying, associated with two possible relay

orderings. For simultaneous relaying, each relay exploits“Dynamic DF (DDF)”. It should be noted that the DDF

scheme considered here is slightly different from the DDF introduced in [34] and [35]. In those works, the DDF

scheme is applied to the set-up of the multiple relay networkin which the nodes only have the CSI of their receiving

channel. In the DDF scheme described in [34], the source is broadcasting the message to all the network nodes

during whole period of transmission and each relay, listensto the transmitted signal of the source and other relays

until it can decode the transmitted message. Consequently,it transmits its signal coherently with the source and

other active relays in the remaining time. However, in our set-up, all the nodes are assumed to have all the channel

coefficients. Therefore, in a fixed pre-assigned portion of the time, the relays receive the signal transmitted from

the source, and in the remaining time slot they transmit the re-encoded version of the decoded message together.

In other words, the relays operate in a synchronous manner.
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For successive relaying, we study aNon-Cooperativescheme based on “Dirty Paper Coding (DPC)” and also a

Cooperativescheme based on “Block Markov Encoding (BME)”. It is worth noting that the authors in [36] also

propose successive relaying protocol for the set up with twoparallel relays and direct links between the relays and

between the source and the destination. They propose a simple repetition coding at the relays, and show that their

scheme can recover the loss in the multiplexing gain, while achieving diversity gain of 2.

We derive the optimum relay ordering in low and high SNR scenarios. In low SNR scenarios and under certain

channel conditions, we show that the ratio of the achievablerate of DDF for simultaneous relaying to the cut-set

bound tends to one. On the other hand, in high SNR scenarios, we prove that the proposed DPC for successive

relaying asymptotically achieves the capacity.

After this work was completed, we became aware of [32] which has independently proposed an achievable rate

based on the combination of superposition coding, BME and DPC. In their scheme, the intended message“w” is

split into a message which is transmitted to the destinationby exploiting cooperation between the relays“wr” and

a message which is transmitted to the destination without using any cooperation between the relays“wd”. Hence,

the signal associated with“wd”, transmitted by one relay, can be considered as interference on the other relay.

“wr” is transmitted by using BME and“wd” is transmitted by employing DPC. Therefore, in their general scheme,

the associated signals with these two messages are superimposed and transmitted. As the channel between the two

relays become strong, their proposed scheme is converted toBME. On the other hand, as the channel becomes

weak, their proposed scheme becomes DPC.

Unlike [32], in which the authors only consider successive relaying and propose a combined BME and DPC, as

the main result of this paper, simultaneous and successive relaying protocols are combined and a “Simultaneous-

Successive Relaying based on Dirty paper coding” (SSRD) scheme with a new achievable rate is proposed. It is

shown that in the low SNR scenario and under certain channel conditions, SSRD scheme is converted to simultaneous

relaying based on DDF, while in the high SNR scenarios, when the ratio of the relay powers to the source power

remain constant, it becomes successive relaying based on DPC (to achieve the capacity).

Besides this main result, some other results obtained in this paper are as follows:

• Two different types of decoding, i.e.,successiveandbackwarddecoding, at the destination for the BME scheme

are proposed. We prove that the achievable rate of BME with backward decoding is greater than that of BME

with successive decoding, i.e.,Clow
BMEback

≥ Clow
BMEsucc

.

• It is proved that BME with backward decoding leads to a simplestrategy in which at most, one of the relays is

required to cooperate with the other relay in sending the binindex of the other relay’s message. Accordingly,

in the Gaussian case, the combination of BME at one relay and DPC at the other relay always achieves a

better rate than the simple BME.

• In the degraded case, where the destination receives a degraded version of the received signals at the relays,

BME with backward decoding achieves the successive cut-setbound.

The rest of the paper is organized as follows: In section II, the system model is introduced. In section III, the

achievable rates and coding schemes for a half-duplex relaynetwork are derived. Optimality results are discussed
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in section IV. Simulation results are presented in section V. Finally, section VI concludes the paper.

D. Notation

Throughout the paper, the superscriptH stands for matrix operation of conjugate transposition. Lowercase bold

letters and regular letters represent vectors and scalars,respectively. For any two functionsf(n) andg(n), f(n) =

O(g(n)) is equivalent tolimn→∞

∣

∣

∣

f(n)
g(n)

∣

∣

∣
< ∞, and f(n) = Θ(g(n)) is equivalent tolimn→∞

f(n)
g(n) = c, where

0 < c < ∞. And C(x) , 1
2 log2(1+x). Furthermore, for the sake of brevity,A

(n)
ǫ denotes the set of weakly jointly

typical sequences for any intended set of random variables.

II. SYSTEM MODEL

We consider a Gaussian network which consists of a source, two half-duplex relays, and a destination, and there

is no direct link between the source and the destination. Here we define four time slots according to the transmitting

and receiving mode of each relay (See Fig. 1), wheretb denotes the duration of time slotb (
∑4

b=1 tb = 1). Nodes

0, 1, 2, and 3 represent the source, relay 1, relay 2, and the destination, respectively. Moreover, the transmitting

and receiving signals at nodea during time slotb are represented byx(b)
a and y(b)

a , respectively. Hence, at each

nodec ∈ {1, 2, 3}, we have

y(b)
c =

∑

a∈{0,1,2}

hacx(b)
a + z(b)

c . (1)

wherehac
,s denote channel coefficients from nodea to nodec, andz(b)

c is the AWGN term with zero mean and

variance of“1” per dimension.

Noting the transmission strategies in Fig. 1, we have

y(1)
1 = h01x(1)

0 + h21x(1)
2 + z(1)

1 , (2)

y(1)
3 = h23x(1)

2 + z(1)
3 , (3)

y(2)
2 = h02x(2)

0 + h12x(2)
1 + z(2)

2 , (4)

y(2)
3 = h13x(2)

1 + z(2)
3 , (5)

y(3)
k = h0kx(3)

0 + z(3)
k , k ∈ {1, 2}, (6)

y(4)
3 =

2
∑

k=1

hk3x(4)
k + z(4)

3 . (7)

Throughout the paper, we assume thath01 ≥ h02 unless specified otherwise, and from reciprocity assumption,

we haveh12 = h21. Furthermore, the power constraintsP0, P1, and P2 should be satisfied for the source, the

first relay, and the second relay, respectively. Hence, denoting the power consumption of nodea at time slotb by

P
(b)
a = E

[

x(b)H
a x(b)

a

]

, we have

P
(1)
0 + P

(2)
0 + P

(3)
0 = P0, (8)

P
(2)
1 + P

(4)
1 = P1,

P
(1)
2 + P

(4)
2 = P2.
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Source Destination

Relay 1

Relay 2

h01

h12

h23

the vectors x
(1)
0 and x

(1)
2 .

The first relay and the destination receive
y

(1)
1 and y

(1)
3 , respectively.

The source and the second relay transmit

a) Time slot 1 with duration t1:

The source and the first relay transmit
the vectors x

(2)
0 and x

(2)
1 .

The second relay and the destination receive
y

(2)
2 and y

(2)
3 , respectively.

Source Destination

Relay 1

Relay 2

h12

h13

h02

b) Time slot 2 with duration t2:

Source Destination

Relay 1

Relay 2

h01

h02

The source transmits the vector x
(3)
0 .

The first and the second relay receive y
(3)
1

and y
(3)
2 , respectively.

c) Time slot 3 with duration t3:

Source Destination

Relay 1

Relay 2

h13

h23

The destination receives y
(4)
3 .

The relays transmit the vectors x
(4)
1 and x

(4)
2 .

d) Time slot 4 with duration t4:

Fig. 1. System Model.

III. A CHIEVABLE RATES AND CODING SCHEMES

In this section, we propose two cooperative protocols, i.e.SuccessiveandSimultaneousrelaying protocols, for a

half-duplex Gaussian parallel relay channel.

A. Successive Relaying Protocol

In Successiverelaying protocol, the relays are not allowed to receive andtransmit simultaneously, i.e.t3 = t4 = 0,

and the relations between the transmitted and the received signals at the relays and at the destination follow from

(2)-(5). For the successive relaying protocol, we propose aNon-Cooperativeand aCooperative Codingscheme in

the sequel. In the proposed schemes, the time is divided intoodd and even time slots with the durationt1 and t2,

respectively. Accordingly, at each odd and even time slots,the source transmits a new message to one of the relays,

and the destination receives a new message from the other relay, successively (See Fig. 2).
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R(2)

R(1)

R(1)

R(2)

R(2)

R(1)

Fig. 2. Information flow transfer for successive relaying protocolfor two relays.

1) Non-Cooperative Coding:In the Non-Cooperative Coding scheme, each relay considersthe other’s signal as

interference. Since the source knows each relay’s message,it can apply the Gelfand-Pinsker’s coding scheme to

transmit its message to the other relay. The following Theorem gives the achievable rate of this scheme.

Source Destination

Time Slot 2 with duration t2

R(2)

R(1)

Source Destination

Time Slot 1 with duration t1

R(1)

R(2)

Fig. 3. Successive relaying protocol based on Non-Cooperative Coding.

Theorem 1 For the half-duplex parallel relay channel, assuming successive relaying, the following rateClow
DPC is

achievable:

Clow
DPC = max

0≤t1,t2,t1+t2=1
R(1) + R(2), (9)

subject to:

R(1) ≤ min
(

t1(I(U
(1)
0 ; Y

(1)
1 ) − I(U

(1)
0 ; X

(1)
2 )), t2I(X

(2)
1 ; Y

(2)
3 )

)

, (10)

R(2) ≤ min
(

t2(I(U
(2)
0 ; Y

(2)
2 ) − I(U

(2)
0 ; X

(2)
1 )), t1I(X

(1)
2 ; Y

(1)
3 )

)

. (11)

with probabilities:

p(x
(1)
2 , u

(1)
0 , x

(1)
0 ) = p(x

(1)
2 )p(u

(1)
0 |x(1)

2 )p(x
(1)
0 |u(1)

0 , x
(1)
2 ),

p(x
(2)
1 , u

(2)
0 , x

(2)
0 ) = p(x

(2)
1 )p(u

(2)
0 |x(2)

1 )p(x
(2)
0 |u(2)

0 , x
(2)
1 ).
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Proof: See Appendix A.

From Theorem 1, the achievable rate of the proposed scheme for the Gaussian case can be obtained as follows.

corollary 1 For the half-duplex Gaussian parallel relay channel, assuming successive relaying protocol with power

constraint at the source and at each relay, DPC achieves the following rate:

Clow
DPC= max

(

R(1) + R(2)
)

, (12)

subject to:

R(1) ≤ min

(

t1C

(

h2
01P

(1)
0

t1

)

, t2C

(

h2
13P1

t2

)

)

,

R(2) ≤ min

(

t2C

(

h2
02P

(2)
0

t2

)

, t1C

(

h2
23P2

t1

)

)

,

P
(1)
0 + P

(2)
0 = P0,

t1 + t2 = 1,

0 ≤ t1, t2, P
(1)
0 , P

(2)
0 .

Proof: From Costa’s Dirty Paper Coding [28], by having

U
(1)
0 = X

(1)
0 +

h01h12P
(1)
0

h2
01P

(1)
0 + t1

X
(1)
2 , (13)

U
(2)
0 = X

(2)
0 +

h02h12P
(2)
0

h2
02P

(2)
0 + t2

X
(2)
1 . (14)

whereX
(1)
0 ∼ N (0, P

(1)
0 ), X

(2)
0 ∼ N (0, P

(2)
0 ), X

(1)
2 ∼ N (0, P2), and X

(2)
1 ∼ N (0, P1), and applying them to

Theorem 1, we obtain corollary 1.

(ŝ
(b−2)
2 , ŵ(b−2))

x
(2)
1 (w(b−1)|s(b−2)

2 ), u
(2)
1 (s

(b−2)
2 )

(ŵ(b−1), ŵ(b))

x
(2)
0 (w(b)|w(b−1), s

(b−2)
2 )

(ŵ(b−1), ŵ(b))

x
(1)
2 (w(b−1)|s(b−2)

1 ), u
(1)
2 (s

(b−2)
1 )

(ŝ
(b−2)
1 , ŵ(b−2))x

(1)
0 (w(b)|w(b−1), s

(b−2)
1 )

Fig. 4. Successive relaying protocol based on Cooperative Coding.

2) Cooperative Coding:In this type of coding scheme, we assume that, at each time slot, the receiving relay

decodes not only the new transmitted message from the source, but also the previous message transmitted from the

transmitting relay (See Figs. 2 and 4). Our proposed coding scheme is based on binning, superposition coding, and

Block Markov Encoding. The source sendsB messagesw(1), w(2), · · · , w(B) in B + 2 time slots.

Generally, this scheme can be described as follows (See Figs. 4 and 5). In time slotb, the relay(b+1) mod 2+1

decodes the transmitted messagesw(b) andw(b−1) from the source and the other relay, respectively. In time slot
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x
(1)
0 (w(3)|w(2), s

(1)
1 )x

(1)
0 (w(1)|1, 1)

x
(1)
2 (1|1),u

(1)
2 (1)

x
(2)
0 (w(2)|w(1), 1)

x
(1)
2 (w(2)|s(1)

1 ),u
(1)
2 (s

(1)
1 )

x
(2)
1 (w(3)|s(2)

2 ),u
(2)
1 (s

(2)
2 )

x
(2)
0 (w(4)|w(3), s

(2)
2 )

x
(2)
1 (w(1)|1),u

(2)
1 (1)Relay 1

Source

Relay 2

Block 2Block 1 Block 3 Block 4

Fig. 5. Decode-and-forward for successive relaying protocol.

b + 1, it broadcastsw(b) and the bin index ofw(b−1), s
(b−1)
(b+2) mod 2+1, to the destination using the binning function

defined next.

Definition (The Binning Function):The binning functionf ((b+1) mod 2+1)
Bin (w(b−2)) : W = {1, 2, · · · , 2nR((b+1) mod2+1)}

−→ {1, 2, . . . , 2nr((b+1) mod2+1)
Bin } is defined byf ((b+1) mod 2+1)

Bin (w(b−2)) = s
(b−2)
(b+1) mod 2+1, wheref

((b+1) mod 2+1)
Bin (.)

assigns a randomly uniform distributed integer between 1 and 2nr
((b+1) mod 2+1)
Bin independently to each member of

W .

As indicated in Fig. 5, in the first time slot, the source transmits the codewordx(1)
0 (w(1)|1, 1) to the first relay,

while the second relay transmits a doubly indexed codewordx(1)
2 (1|1) and the codewordu(1)

2 (1) to the first relay

and to the destination. In the second time slot, the source transmits the codewordx(2)
0 (w(2)|w(1), 1) to the second

relay, and having decoded the messagew(1), the first relay broadcasts the codewordsx(2)
1 (w(1)|1) and u(2)

1 (1) to

the second relay and to the destination. It should be noted that the destination cannot decode the messagew(1) at

the end of this time slot; however, the second relay decodesw(1) andw(2) messages. Using the binning function, it

finds the bin index ofw(1) according tos(1)
1 = f

(1)
Bin(w(1)). In the third time slot, the source transmits the codeword

x(1)
0 (w(3)|w(2), s

(1)
1 ) to the first relay, and the second relay broadcasts the codewordsx(1)

2 (w(2)|s(1)
1 ) andu(1)

2 (s
(1)
1 )

to the first relay and to the destination.

Two types of decoding can be used at the destination: successive decoding and backward decoding. Successive

decoding at the destination can be described as follows. At the end of thebth time slot, the destination cannot decode

the messagew(b−1); however, having decoded the bin indexs
(b−2)
(b+1) mod 2+1 from the received vector of thebth time

slot, it can decode the messagew(b−2) from s
(b−2)
(b+1) mod 2+1 and the received vector of the(b − 1)th time slot. On

the other hand, backward decoding can be explained as follows. Having received the sequence of theB +2’th time

slot, the final destination starts decoding the intended messages. In the time slotB + 2, one of the relays transmits

the dummy message“1” along with the bin index of the messagew(B) to the destination. Having received this bin

index, the destination decodes it, and then backwardly decodes messagesw(b), b = B, B − 1, · · · , 1 and their bin

indices. The following Theorem gives the achievable rate ofthe proposed scheme.

Theorem 2 For the half-duplex parallel relay channel, assuming successive relaying, the BME scheme achieves

DRAFT
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the ratesClow
BMEsucc

and Clow
BMEback

using successive and backward decoding, respectively:

Clow
BMEsucc

= R(1) + R(2) ≤ max
0≤t1,t2,t1+t2=1

min (

min
(

t1I
(

X
(1)
0 ; Y

(1)
1 | X

(1)
2 , U

(1)
2

)

, t2I
(

X
(2)
1 ; Y

(2)
3 | U

(2)
1

)

+ t1I
(

U
(1)
2 ; Y

(1)
3

))

+

min
(

t1I
(

X
(1)
2 ; Y

(1)
3 | U

(1)
2

)

+ t2I
(

U
(2)
1 ; Y

(2)
3

)

, t2I
(

X
(2)
0 ; Y

(2)
2 | X

(2)
1 , U

(2)
1

))

,

t1I
(

X
(1)
0 , X

(1)
2 ; Y

(1)
1 | U

(1)
2

)

, t2I
(

X
(2)
0 , X

(2)
1 ; Y

(2)
2 | U

(2)
1

))

. (15)

with probabilities

p(x
(1)
0 , x

(1)
2 , u

(1)
2 ) = p(u

(1)
2 )p(x

(1)
2 |u(1)

2 )p(x
(1)
0 |x(1)

2 , u
(1)
2 ),

p(x
(2)
0 , x

(2)
1 , u

(2)
1 ) = p(u

(2)
1 )p(x

(2)
1 |u(2)

1 )p(x
(2)
0 |x(2)

1 , u
(2)
1 ),

p(x
(1)
2 , u

(1)
2 ) = p(u

(1)
2 )p(x

(1)
2 |u(1)

2 ),

p(x
(2)
1 , u

(2)
1 ) = p(u

(2)
1 )p(x

(2)
1 |u(2)

1 ).

Clow
BMEback

= R(1) + R(2) ≤

max
0≤t1,t2,t1+t2=1

min
(

t1I
(

X
(1)
0 , X

(1)
2 ; Y

(1)
1

)

, t2I
(

X
(2)
0 , X

(2)
1 ; Y

(2)
2

)

,

t1I
(

X
(1)
0 ; Y

(1)
1 | X

(1)
2

)

+ t2I
(

X
(2)
0 ; Y

(2)
2 | X

(2)
1

)

,

t1I
(

X
(1)
2 ; Y

(1)
3

)

+ t2I
(

X
(2)
1 ; Y

(2)
3

))

. (16)

with probabilities

p(x
(1)
0 , x

(1)
2 ) = p(x

(1)
2 )p(x

(1)
0 |x(1)

2 ),

p(x
(2)
0 , x

(2)
1 ) = p(x

(2)
1 )p(x

(2)
0 |x(2)

1 ).

Proof: See Appendix B.

Now, the following set of propositions and corollaries investigate the Non-Cooperative and Cooperative schemes

and compare them with each other.

Proposition 1 The BME with backward decoding achieves a better rate than the one with successive decoding,

i.e., Clow
BMEback

≥ Clow
BMEsucc

.

Proof: For the first term of minimization (15), we have

min
(

t1I
(

X
(1)
0 ; Y

(1)
1 | X

(1)
2 , U

(1)
2

)

, t2I
(

X
(2)
1 ; Y

(2)
3 | U

(2)
1

)

+ t1I
(

U
(1)
2 ; Y

(1)
3

))

+

min
(

t1I
(

X
(1)
2 ; Y

(1)
3 | U

(1)
2

)

+ t2I
(

U
(2)
1 ; Y

(2)
3

)

, t2I
(

X
(2)
0 ; Y

(2)
2 | X

(2)
1 , U

(2)
1

))

≤

min
(

t1I
(

X
(1)
0 ; Y

(1)
1 | X

(1)
2 , U

(1)
2

)

+ t2I
(

X
(2)
0 ; Y

(2)
2 | X

(2)
1 , U

(2)
1

)

,

t1I
(

X
(1)
2 , U

(1)
2 ; Y

(1)
3

)

+ t2I
(

X
(2)
1 , U

(2)
1 ; Y

(2)
3

))

. (17)
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Let us focus ont1I
(

X
(1)
0 ; Y

(1)
1 | X

(1)
2 , U

(1)
2

)

+ t2I
(

X
(2)
0 ; Y

(2)
2 | X

(2)
1 , U

(2)
1

)

:

t1I
(

X
(1)
0 ; Y

(1)
1 | X

(1)
2 , U

(1)
2

)

+ t2I
(

X
(2)
0 ; Y

(2)
2 | X

(2)
1 , U

(2)
1

)

(a)
=

t1H
(

Y
(1)
1 | X

(1)
2 , U

(1)
2

)

− t1H
(

Y
(1)
1 | X

(1)
0 , X

(1)
2

)

+

t2H
(

Y
(2)
2 | X

(2)
1 , U

(2)
1

)

− t2H
(

Y
(2)
2 | X

(2)
0 , X

(2)
1

) (b)

≤

t1H
(

Y
(1)
1 | X

(1)
2

)

− t1H
(

Y
(1)
1 | X

(1)
0 , X

(1)
2

)

+

t2H
(

Y
(2)
2 | X

(2)
1

)

− t2H
(

Y
(2)
2 | X

(2)
0 , X

(2)
1

)

(c)
=

t1I
(

X
(1)
0 ; Y

(1)
1 | X

(1)
2

)

+ t2I
(

X
(2)
0 ; Y

(2)
2 | X

(2)
1

)

. (18)

(a) and (c) follow from the definition of mutual information, the fact that U
(1)
2 −→

(

X
(1)
0 , X

(1)
2

)

−→ Y
(1)
1 and

U
(2)
1 −→

(

X
(2)
0 , X

(2)
1

)

−→ Y
(2)
2 form Markov chain, and(b) follows from the fact that conditioning reduces

entropy. Inequality(b) becomes equality ifp(x
(1)
0 , x

(1)
2 , u

(1)
2 ) = p(u

(1)
2 )p(x

(1)
2 )p(x

(1)
0 |x(1)

2 ) andp(x
(2)
0 , x

(2)
1 , u

(2)
1 ) =

p(u
(2)
1 )p(x

(2)
1 )p(x

(2)
0 |x(2)

1 ) . Using the similar argument fort1I
(

X
(1)
2 , U

(1)
2 ; Y

(1)
3

)

+ t2I
(

X
(2)
1 , U

(2)
1 ; Y

(2)
3

)

,

t1I
(

X
(1)
0 , X

(1)
2 ; Y

(1)
1 | U

(1)
2

)

, andt2I
(

X
(2)
0 , X

(2)
1 ; Y

(2)
2 | U

(2)
1

)

in (15) and (17), and the factU (1)
2 −→ X

(1)
2 −→

Y
(1)
3 , U

(2)
1 −→ X

(2)
1 −→ Y

(2)
3 , U

(1)
2 −→

(

X
(1)
0 , X

(1)
2

)

−→ Y
(1)
1 , U

(2)
1 −→

(

X
(2)
0 , X

(2)
1

)

−→ Y
(2)
2 form Markov

chain, and Appendix B, along with comparingClow
BMsucc

andClow
BMback

in Theorem 2, we haveClow
BMback

≥ Clow
BMsucc

.

From Theorem 2, we have the following corollary for the Gaussian case.

corollary 2 For the half-duplex Gaussian parallel relay channel, assuming successive relaying protocol with power

constraint at the source and each relay, BME achieves the following rates

Clow
BMEsucc

= max min
(

Clow
BME1

+ Clow
BME2

,

t1C





h2
01P

(1)
0 + h2

12θ2P2 + 2h01h12

√

ᾱ1θ2P
(1)
0 P2

t1



 ,

t2C





h2
02P

(2)
0 + h2

12θ1P1 + 2h02h12

√

ᾱ2θ1P
(2)
0 P1

t2







 . (19)

Clow
BMEback

= max min



t1C





h2
01P

(1)
0 + h2

12P2 + 2h01h12

√

β̄1P
(1)
0 P2

t1



 ,

t2C





h2
02P

(2)
0 + h2

12P1 + 2h02h12

√

β̄2P
(2)
0 P1

t2



 ,

t1C

(

h2
01β1P

(1)
0

t1

)

+ t2C

(

h2
02β2P

(2)
0

t2

)

,

t1C

(

h2
23P2

t1

)

+ t2C

(

h2
13P1

t2

))

. (20)
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subject to:

Clow
BME1

= min

(

t1C

(

h2
01α1P

(1)
0

t1

)

, t1C

(

h2
23θ̄2P2

h2
23θ2P2 + t1

)

+ t2C

(

h2
13θ1P1

t2

)

)

, (21)

Clow
BME2

= min

(

t2C

(

h2
02α2P

(2)
0

t2

)

, t2C

(

h2
13θ̄1P1

h2
13θ1P1 + t2

)

+ t1C

(

h2
23θ2P2

t1

)

)

, (22)

P
(1)
0 + P

(2)
0 = P0,

t1 + t2 = 1,

0 ≤ α1, α2 ≤ 1,

0 ≤ β1, β2 ≤ 1,

0 ≤ θ1, θ2 ≤ 1.

where θ̄i = 1 − θi, ᾱi = 1 − αi, and β̄i = 1 − βi for i = 1, 2.

Proof: Let V
(1)
0 ∼ N (0, α1P

(1)
0 ), V

(2)
0 ∼ N (0, α2P

(2)
0 ), V

(1)
2 ∼ N (0, θ2P2), V

(2)
1 ∼ N (0, θ1P1), U

(1)
2 ∼

N (0, θ̄2P2) andU
(2)
1 ∼ N (0, θ̄1P1), which are independent of each other.

Letting X
(1)
0 = V

(1)
0 +

√

ᾱ1P
(1)
0

θ2P2
V

(1)
2 , X

(2)
0 = V

(2)
0 +

√

ᾱ2P
(2)
0

θ1P1
V

(2)
1 , X

(1)
2 = V

(1)
2 + U

(1)
2 , X

(2)
1 = V

(2)
1 + U

(2)
1

and using the result in the expression for the achievable rate obtained in Theorem 1, we obtainClow
BMEsucc

for the

Gaussian case, as given in [32] and (19), (21), and (22), respectively.

For backward decoding, letV (1)
0 ∼ N (0, β1P

(1)
0 ), V

(2)
0 ∼ N (0, β2P

(2)
0 ), X

(1)
2 ∼ N (0, P2), and X

(2)
1 ∼

N (0, P1), which are independent of each other. By settingX
(1)
0 = V

(1)
0 +

√

β̄1P
(1)
0

P2
X

(1)
2 , X

(2)
0 = V

(2)
0 +

√

β̄2P
(2)
0

P1
X

(2)
1 and using the result in the expression for the achievable rate obtained in Theorem 1, we obtain

Clow
BMEback

for the Gaussian case, as given in (20).

Proposition 2 In symmetric scenarios, whereh01 = h02, h13 = h23, andP1 = P2, Non-Cooperative DPC scheme

outperforms Cooperative BME scheme, i.e.Clow
BMEback

≤ Clow
DPC .

Proof: Due to the symmetric assumption, we havet1 = t2 = 1
2 , P

(1)
0 = P

(2)
0 = P0

2 , andβ1 = β2 = 1
2 . Hence,

from (20), we have

Clow
BMEback

≤ min

(

C

(

h2
01P0

2

)

, C
(

2h2
13P1

)

)

. (23)

And alsoClow
DPC in (12) becomes

Clow
DPC = min

(

C
(

h2
01P0

)

,
1

2
C
(

h2
01P0

)

+
1

2
C
(

2h2
13P1

)

, C
(

2h2
13P1

)

)

. (24)

Comparing (23) and (24), we haveClow
BMEback

≤ Clow
DPC .

According to the discussion in Appendix B,r
(1)
Bin = 0 or r

(2)
Bin = 0. In other words, in the Cooperative BME

scheme based on backward decoding, at most one relay is necessary to use binning function for the message it
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receives from another, and the other relay is not necessary to cooperate with this relay. Therefore, we propose a

composite BME-DPC scheme. In this scheme, one of the relays decodes the other relay’s message. Having decoded

that, it then uses the binning function to cooperate with theother relay. On the other hand, using the Gelfand-

Pinsker’s result the source cancels the interference due toone relay on the other. Hence, we have the following

Theorem.

Theorem 3 The composite BME-DPC scheme, achieves the following rate:

Clow
BME−DPC = max

0≤t1,t2,t1+t2=1
min

(

t1I
(

X
(1)
0 , X

(1)
2 ; Y

(1)
1

)

, t1I
(

X
(1)
0 ; Y

(1)
1 | X

(1)
2

)

+

t2

(

I
(

U
(2)
0 ; Y

(2)
2

)

− I
(

U
(2)
0 ; X

(2)
1

))

, t1I
(

X
(1)
2 ; Y

(1)
3

)

+ t2I
(

X
(2)
1 ; Y

(2)
3

)

,

t2

(

I
(

U
(2)
0 ; Y

(2)
2

)

− I
(

U
(2)
0 ; X

(2)
1

))

+ t2I
(

X
(2)
1 ; Y

(2)
3

))

. (25)

Proof: Assumingr(1)
Bin = 0, and using Theorem 1 and Theorem 2 along with a similar argument as in Appendix

B, Theorem 3 is immediate.

corollary 3 For the Gaussian case, the composite BME-DPC scheme achieves the following rateClow
BME−DPC .

Furthermore,Clow
BME−DPC ≥ Clow

BMEback
. In other words, the composite BME-DPC scheme always achieves a

better rate than the BME scheme for the Gaussian scenario.

Clow
BME−DPC =R(1) + R(2) ≤

max min



t1C





h2
01P

(1)
0 + h2

12P2 + 2h01h12

√

ᾱP
(1)
0 P2

t1



 ,

t1C

(

h2
01αP

(1)
0

t1

)

+ t2C

(

h2
02P

(2)
0

t2

)

,

t1C

(

h2
23P2

t1

)

+ t2C

(

h2
13P1

t2

)

, t2C

(

h2
02P

(2)
0

t2

)

+ t2C

(

h2
13P1

t2

)

)

. (26)

subject to:

P
(1)
0 + P

(2)
0 = P0,

t1 + t2 = 1,

0 ≤ t1, t2, P
(1)
0 , P

(2)
0 ,

0 ≤ α ≤ 1.

whereᾱ = 1 − α.

Proof: As in Theorem 3, we assume thatr
(1)
Bin = 0. Now, we show that every rate pairs

(

R(1), R(2)
)

satisfying (101)-(107) satisfy (26). After specializing (101)-(107) for the Gaussian case and comparing with (26),

one observes that the second term in minimization (101) doesnot exist. Substitutingr(1)
Bin = 0 in (102)-(107),
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Relay 2

h01

h23

Destination

h13

h02

t3 t4

Source

Relay 1

Fig. 6. Simultaneous relaying protocol for two relays.

one can obtain the other three corresponding terms. Comparing those terms with (26), it can be readily seen that

Clow
BME−DPC ≥ Clow

BMEback
.

Remark 1 Assumingr(1)
Bin = 0, as in Theorem 3 and corollary 3, the destination jointly decodes the current message

and the bin index of the next message at the end of even time slots and then it can decode the next message at the

end of odd time slots. Therefore, using backward decoding isnot necessary in the BME-DPC scheme.

B. Simultaneous Relaying Protocol

Figure 6 shows simultaneous relaying protocol. In simultaneous relaying, in one time slot of durationt3 the

source transmits its signal simultaneously to the two relays. In the next time slot of durationt4, two relays transmit

their signal coherently to the destination. Hence, in this protocol, t1 = t2 = 0 and our system model follows from

(6) and (7).

1) Dynamic Decode-and-Forward (DDF):In DDF scheme each relay decodes the transmitted message from

the source in time slott3 (Broadcast (BC) State), and forwards its re-encoded version in time slot t4 (Multiple

Access (MAC) State). The following Theorem gives the achievable rate of the DDF scheme for the general discrete

memoryless channels.

Theorem 4 For the half-duplex parallel relay channel, assuming simultaneous relaying and the fact that what the

second relay receives is a degraded version of what the first relay receives, the following rateClow
DDF is achievable:

Clow
DDF = max

0≤t3,t4,t3+t4=1
Rp + Rc, (27)

subject to:

Rp ≤ min
(

t3I(X
(3)
0 ; Y

(3)
1 | U

(3)
0 ), t4I(X

(4)
1 ; Y

(4)
3 | X

(4)
2 )
)

, (28)

Rc ≤ t3I(U
(3)
0 ; Y

(3)
2 ), (29)

Rp + Rc ≤ t4I(X
(4)
1 , X

(4)
2 ; Y

(4)
3 ). (30)
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with probabilities:

p(u
(3)
0 , x

(3)
0 ) = p(u

(3)
0 )p(x

(3)
0 |u(3)

0 ),

p(x
(4)
1 , x

(4)
2 ) = p(x

(4)
1 )p(x

(4)
2 |x(4)

1 ).

Proof: The achievable rate of DDF is equal toClow
DDF = Rp + Rc, where (Rp, Rc) should be both in the

capacity region of BC (corresponding to the BC state) and MAC(corresponding to the MAC state). Applying the

superposition coding of the degraded BC [12] the following rates are achievable for the first hop:

Rp ≤ t3I(X
(3)
0 ; Y

(3)
1 | U

(3)
0 ),

Rc ≤ t3I(U
(3)
0 ; Y

(3)
2 ). (31)

with probabilityp(u
(3)
0 , x

(3)
0 ) = p(u

(3)
0 )p(x

(3)
0 |u(3)

0 ).

And using the superposition coding of the extended MAC (See [25], [26]) the following rates are achievable for

the second hop:

Rp ≤ t4I(X
(4)
1 ; Y

(4)
3 | X

(4)
2 ),

Rp + Rc ≤ t4I(X
(4)
1 , X

(4)
2 ; Y

(4)
3 ). (32)

with probabilityp(x
(4)
1 , x

(4)
2 ) = p(x

(4)
1 )p(x

(4)
2 |x(4)

1 ).

In the Gaussian case (assumingh01 ≥ h02), the source splits its total available powerP0 to P
(3)
0,p and P

(3)
0,c

associated with the“Private” and the“Common” messages, respectively. LettingX(3)
0 ∼ N (0, P0), U

(3)
0 ∼

N
(

0, P
(3)
0,c

)

, andX
(4)
1 ∼ N (0, P1), assuming that relay 1 and relay 2 transmit their codewords associated with

the common message withN
(

0, P
(4)
1,c

)

andN (0, P2), and using (31) and (32) we have the following corollary.
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corollary 4 For the half-duplex Gaussian parallel relay channel, assuming simultaneous relaying protocol with

power constraints at the source and at each relay, DDF achieves the following rate

Clow
DDF =Rp + Rc, (33)

subject to: Rp ≤ min

(

t3C

(

h2
01P

(3)
0,p

t3

)

, t4C

(

h2
13P

(4)
1,p

t4

))

,

Rc ≤ t3C

(

h2
02P

(3)
0,c

t3 + h2
02P

(3)
0,p

)

,

Rp + Rc ≤ t4C











h2
13P

(4)
1,p +

(

h13

√

P
(4)
1,c + h23

√
P2

)2

t4











,

P
(3)
0,p + P

(3)
0,c = P0, P

(4)
1,p + P

(4)
1,c = P1, t3 + t4 = 1,

0 ≤ t3, t4, P
(3)
0,p , P

(3)
0,c , P

(4)
1,p , P

(4)
1,c .

Interestingly, successive decoding at the destination does not degrade the performance of DDF scheme in the

Gaussian scenario as shown in the following Proposition.

Proposition 3 The rate of DDF scheme is achievable by successive decoding of the common and private messages

at the destination.

Proof: Consider the sum rate for both the common message and the private message for the extended multiple

access channel from relays to the destination,

Rp + Rc ≤ t4C





h2
13P

(4)
1,p + (h13

√

P
(4)
1,c + h23

√
P2)

2

t4



 . (34)

It can be readily verified that subject to the constraintP
(4)
1,p +P

(4)
1,c = P1, the right-hand side of (34) is a decreasing

function ofP (4)
1,p or equivalently an increasing function ofP

(4)
1,c . Now, let us equateRp in (34) with the private rate

Ŕp of another MAC which is achieved by successive decoding of common and private messages. Therefore, we

have

Rp = Ŕp = t4C

(

h2
13Ṕ

(4)
1,p

t4

)

≤ t4C

(

h2
13P

(4)
1,p

t4

)

. (35)

According to (35), we have (See Fig. 7)

Ṕ
(4)
1,p ≤ P

(4)
1,p =⇒

Rp + Rc ≤ Ŕp + Ŕc,

Rc ≤ Ŕc.

Hence,(Rp, Rc) lies in the corner point of the extended MAC with parameters(Ṕ
(4)
1,p , Ṕ

(4)
1,c ), i.e. successive decoding

of common and private messages achieves the DF rate.
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Common Rate
Rc Ŕc

Ŕp = Rp

Private Rate

Fig. 7. The order of decoding“Common” and “Private” messages.

C. Simultaneous-Successive Relaying Protocol based on Dirty paper coding (SSRD)

Source Destination

Relay 1

Relay 2

R1

R2

a) Time slot 1 with duration t1

Source Destination

Relay 1

Relay 2

R4

b) Time slot 2 with duration t2

R3

Source Destination

Relay 1

Relay 2

d) Time slot 4 with duration t4

(R7, R9)

(R8, R9)

Source Destination

Relay 1

Relay 2

R6

(R5, R6)

c) Time slot 3 with duration t3

Fig. 8. SSRD Scheme for the Half-Duplex Parallel Relay Channel.

In this section, we propose an achievable rate for the half-duplex parallel relay channel. Our achievable scheme

is based on the combination of the successive relaying protocol based on DPC scheme and simultaneous relaying

protocol based on DDF (SSRD scheme). Hence, we have the following Theorem.

Theorem 5 Considering Fig. 8, for the half-duplex parallel relay channel, SSRD scheme achieves the following
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rate Clow
SSRD:

Clow
SSRD =min (R1 + R4 + R5 + R6, R2 + R3 + R7 + R8 + R9) , (36)

subject to:

R9 ≤ R6, R1 + R5 ≤ R3 + R7, R4 ≤ R2 + R8. (37)

Proof: SSRD scheme is illustrated in Fig. 8. As indicated in the figure, transmission is performed in 4 time

slots. Relay 1 transmits its private message which was received in time slotst1 and t3 (corresponding to ratesR1

andR5) in time slotst2 andt4 (corresponding to ratesR3 andR7). On the other hand, relay 2 transmits its private

message which has been received in time slott2 (corresponding to rateR4) in time slotst1 andt4 (corresponding

to ratesR2 andR8). Furthermore, the two relays send the common message they have already received in time slot

t3 (corresponding to rateR6) coherently in time slott4 (corresponding to rateR9). As observed, here we consider

the private rate for both relays in the MAC state, i.e. time slot t4. This is due to the reason that relay 2 also receives

the private message in time slott2. Hence, from the above description and Fig. 8, we have

Clow
SSRD =min (R1 + R4 + R5 + R6, R2 + R3 + R7 + R8 + R9) , (38)

subject to:

R9 ≤ R6, R1 + R5 ≤ R3 + R7, R4 ≤ R2 + R8. (39)

Using corollaries 1, 4, and Proposition 3, for the Gaussian case we have
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Clow
SSRD =min

(

t1C

(

h2
01P

(1)
0

t1

)

+ t2C

(

h2
02P

(2)
0

t2

)

+ t3C

(

h2
01P

(3)
0,p

t3

)

+ t3C

(

h2
02P

(3)
0,c

t3 + h2
02P

(3)
0,p

)

,

t1C

(

h2
23P

(1)
2

t1

)

+ t2C

(

h2
13P

(2)
1

t2

)

+

t4C

(

h2
13P

(4)
1,p + h2

23P
(4)
2,p

t4

)

+ t4C











(

h13

√

P
(4)
1,c + h23

√

P
(4)
2,c

)2

t4 + h2
13P

(4)
1,p + h2

23P
(4)
2,p





















, (40)

subject to:

t4C











(

h13

√

P
(4)
1,c + h23

√

P
(4)
2,c

)2

t4 + h2
13P

(4)
1,p + h2

23P
(4)
2,p











≤ t3C

(

h2
02P

(3)
0,c

t3 + h2
02P

(3)
0,p

)

,

t1C

(

h2
01P

(1)
0

t1

)

+ t3C

(

h2
01P

(3)
0,p

t3

)

≤ t2C

(

h2
13P

(2)
1

t2

)

+ t4C

(

h2
13P

(4)
1,p

t4

)

,

t2C

(

h2
02P

(2)
0

t2

)

≤ t1C

(

h2
23P

(1)
2

t1

)

+ t4C

(

h2
23P

(4)
2,p

t4

)

,

P
(1)
0 + P

(2)
0 + P

(3)
0,p + P

(3)
0,c = P0,

P
(2)
1 + P

(4)
1,p + P

(4)
1,c = P1,

P
(1)
2 + P

(4)
2,p + P

(4)
2,c = P2,

t1 + t2 + t3 + t4 = 1,

0 ≤ t1, t2, t3, t4, P
(1)
0 , P

(2)
0 , P

(3)
0,p , P

(3)
0,c , P

(2)
1 , P

(4)
1,p , P

(4)
1,c , P

(1)
2 , P

(4)
2,p , P

(4)
2,c .

According to corollary 3, another combined simultaneous-successive relaying protocol based on BME is not

necessary. However, a “Simultaneous-Successive Relayingprotocol based on BME-DPC”, can be easily derived.

Assuming the first relay decodes the second one’s message, the achievable rate of this new scheme would be the

same asClow
SSRD. However, since the messages for the second relay are common, R8 in the expression of the

achievable rate is zero. Furthermore, the following constraints instead of (39) should be satisfied:

R9 ≤ R4 + R6, R1 + R5 ≤ R3 + R7, R1 + R4 ≤ t1I
(

X
(1)
0 , X

(1)
2 ; Y

(1)
1

)

. (41)

IV. OPTIMALITY RESULTS

In this section, an upper bound for the half-duplex parallelrelay channel is derived and investigated. The authors

in [27] proposed some upper bounds on the achievable rate forgeneral half-duplex multi-terminal networks. Here,

we explain their results briefly and apply them to our half-duplex parallel relay network.

Authors in [27] define the concept ofstatefor a half-duplex network withN nodes. The state of the network is

a valid partitioning of its nodes into two sets of the “sender nodes” and the “receiver nodes” such that there is no
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active link that arrives at a sender node, and t̂m is the portion of the time that network is used in statem where

m∈ {1, 2, . . . , M}. The following Theorem for the upper bound of the information flow from the subsetS1 to the

subsetS2 of the nodes, whereS1 andS2 are disjoint is proved in [27].

Theorem 6 For a general half-duplex network withN nodes and a finite number of states,M , the maximum

achievable information rates{Rij} from a node setS1 to a disjoint node setS2, S1, S2 ⊂ {0, 1, . . . , N − 1}, is

bounded by
∑

i∈S1,j∈S2

Rij ≤ sup
p(x

(m)
0 ,x

(m)
2 ,...,x

(m)
N−1),t̂m

min
S

M
∑

m=1

t̂mI
(

X
(m)
S ; Y

(m)
S | X

(m)
Sc

)

. (42)

for some joint probability distributionp(x
(m)
0 , x

(m)
2 , . . . , x

(m)
N−1) when the minimization is over all the setsS ⊂

{0, 1, . . . , N − 1} subject toS
⋂

S1 = S1, S
⋂

S2 = ∅ and the supremum is over all the non-negativet̂m subject

to
∑M

i=1 t̂m = 1. Here,x(m)
S , y

(m)
S , and x

(m)
Sc denote the signals transmitted and received by nodes in setS, and

transmitted by nodes in setSc, during statem, respectively.

From Theorem 6, the maximum achievable rateClow is upper bounded as

Clow ≤ Cup , min
(

t̂1I
(

X
(1)
0 ; Y

(1)
1 | X

(1)
2

)

+ t̂2I
(

X
(2)
0 ; Y

(2)
2 | X

(2)
1

)

+ t̂3I
(

X
(3)
0 ; Y

(3)
1 , Y

(3)
2

)

,

t̂2I
(

X
(2)
0 , X

(2)
1 ; Y

(2)
2 , Y

(2)
3

)

+ t̂3I
(

X
(3)
0 ; Y

(3)
2

)

+ t̂4I
(

X
(4)
1 ; Y

(4)
3 | X

(4)
2

)

,

t̂1I
(

X
(1)
0 , X

(1)
2 ; Y

(1)
1 , Y

(1)
3

)

+ t̂3I
(

X
(3)
0 ; Y

(3)
1

)

+ t̂4I
(

X
(4)
2 ; Y

(4)
3 | X

(4)
1

)

,

t̂1I
(

X
(1)
2 ; Y

(1)
3

)

+ t̂2I
(

X
(2)
1 ; Y

(2)
3

)

+ t̂4I
(

X
(4)
1 , X

(4)
2 ; Y

(4)
3

))

, (43)

subject to

t̂1 + t̂2 + t̂3 + t̂4 = 1.

By setting t̂3 = t̂4 = 0 in (43), we obtain an upper bound on the successive relaying protocol which we call it

successive cut-set boundin the sequel.

Theorem 7 In a degraded half-duplex parallel relay channel where the destination receives a degraded version of

the received signals at relays, i.e.X
(1)
2 −→ Y

(1)
1 −→ Y

(1)
3 andX

(2)
1 −→ Y

(2)
2 −→ Y

(2)
3 , BME based on backward

decoding achieves the successive cut-set bound.

Proof: Setting t̂3 = t̂4 = 0 in (43) and comparing the result with (16) the Theorem is proved.

In high SNR scenarios, we have the following Theorem.

Theorem 8 In high SNR scenarios, assuming non-zero source-relay and relay-destination links, when power avail-

able for the source and each relay tends to infinity, time slots t̂3 and t̂4 in (43) tend to zero asO
(

1
log P0

)

.

Furthermore, the upper bound on the capacity of the half-duplex parallel relay channel in high SNR scenarios is

Cup = Clow
DPC + O

(

1

log P0

)

.
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In other words, DPC achieves the capacity of a half-duplex Gaussian parallel relay channel as SNR goes to infinity.

Proof: Throughout the proof, we assume the power of the relays goes to infinity asP1 = γ1P0, P2 = γ2P0

whereγ1, γ2 are constants independent of the SNR. SubstitutingX
(1)
0 ∼ N (0, P̂

(1)
0 ), X

(2)
0 ∼ N (0, P̂

(2)
0 ), X

(3)
0 ∼

N (0, P̂
(3)
0 ), X

(2)
1 ∼ N (0, P̂

(2)
1 ), X

(4)
1 ∼ N (0, P̂

(4)
1 ), X

(1)
2 ∼ N (0, P̂

(1)
2 ), andX

(4)
2 ∼ N (0, P̂

(4)
2 ) in (43), and

assuming complete cooperation between the transmitting and receiving nodes for each cut in (43), we have

Cup ≤min

(

t̂1C

(

h2
01P̂

(1)
0

t̂1

)

+ t̂2C

(

h2
02P̂

(2)
0

t̂2

)

+ t̂3C

(

(h2
01 + h2

02)P̂
(3)
0

t̂3

)

,

t̂2C





h2
02P̂

(2)
0

t̂2
+

(h2
12 + h2

13)P̂
(2)
1

t̂2
+

2h02h12

√

P̂
(2)
0 P̂

(2)
1

t̂2
+

h2
02h

2
13P̂

(2)
0 P̂

(2)
1

t̂22



+

t̂3C

(

h2
02P̂

(3)
0

t̂3

)

+ t̂4C

(

h2
13P̂

(4)
1

t̂4

)

,

t̂1C





h2
01P̂

(1)
0

t̂1
+

(h2
12 + h2

23)P̂
(1)
2

t̂1
+

2h01h12

√

P̂
(1)
0 P̂

(1)
2

t̂1
+

h2
01h

2
23P̂

(1)
0 P̂

(1)
2

t̂21



+

t̂3C

(

h2
01P̂

(3)
0

t̂3

)

+ t̂4C

(

h2
23P̂

(4)
2

t̂4

)

,

t̂1C

(

h2
23P̂

(1)
2

t̂1

)

+ t̂2C

(

h2
13P̂

(2)
1

t̂2

)

+

t̂4C





h2
13P̂

(4)
1 + h2

23P̂
(4)
2 + 2h13h23

√

P̂
(4)
1 P̂

(4)
2

t̂4







 . (44)

subject to:

P̂
(1)
0 + P̂

(2)
0 + P̂

(3)
0 = P0,

P̂
(2)
1 + P̂

(4)
1 = P1,

P̂
(1)
2 + P̂

(4)
2 = P2,

t̂1 + t̂2 + t̂3 + t̂4 = 1,

0 ≤ t̂1, t̂2, t̂3, t̂4, P̂
(1)
0 , P̂

(2)
0 , P̂

(3)
0 , P̂

(2)
1 , P̂

(4)
1 , P̂

(1)
2 , P̂

(4)
2 .

Furthermore, from corollary 1, the achievable rate of the DPC scheme can be expressed as

Clow
DPC = min

(

t1C

(

h2
01P

(1)
0

t1

)

+ t2C

(

h2
02P

(2)
0

t2

)

,

t2C

(

h2
02P

(2)
0

t2

)

+ t2C

(

h2
13P1

t2

)

,

t1C

(

h2
01P

(1)
0

t1

)

+ t1C

(

h2
23P2

t1

)

,

t1C

(

h2
23P2

t1

)

+ t2C

(

h2
13P1

t2

))

. (45)
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By settingP
(1)
0 = P

(2)
0 = P0

2 and t1 = t2 = 0.5 in (45), expression (45) can be simplified as

Clow
DPC ≥ 1

2
lnP0 + c. (46)

where c is some constant which depends on channel coefficients. Knowing that the term corresponding to each

cut-set in (44) for the optimum values oft̂1, · · · , t̂4 is indeed an upper-bound forClow
DPC , and by settingP̂ (1)

0 =

P̂
(2)
0 = P̂

(3)
0 = P0 in (44), we have the following inequality between (46) and the first cut of (44).

1

2
lnP0 + c ≤ t̂1

2
ln

(

h2
01P0

t̂1

)

+
t̂2

2
ln

(

h2
02P0

t̂2

)

+
t̂3

2
ln

(

(h2
01 + h2

02)P0

t̂3

)

+

t̂21
2h2

01P0
+

t̂22
2h2

02P0
+

t̂23
2(h2

01 + h2
02)P0

=

(

1 − t̂4
)

2
lnP0 +

t̂1

2
lnh2

01 +
t̂2

2
lnh2

02 +
t̂3

2
ln
(

h2
01 + h2

02

)

− t̂1

2
ln t̂1 −

t̂2

2
ln t̂2 −

t̂3

2
ln t̂3 +

t̂21
2h2

01P0
+

t̂22
2h2

02P0
+

t̂23
2 (h2

01 + h2
02)P0

. (47)

Note that in deriving (46) and (47), the following inequality is applied to lower/upper-bound the corresponding

terms:

ln(x) ≤ ln(1 + x) ≤ ln(x) +
1

x
, ∀x > 0. (48)

Consequently, we have

t̂4 ≤ 1

lnP0

(

2c + t̂1 lnh2
01 + t̂2 lnh2

02 + t̂3 ln
(

h2
01 + h2

02

)

− t̂1 ln t̂1 − t̂2 ln t̂2 − t̂3 ln t̂3
)

+
1

lnP0

(

t̂21
h2

01P0
+

t̂22
h2

02P0
+

t̂23
(h2

01 + h2
02)P0

)

.

Hence, we can bound the optimum value oft̂4 in (44) as

0 ≤ t̂4 ≤ O

(

1

log P0

)

. (49)

Similarly, by considering the fourth cut in (44), we can derive another bound on the optimum value oft̂3 as follows:

0 ≤ t̂3 ≤ O

(

1

log P0

)

. (50)

Applying the inequality between (46) and the term corresponding to the second cut in (44), knowing (from (49)

and (50)) the fact that̂t3 ≤ c3

lnP0
, and t̂4 ≤ c4

lnP0
(wherec3 andc4 are constants), and using inequalities (48), and

ln(1 + x) ≤ x, ∀x ≥ 0, (51)
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we obtain

1

2
lnP0 + c ≤

t̂2

2
ln

(

h2
02h

2
13γ1P

2
0

t̂22

(

1 +
t̂2

γ1h
2
13P0

+
t̂2
(

h2
12 + h2

13

)

h2
02h

2
13P0

+
t̂2h12

h2
13h02

√
γ1P0

))

+

t̂3

2
ln

(

h2
02P0

t̂3

)

+
t̂4

2
ln

(

h2
13γ1P0

t̂4

)

+

t̂32

2
(

t̂2h
2
02P0 + t̂2γ1 (h2

12 + h2
13)P0 + 2t̂2h02h12

√
γ1P0 + h2

02h
2
13γ1P

2
0

)+

t̂23
2h2

02P0
+

t̂24
2γ1h

2
13P0

≤ t̂2 lnP0 +
t̂2

2
ln

(

h2
02h

2
13γ1

t̂22

)

+
t̂22

2γ1h
2
13P0

+
t̂22
(

h2
12 + h2

13

)

2h2
02h

2
13P0

+
t̂22h12

2h2
13h02

√
γ1P0

+

c3

2 lnP0
lnh2

02 −
c3

2 lnP0
ln t̂3 +

c3

2
+

c4

2 lnP0
ln γ1h

2
13 −

c4

2 lnP0
ln t̂4 +

c4

2
+

t̂32

2
(

t̂2h
2
02P0 + t̂2γ1 (h2

12 + h2
13)P0 + 2t̂2h02h12

√
γ1P0 + h2

02h
2
13γ1P

2
0

)+

t̂23
2h2

02P0
+

t̂24
2γ1h

2
13P0

Therefore, we have

1

2
lnP0 + c≤ t̂2 lnP0 + ć

+O

(

1

lnP0

)

+ O

(

1

P0

)

.

Hence,

1

2
− c2

log P0
≤ t̂2. (52)

Similarly, from the third cut of (44), for̂t1 we have

1

2
− c1

log P0
≤ t̂1. (53)

From (52) and (53), and also the fact thatt̂1 + t̂2 + t̂3 + t̂4 = 1, we obtain

1

2
− c2

log P0
≤ t̂2 ≤ 1

2
+

c1

log P0
, (54)

1

2
− c1

log P0
≤ t̂1 ≤ 1

2
+

c2

log P0
. (55)

Hence, from (49), (50), (54), and (55) asP0 → ∞, t̂3, t̂4 → 0 and t̂1, t̂2 → 0.5. This proves the first part of the

Theorem.

Moreover, knowing that each term corresponding to the four cuts in (44) is greater than0.5 ln(P0) + c and as

t̂1, t̂2 are strictly above zero (approaching0.5), we can easily conclude that

P̂
(1)
0 , P̂

(2)
0 , P̂

(2)
1 , P̂

(1)
2 ∼ Θ (P0) . (56)

DRAFT



25

Now, we prove that the DPC scheme with the parameterst1 = t̂1 + t̂3+t̂4
2 , t2 = t̂2 + t̂3+t̂4

2 , P
(1)
0 = P̂

(1)
0 and

P
(2)
0 = P̂

(2)
0 , wheret̂1, · · · , t̂4, P̂

(1)
0 , P̂

(2)
0 are the parameters corresponding to the maximum value of (44), achieves

the capacity with a gap no more thanO
(

1
log P0

)

. To prove this, we show that each of the four terms in (45) is no

more thanO
(

1
log P0

)

below the corresponding term (from the same cut) in (44). To show this, for the first cut we

have

t̂1C

(

h2
01P̂

(1)
0

t̂1

)

+ t̂2C

(

h2
02P̂

(2)
0

t̂2

)

+ t̂3C

(

(h2
01 + h2

02)P̂
(3)
0

t̂3

)

− t1C

(

h2
01P

(1)
0

t1

)

− t2C

(

h2
02P

(2)
0

t2

)

(a)

≤

t̂1

2
ln

(

h2
01P̂

(1)
0

t̂1

)

+
t̂2

2
ln

(

h2
02P̂

(2)
0

t̂2

)

+ t̂3C

(

(h2
01 + h2

02)P̂
(3)
0

t̂3

)

−
(

t̂1

2
+

t̂3 + t̂4

4

)

ln

(

h2
01P̂

(1)
0

t1

)

−
(

t̂2

2
+

t̂3 + t̂4

4

)

ln

(

h2
02P̂

(2)
0

t2

)

+
t̂21

2h2
01P̂

(1)
0

+
t̂22

2h2
02P̂

(2)
0

(b)

.

t̂1

2
ln

(

h2
01P̂

(1)
0

t̂1

)

+
t̂2

2
ln

(

h2
02P̂

(2)
0

t̂2

)

+
t̂3

2
ln

(

(h2
01 + h2

02)P0

t̂3 + t̂1

)

−
(

t̂1

2
+

t̂3 + t̂4

4

)

ln

(

h2
01P̂

(1)
0

t1

)

−
(

t̂2

2
+

t̂3 + t̂4

4

)

ln

(

h2
02P̂

(2)
0

t2

)

+ O

(

1

log P0

)

(c)

.

t̂3

2
ln





P0
√

P̂
(1)
0 P̂

(2)
0



− t̂4

4
ln
(

P̂
(1)
0 P̂

(2)
0

)

+ O

(

1

log P0

)

(d)

. O

(

1

log P0

)

. (57)

Here,(a) follows from (48), noting the function̂t1 ln(P0 − x− y) + t̂2 ln(y) + t̂3 ln
(

t̂3 +
(

h2
01 + h2

02

)

x
)

takes its

maximum value atx ≤ t̂3
t̂3+t̂1

P0 and hence substitutinĝP (3)
0 = t̂3

t̂3+t̂1
P0 and finally notingP̂

(1)
0 , P̂

(2)
0 ∼ Θ(P0)

result in (b) , (c) follows from t̂3, t̂4 ∼ O
(

1
log P0

)

and ln
(

t1
t̂1

)

∼ O
(

1
log P0

)

, and finally (d) follows from

P̂
(1)
0 , P̂

(2)
0 ∼ Θ(P0).
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Next, we bound the difference between the terms in the fourthcut of (44) and the fourth term inClow
DPC

t̂1C

(

h2
23P̂

(1)
2

t̂1

)

+ t̂2C

(

h2
13P̂

(2)
1

t̂2

)

+ t̂4C





h2
13P̂

(4)
1 + h2

23P̂
(4)
2 + 2h13h23

√

P̂
(4)
1 P̂

(4)
2

t̂4





−t1C

(

h2
23P2

t1

)

− t2C

(

h2
13P1

t2

)

(a)

.

t̂1

2
ln

(

h2
23P̂

(1)
2

t̂1

)

+
t̂2

2
ln

(

h2
13P̂

(2)
1

t̂2

)

+ t̂4C





h2
13P̂

(4)
1 + h2

23P̂
(4)
2 + 2h13h23

√

P̂
(4)
1 P̂

(4)
2

t̂4





−
(

t̂1

2
+

t̂3 + t̂4

4

)

ln

(

h2
23P2

t1

)

−
(

t̂2

2
+

t̂3 + t̂4

4

)

ln

(

h2
13P1

t2

)

+ O

(

1

P0

)

(b)

.

t̂1

2
ln

(

h2
23P2

t̂1

)

+
t̂2

2
ln

(

h2
13P1

t̂2

)

+ t̂4 ln

(

h13

√

P1

t̂2 + t̂4
+ h23

√

P2

t̂1 + t̂4

)

−
(

t̂1

2
+

t̂3 + t̂4

4

)

ln

(

h2
23P2

t1

)

−
(

t̂2

2
+

t̂3 + t̂4

4

)

ln

(

h2
13P1

t2

)

+ O

(

1

P0

)

(c)

.

t̂4

2
ln





2
√

(t̂1 + t̂4)(t̂2 + t̂4)
+

h13

h23(t̂2 + t̂4)

√

P1

P2
+

h23

(t̂1 + t̂4)h13

√

P2

P1



− t̂3

4
ln (P1P2) + O

(

1

log P0

)

(d)

.

O

(

1

log P0

)

. (58)

Here,(a) follows from (48) and notingP̂ (2)
1 , P̂

(1)
2 ∼ Θ(P0), noting the function̂t1 ln(P2 − y) + t̂2 ln(P1 − x) +

t̂4 ln
(

t̂4 +
(

h13
√

x + h23
√

y
)2
)

takes its maximum value atx ≤ t̂4
t̂4+t̂2

P1, y ≤ t̂4
t̂4+t̂1

P2 and hence substituting

P̂
(4)
1 = t̂4

t̂4+t̂2
P1 and P̂

(4)
2 = t̂4

t̂4+t̂1
P2 result in (b), (c) follows from t̂3, t̂4 ∼ O

(

1
log P0

)

and t̂1, t̂2 ∼ 0.5 +

O
(

1
log P0

)

, and finally(d) follows from the facts thatP1

P2
∼ Θ(1), t̂1 + t̂4, t̂2 + t̂4 ∼ Θ(1), and t̂4 ∼ O( 1

log P0
).

Next, we bound the difference between the terms in the secondcut of (44) and the second term inClow
DPC

t̂2C





h2
02P̂

(2)
0

t̂2
+

(h2
12 + h2

13)P̂
(2)
1

t̂2
+

2h02h12

√

P̂
(2)
0 P̂

(2)
1

t̂2
+

h2
02h

2
13P̂

(2)
0 P̂

(2)
1

t̂22



+ t̂3C

(

h2
02P̂

(3)
0

t̂3

)

+t̂4C

(

h2
13P̂

(4)
1

t̂4

)

− t2C

(

h2
02P

(2)
0

t2

)

− t2C

(

h2
13P1

t2

)

(a)

.

t̂2

2
ln

(

h2
02h

2
13P̂

(2)
0 P̂

(2)
1

t̂22

)

+ t̂3C

(

h2
02P̂

(3)
0

t̂3

)

+ t̂4C

(

h2
13P̂

(4)
1

t̂4

)

−
(

t̂2

2
+

t̂3 + t̂4

4

)

ln

(

h2
02h

2
13P̂

(2)
0 P1

t22

)

+ O

(

1

P0

)

(b)

.

t̂2

2
ln

(

h2
02h

2
13P̂

(2)
0 P1

t̂22

)

+
t̂3

2
ln

(

h2
02P0

t̂3 + t̂2

)

+
t̂4

2
ln

(

h2
13P1

t̂4 + t̂2

)

−
(

t̂2

2
+

t̂3 + t̂4

4

)

ln

(

h2
02P̂

(2)
0

t2

)

−
(

t̂2

2
+

t̂3 + t̂4

4

)

ln

(

h2
13P1

t2

)

+ O

(

1

P0

)

(c)

.

t̂3

4
ln

(

P 2
0

P̂
(2)
0 P1

)

+
t̂4

4
ln

(

P1

P̂
(2)
0

)

+ O

(

1

log P0

)

(d)

. O

(

1

log P0

)

. (59)

Here, (a) follows from (48), the fact thatP (2)
0 = P̂

(2)
0 ∼ Θ (P0) and upper-boundinĝP (3)

0 ≤ P0, P̂
(4)
1 ≤ P1,

noting the facts that̂P (2)
0 + P̂

(3)
0 ≤ P0 and P̂

(2)
1 + P̂

(4)
1 = P1, the functionŝt2 ln(P0 − x) + t̂3 ln

(

t̂3 + h2
02x
)

and
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t̂2 ln(P1−y)+t̂4 ln
(

t̂4 + h2
13y
)

are maximized atx ≤ t̂3
t̂2+t̂3

P0 andy ≤ t̂4
t̂2+t̂4

P1, hence, substitutinĝP (3)
0 = t̂3

t̂2+t̂3
P0

andP̂
(4)
1 = t̂4

t̂2+t̂4
P1 upper-bounds the expression which results in(b), (c) follows from t̂3, t̂4 ∼ O

(

1
log P0

)

, t̂1, t̂2 ∼
0.5 + O

(

1
log P0

)

, and finally(d) follows from the fact thatP̂ (2)
0 , P1 ∼ Θ (P0) and alsot̂3, t̂4 ∼ O

(

1
log P0

)

.

Noting that the second and the third cuts are the same, and using the same argument as in (59), we can bound

the difference between the terms in the third cut of (44) and the third term inClow
DPC as

t̂1C





h2
01P̂

(1)
0

t̂1
+

(h2
12 + h2

23)P̂
(1)
2

t̂1
+

2h01h12

√

P̂
(1)
0 P̂

(1)
2

t̂1
+

h2
01h

2
23P̂

(1)
0 P̂

(1)
2

t̂21





+t̂3C

(

h2
01P̂

(3)
0

t̂3

)

+ t̂4C

(

h2
23P̂

(4)
2

t̂4

)

− t1C

(

h2
01P

(1)
0

t1

)

− t1C

(

h2
23P2

t1

)

≤ O

(

1

log P0

)

. (60)

Observing (57), (58), (59) and (60), completes the proof of the Theorem.

Theorem 9 In low SNR scenarios, assumingP1 = γ1P0, P2 = γ2P0 with γ1, γ2 constants independent of the SNR,

when the power available for the source and each relay tends to zero and
(

h13
√

γ1 + h23
√

γ2

)2 ≤ min
(

h2
01, h

2
02

)

,

the ratio of the achievable rate of the simultaneous relaying protocol based on DDF to cut-set upper bound goes

to 1. In this scenariot3 = t4 = 1
2 , and no private messages should be transmitted.

Proof: By the same argument as in Theorem 8 and considering only the fourth cut, we obtain another upper

bound on the capacity. By the following inequality

ln(1 + x) ≤ x. (61)

we can bound the upper bound on the capacity as

Cup ≤
(

h13
√

γ1 + h23
√

γ2

)2
P0

2 ln 2
. (62)

Now, assumingt1 = t2 = 0, t3 = t4 = 1
2 , and transmitting just the common message, we can achieve the

following rateClow
DDF :

Clow
DDF = min

(

1

2
C
(

2h2
02P0

)

,
1

2
C
(

2 (h13
√

γ1 + h23
√

γ2)
2
P0

)

)

. (63)

According to the Taylor expansion ofln(1 + x) at x = 0, we have

x − x2

2
≤ ln (1 + x) , (64)

Hence,

1

ln 2
min

(

h2
02P0

2
− h4

02P
2
0

2
,

(

h13
√

γ1 + h23
√

γ2

)2
P0

2
−
(

h13
√

γ1 + h23
√

γ2

)4
P 2

0

2

)

≤ Clow
DDF . (65)

By (62), (65), and
(

h13
√

γ1 + h23
√

γ2

)2 ≤ min
(

h2
01, h

2
02

)

, we have

lim
P0→0

Clow
DDF

Cup
→ 1. (66)
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V. SIMULATION RESULT

In this section, the achievable rate of different proposed schemes, i.e., SSRD, DPC, BME, and BME-DPC are

compared with each other and with the upper bound in different channel conditions.

Figure 9 compares the achievable rate of the SSRD scheme withthat of the DPC scheme for successive relaying

and the DDF scheme for simultaneous relaying protocols. Here the symmetric scenario in whichP1 = P2 and

h01 = h02 = h12 = h13 = h23 = 1 is considered. The upper bound is also included in the figure.

In order to satisfy the condition in Theorem 9, i.e.,
(

h13
√

γ1 + h23
√

γ2

)2 ≤ min
(

h2
01, h

2
02

)

, in Figs. 9a and b, we

also assumeP0 = P1 +10(dB) = P2 +10(dB) andP0 = P1 +5(dB) = P2 +5(dB), respectively. As the Figs. 9a

and b show, SSRD achievable rate almost coincides with the upper bound over all ranges of SNR. As proved in the

previous section, in high SNR scenario, SSRD scheme coincides with DPC and the successive relaying protocol

becomes optimum, while in low SNR scenario it coincides withDDF and the simultaneous relaying protocol is

optimum.

On the other hand, in Figs. 9c and d we assume thatP0 = P1 = P2 and P0 = P1 − 5(dB) = P2 − 5(dB).

In this situation, the condition in Theorem 9 is no longer satisfied. Therefore, as these figures show, the ratio of

the achievable rate of the SSRD scheme to the cut-set bound, i.e., Clow
SSRD

Cup does not tend to one. Furthermore, the

achievable rates of the SSRD, DPC, and DDF schemes coincide with each other.

Figure 10 compares the achievable rate of different successive schemes with each other and the successive cut-set

bound. It shows as the inter relay channel becomes stronger,BME scheme can achieve the successive cut-set bound,

while the achievable rate of the DPC is independent of that channel. Furthermore, this figure indicates BME-DPC

gives a better achievable rate with respect to BME with successive decoding which was proposed in [32].

VI. CONCLUSION

In this paper, we investigated the problem of cooperative strategies for a half-duplex parallel relay channel with

two relays. We derived the optimum relay ordering and hence the asymptotic capacity of the half-duplex Gaussian

parallel relay channel in low and high SNR scenarios.

Simultaneousand Successiverelaying protocols, associated with two possible relay orderings were proposed.

For simultaneous relaying, each relay employsDDF. On the other hand, for successive relaying, we proposed a

Non-Cooperative Codingscheme based on DPC and aCooperative Codingscheme based on BME. Moreover, a

coding scheme based on the combination of DPC and BME, in which one of the relays uses DPC while the other

one employs BME was proposed. We showed that this composite scheme achieves a better rate with respect to

cooperative coding based on BME with backward or successivedecoding in the Gaussian case.

We also proposed the SSRD scheme as a combination of the simultaneous and successive protocols based on

DPC. In high SNR scenarios, we proved that ourNon-Cooperative Codingscheme based onDPC asymptotically

achieves the capacity. Hence, in the high SNR scenario, the optimum relay ordering isSuccessive. On the other hand,

in low SNR where(h13γ1 + h23γ2)
2 ≤ min

(

h2
01, h

2
02

)

, DDF achieves the capacity. Hence, in low SNR scenario

and under the condition specified above for the channel coefficients, the optimum relay ordering isSimultaneous.
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Fig. 9. Rate versus relay power.

APPENDIX A

Proof of Theorem 1

Codebook Construction:

Let us divide time slot numberb, b = 1, 2, · · · , B + 1 into odd and even numbers. At odd and even time slots,

source generates2nr
(1)
AUX and2nr

(2)
AUX sequencesu(1)

0 (q1) andu(2)
0 (q2) according to

∏t1n
i=1 p(u

(1)
0,i ) and

∏t2n
i=1 p(u

(2)
0,i ),

respectively. Then, source throwsu(1)
0 andu(2)

0 sequences uniformly into2nR(1)

and2nR(2)

bins, respectively. Let

us denoteB1(w
(b)) andB2(w

(b)) as the set of sequences at the odd or even time slot that belongto thew(b)’th

bin, respectively (for odd time slots,w(b) ≤ 2nR(1)

, and for the even time slots,w(b) ≤ 2nR(2)

).

Relay 1 and relay 2 generate2nR(1)

and2nR(2)

i.i.d x(2)
1 andx(1)

2 sequences according to probabilities
∏t2n

i=1 p
(

x
(2)
1,i

)

and
∏t1n

i=1 p
(

x
(1)
2,i

)

. Furthermore, for allq1 andq2, the source generates double indexed codebooksx(1)
0

(

w(b)|w(b−1), q1

)

andx(2)
0

(

w(b)|w(b−1), q2

)

according to
∏t1n

i=1 p(x
(1)
0,i | x

(1)
2,i , u

(1)
0,i ) and

∏t2n

i=1 p(x
(2)
0,i | x

(2)
1,i , u

(2)
0,i ), respectively.

Encoding:

Encoding at the source:
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Fig. 10. Rate versus inter relay gain.

At the odd time slotb, the source intends to send the messagew(b) to the first relay. In order to do that, since

source knows what it has transmitted during the last time slot to the second relay, it chooses a codewordu(1)
0 (q1)

such thatu(1)
0 (q1) ∈ B1(w

(b)) and
(

u(1)
0 (q1) , x(1)

2

(

w(b−1)
)

)

∈ A
(n)
ǫ . Such a task can be done almost surely, if

r
(1)
AUX − R(1) ≥ t1I

(

U
(1)
0 ; X

(1)
2

)

(See [12]). Following that it sendsx(1)
0 (u(1)

0 , x(1)
2 ).

At the even time slotb, the source sends the messagew(b) to the second relay in the similar manner. Such a

task can be done almost surely ifr
(2)
AUX − R(2) ≥ t2I

(

U
(2)
0 ; X

(2)
1

)

.

Encoding at relay 1:

At the even time slotb, relay 1 encodesw(b−1) ∈ {1, · · · , 2nR(1)} to x(2)
1

(

w(b−1)
)

.

Encoding at relay 2:

At the odd time slotb, relay 2 encodesw(b−1) ∈ {1, · · · , 2nR(2)} to x(1)
2

(

w(b−1)
)

.

Decoding:

Decoding at relay 1:

At the odd time slotb, relay 1 declareŝw(b) = w(b) iff all the sequencesu(1)
0 (q1) which are jointly typical with
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y(1)
1 belong to a unique binB1(ŵ

(b)). Therefore, in order to make the probability of error zero, from [12], we have

r
(1)
AUX ≤ t1I

(

U
(1)
0 ; Y

(1)
1

)

. (67)

According to (67) and the encoding condition at source, we have

R(1) ≤ t1

(

I(U
(1)
0 ; Y

(1)
1 ) − I(U

(1)
0 ; X

(1)
2 )
)

. (68)

Decoding at relay 2:

At the even time slotb, relay 2 declareŝw(b) = w(b) iff all the sequencesu(2)
0 (q2) which are jointly typical with

y(2)
2 belong to a unique binB2(ŵ

(b)). Therefore, in order to make the probability of error zero, from [12], we have

r
(2)
AUX ≤ t2I

(

U
(2)
0 ; Y

(2)
2

)

. (69)

According to (69) and the encoding condition at source, we have

R(2) ≤ t2

(

I(U
(2)
0 ; Y

(2)
2 ) − I(U

(2)
0 ; X

(2)
1 )
)

. (70)

Decoding at the final destination:

At the odd time slotb, destination declareŝw(b−1) = w(b−1) iff
(

x(1)
2

(

ŵ(b−1)
)

, y(1)
3

)

∈ A
(n)
ǫ . Hence, in order

to make the probability of error zero, from [12], we have

R(1) ≤ t1I(X
(1)
2 ; Y

(1)
3 ). (71)

Similarly, at the even time slotb, we have

R(2) ≤ t2I(X
(2)
1 ; Y

(2)
3 ). (72)

From the encoding at the source and (67)-(72), we obtain (9)-(11).

APPENDIX B

Proof of Theorem 2

Codebook Construction:

Let us divide the time slotsb, b = 1, 2, · · · , B + 2 into odd and even time slots. The source generates two

codebooksx(1)
0

(

w(b)|w(b−1), s
(b−2)
1

)

and x(2)
0

(

w(b)|w(b−1), s
(b−2)
2

)

of size 2nR(1)

and 2nR(2)

corresponding to

even and odd time slots, respectively. The first codebook is generated according to the probabilityp(x(1)
0 , x(1)

2 , u(1)
2 ) =

∏t1n
i=1 p(u

(1)
2,i )p(x

(1)
2,i |u

(1)
2,i )p(x

(1)
0,i |x

(1)
2,i , u

(1)
2,i ), and the second codebook is generated according to the probability

p(x(2)
0 , x(2)

1 , u(2)
1 ) =

∏t2n

i=1 p(u
(2)
1,i )p(x

(2)
1,i |u

(2)
1,i )p(x

(2)
0,i |x

(2)
1,i , u

(2)
1,i ).

On the other hand, relay 2 generates2nr
(1)
Bin i.i.d codewordsu(1)

2 and 2nR(2)

i.i.d codewordsx(1)
2 according

to the probabilitiesp(u(1)
2 ) =

∏t1n
i=1 p(u

(1)
2,i ) and p(x(1)

2 | u(1)
2 ) =

∏t1n
i=1 p(x

(1)
2,i | u

(1)
2,i ) at each odd time slot

and relay 1 generates2nr
(2)
Bin i.i.d codewordsu(2)

1 and 2nR(1)

i.i.d codewordsx(2)
1 according to the probabilities

p(u(2)
1 ) =

∏t2n
i=1 p(u

(2)
1,i ) andp(x(2)

1 | u(2)
1 ) =

∏t2n
i=1 p(x

(2)
1,i | u

(2)
1,i ) at each even time slot, respectively.
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Encoding:

Encoding at the source:

At the odd time slotb, source encodesw(b) ∈ {1, · · · , 2nR(1)} to x(1)
0

(

w(b)|w(b−1), s
(b−2)
1

)

and at the even time

slot b, it encodesw(b) ∈ {1, · · · , 2nR(2)} to x(2)
0

(

w(b)|w(b−1), s
(b−2)
2

)

and sends them in odd and even time slots,

respectively.

Encoding at relay 1:

At the even time slotb, relay 1 encodes the bin indexs(b−2)
2 of the messagew(b−2) it has received from relay 2

in the previous time slot tou(2)
1

(

s
(b−2)
2

)

. Following that, it encodesw(b−1) which was received from the source

in time slotb − 1 to x(2)
1

(

w(b−1)|s(b−2)
2

)

and sends it.

Encoding at relay 2:

At the odd time slotb, relay 2 encodes the bin indexs(b−2)
1 of the messagew(b−2) it has received from relay 1

in the previous time slot tou(1)
2

(

s
(b−2)
1

)

. Following that, it encodesw(b−1) which was received from the source

in time slotb − 1 to x(1)
2

(

w(b−1)|s(b−2)
1

)

and sends it.

Decoding:

Decoding at relay 1:

Knowing w(b−2) and consequentlys(b−2)
1 , at time slotb, relay 1 declares(ŵ(b−1), ŵ(b)) = (w(b−1), w(b)) iff

there exits a unique(ŵ(b−1), ŵ(b)) such that
(

x(1)
0

(

ŵ(b)|ŵ(b−1), s
(b−2)
1

)

, x(1)
2

(

ŵ(b−1)|s(b−2)
1

)

, u(1)
2 (s

(b−2)
1 ), y(1)

1

)

∈ A(n)
ǫ .

Hence, in order to make probability of error zero, from the Extended MAC capacity region (See [12], [24], [25],

and [26]), we have

R(1) ≤ t1I
(

X
(1)
0 ; Y

(1)
1 | X

(1)
2 , U

(1)
2

)

, (73)

R(1) + R(2) ≤ t1I(X
(1)
0 , X

(1)
2 ; Y

(1)
1 | U

(1)
2 ). (74)

Decoding at relay 2:

Knowing w(b−2) and consequentlys(b−2)
2 , at time slotb, relay 2 declares(ŵ(b−1), ŵ(b)) = (w(b−1), w(b)) iff

there exits a unique(ŵ(b−1), ŵ(b)) such that
(

x(2)
0

(

ŵ(b)|ŵ(b−1), s
(b−2)
2

)

, x(2)
1

(

ŵ(b−1)|s(b−2)
2

)

, u(2)
1 (s

(b−2)
2 ), y(2)

2

)

∈ A(n)
ǫ .

Hence, in order to make the probability of error zero, from Extended MAC capacity region (See [12], [24], [25],

and [26]), we have

R(2) ≤ t2I(X
(2)
0 ; Y

(2)
2 | X

(2)
1 , U

(2)
1 ), (75)

R(1) + R(2) ≤ t2I(X
(2)
0 , X

(2)
1 ; Y

(2)
2 | U

(2)
1 ). (76)

Decoding at the final destination:

Decoding at the final destination can be done eitherSuccessivelyor Backwardlyas follows.
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1) Successive Decoding:

At the end of odd time slotb, destination first declares the bin indexŝ
(b−2)
1 = s

(b−2)
1 of the messagew(b−2) iff

there exists a uniquês(b−2)
1 such that

(

u(1)
2 (ŝ

(b−2)
1 ), y(1)

3

)

∈ A
(n)
ǫ . Hence, in order to make the probability of error

zero, from [12] we have

r
(1)
Bin ≤ t1I(U

(1)
2 ; Y

(1)
3 ). (77)

Having decoded the bin indexs(b−2)
1 of the messagew(b−2), destination can resolve its uncertainty about the message

w(b−2) and declareŝw(b−2) = w(b−2) iff there exists a uniquêw(b−2) such that
(

x(2)
1 (ŵ(b−2)|s(b−3)

2 ), u(2)
1 (s

(b−3)
2 ), y(2)

3

)

∈
A

(n)
ǫ . Hence, in order to make the probability of error zero, from [12] we have

R(1) − r
(1)
Bin ≤ t2I(X

(2)
1 ; Y

(2)
3 | U

(2)
1 ). (78)

Using the same argument for the even time slotb, we have

r
(2)
Bin ≤ t2I(U

(2)
1 ; Y

(2)
3 ), (79)

R(2) − r
(2)
Bin ≤ t1I(X

(1)
2 ; Y

(1)
3 | U

(1)
2 ). (80)

From (77), (78), (79), and (80),R(1) andR(2) are bounded as follows

R(1) ≤ t2I
(

X
(2)
1 ; Y

(2)
3 | U

(2)
1

)

+ t1I
(

U
(1)
2 ; Y

(1)
3

)

, (81)

R(2) ≤ t1I(X
(1)
2 ; Y

(1)
3 | U

(1)
2 ) + t2I(U

(2)
1 ; Y

(2)
3 ). (82)

From (73)-(76), (81), and (82), the achievable rate of BME scheme based on successive decoding is equal to

Clow
BMsucc

= R(1) + R(2) ≤ max
0≤t1,t2,t1+t2=1

min ( (83)

min
(

t1I
(

X
(1)
0 ; Y

(1)
1 | X

(1)
2 , U

(1)
2

)

, t2I
(

X
(2)
1 ; Y

(2)
3 | U

(2)
1

)

+ t1I
(

U
(1)
2 ; Y

(1)
3

))

+

min
(

t1I
(

X
(1)
2 ; Y

(1)
3 | U

(1)
2

)

+ t2I
(

U
(2)
1 ; Y

(2)
3

)

, t2I
(

X
(2)
0 ; Y

(2)
2 | X

(2)
1 , U

(2)
1

))

,

t1I
(

X
(1)
0 , X

(1)
2 ; Y

(1)
1 | U

(1)
2

)

, t2I
(

X
(2)
0 , X

(2)
1 ; Y

(2)
2 | U

(2)
1

))

.

2) Backward Decoding:

Following receiving the sequence corresponding to theB+2’th time slot, destination starts decoding the messages

in a backward manner, i.e. fromw(B) back tow(1). At the end of odd time slotb, knowing the values(b−1)
2 from the

received signal in time slotb+1, destination declares
(

ŵ(b−1), ŝ
(b−2)
1

)

=
(

w(b−1), s
(b−2)
1

)

iff there exists a unique

pair
(

ŵ(b−1), ŝ
(b−2)
1

)

such thatf (2)
Bin

(

ŵ(b−1)
)

= s
(b−1)
2 and

(

x(1)
2

(

ŵ(b−1), ŝ
(b−2)
1

)

, u(1)
2

(

ŝ
(b−2)
1

)

, y(1)
3

)

∈ A
(n)
ǫ .

Similarly, at the end of even time slotb, knowing the values(b−1)
1 for the received signal in time slotb + 1,

destination declares
(

ŵ(b−1), ŝ
(b−2)
2

)

=
(

w(b−1), s
(b−2)
2

)

iff there exists a unique pair
(

ŵ(b−1), ŝ
(b−2)
2

)

such that

f
(1)
Bin

(

ŵ(b−1)
)

= s
(b−1)
1 and

(

x(2)
1

(

ŵ(b−1), ŝ
(b−2)
1

)

, u(2)
1

(

ŝ
(b−2)
2

)

, y(2)
3

)

∈ A
(n)
ǫ . Hence, in order to make the
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probability of error zero, from [12] we have

r
(1)
Bin ≤ R(1), (84)

r
(2)
Bin ≤ R(2), (85)

R(2) − r
(2)
Bin ≤ t1I

(

X
(1)
2 ; Y

(1)
3 | U

(1)
2

)

, (86)

R(2) − r
(2)
Bin + r

(1)
Bin ≤ t1I

(

X
(1)
2 , U

(1)
2 ; Y

(1)
3

)

, (87)

R(1) − r
(1)
Bin ≤ t2I

(

X
(2)
1 ; Y

(2)
3 | U

(2)
1

)

, (88)

R(1) − r
(1)
Bin + r

(2)
Bin ≤ t2I

(

X
(2)
1 , U

(2)
1 ; Y

(2)
3

)

. (89)

Hence, by employing BME and Backward decoding, the following rate is achievable subject to (73)-(76) and

(84)-(89) constraints.

Clow
BMEback

= R(1) + R(2). (90)

Optimum input distributions

Now, we prove there exists input probability distributions(p(x
(1)
0 , x

(1)
2 , u

(1)
2 ) andp(x

(2)
0 , x

(2)
1 , u

(2)
1 )) which max-

imize (90) and have the following property:u
(1)
2 is independent from(x

(1)
0 , x

(1)
2 ) and u

(2)
1 is independent from

(x
(2)
0 , x

(2)
1 ). To prove this, considerp(x

(1)
0 , x

(1)
2 , u

(1)
2 ) andp(x

(2)
0 , x

(2)
1 , u

(2)
1 ) along witht1, t2 which maximize (90)

subject to the required constraints. Let us definep̂(x
(1)
0 , x

(1)
2 , u

(1)
2 ) and p̂(x

(2)
0 , x

(2)
1 , u

(2)
1 ) as

p̂(x
(1)
0 , x

(1)
2 , u

(1)
2 ) = p(u

(1)
2 )p(x

(1)
0 , x

(1)
2 ), (91)

p̂(x
(2)
0 , x

(2)
1 , u

(2)
1 ) = p(u

(2)
1 )p(x

(2)
0 , x

(2)
1 ), (92)

Now, we show that̂p(x
(1)
0 , x

(1)
2 , u

(1)
2 ) and p̂(x

(2)
0 , x

(2)
1 , u

(2)
1 ) along with t1, t2 achieve at least the same rate as the

optimum one. Let us denote the values of mutual information and entropy with respect to the input distributions

p, p̂ by Ip, Hp andIp̂, Hp̂, respectively. The right-hand sides of (86)-(89) with respect top can be upper-bounded

by the ones corresponding tôp as follows

t1Ip

(

X
(1)
2 ; Y

(1)
3 | U

(1)
2

)(a)

≤ t1Ip

(

X
(1)
2 ; Y

(1)
3

)

= t1Ip̂

(

X
(1)
2 ; Y

(1)
3

)

, (93)

t1Ip

(

X
(1)
2 , U

(1)
2 ; Y

(1)
3

)

(a)
= t1Ip

(

X
(1)
2 ; Y

(1)
3

)

= t1Ip̂

(

X
(1)
2 ; Y

(1)
3

)

, (94)

t2Ip

(

X
(2)
1 ; Y

(2)
3 | U

(2)
1

)(b)

≤ t2Ip

(

X
(2)
1 ; Y

(2)
3

)

= t2Ip̂

(

X
(2)
1 ; Y

(2)
3

)

, (95)

t2Ip

(

X
(2)
1 , U

(2)
1 ; Y

(2)
3

)

(b)
= t2Ip

(

X
(2)
1 ; Y

(2)
3

)

= t2Ip̂

(

X
(2)
1 ; Y

(2)
3

)

. (96)

where(a) follows from the fact thatU (1)
2 −→ X

(1)
2 −→ Y

(1)
3 forms a Markov chain and(b) follows from the fact

that U (2)
1 −→ X

(2)
1 −→ Y

(2)
3 forms a Markov chain. Moreover as in distribution̂p, u

(1)
2 andu

(2)
1 are independent

from (x
(1)
0 , x

(1)
2 ) and (x

(2)
0 , x

(2)
1 ), it can be easily verified that the right-hand sides of (93)-(96) are equal to the

right-hand sides of (86)-(89) with the input distributionp̂, respectively. Hence, by utilizinĝp instead ofp, the region
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that satisfies (86)-(89) is enlarged. Now, let us consider the right-hand sides of (73)-(76).

t1Ip

(

X
(1)
0 ; Y

(1)
1 | X

(1)
2 , U

(1)
2

)(a)

≤ t1Ip

(

X
(1)
0 ; Y

(1)
1 | X

(1)
2

)

= t1Ip̂

(

X
(1)
0 ; Y

(1)
1 | X

(1)
2

)

(97)

t1Ip

(

X
(1)
0 , X

(1)
2 ; Y

(1)
1 | U

(1)
2

)(a)

≤ t1Ip

(

X
(1)
0 , X

(1)
2 ; Y

(1)
1

)

= t1Ip̂

(

X
(1)
0 , X

(1)
2 ; Y

(1)
1

)

(98)

t2Ip

(

X
(2)
0 ; Y

(2)
2 | X

(2)
1 , U

(2)
1

)(b)

≤ t2Ip

(

X
(2)
0 ; Y

(2)
2 | X

(2)
1

)

= t2Ip̂

(

X
(2)
0 ; Y

(2)
2 | X

(2)
1

)

(99)

t2Ip

(

X
(2)
0 , X

(2)
1 ; Y

(2)
2 | U

(2)
1

)(b)

≤ t2Ip

(

X
(2)
0 , X

(2)
1 ; Y

(2)
2

)

= t2Ip̂

(

X
(2)
0 , X

(2)
1 ; Y

(2)
2

)

(100)

where(a) follows from the fact thatU (1)
2 −→ (X

(1)
2 , X

(1)
0 ) −→ Y

(1)
1 form a Markov chain and(b) follows from

the fact thatU (2)
1 −→ (X

(2)
1 , X

(2)
0 ) −→ Y

(2)
2 form a Markov chain. Similarly, we observe that the right-hand sides

of (97)-(100) represent the right-hand sides of inequalities (73)-(76) with the input distribution̂p. Hence, the region

of (R(1), R(2)) that satisfies (73)-(76) and (84)-(89) is enlarged by utilizing the input distribution̂p instead ofp.

This proves the independency of input distributions withu(1) andu(2) in the optimum distribution.

Simplifying the achievable rate

As we can assume that the input distributions are of the form (91) and (92), the achievable rate can be simplified

as follows.

Clow
BMEback

= R(1) + R(2) ≤

max
0≤t1,t2,t1+t2=1

min
(

t1I
(

X
(1)
0 , X

(1)
2 ; Y

(1)
1

)

, t2I
(

X
(2)
0 , X

(2)
1 ; Y

(2)
2

))

, (101)

subject to

r
(1)
Bin ≤ R(1), (102)

r
(2)
Bin ≤ R(2), (103)

R(1) ≤ t1I
(

X
(1)
0 ; Y

(1)
1 | X

(1)
2

)

, (104)

R(2) ≤ t2I
(

X
(2)
0 ; Y

(2)
2 | X

(2)
1

)

, (105)

R(2) − r
(2)
Bin + r

(1)
Bin ≤ t1I

(

X
(1)
2 ; Y

(1)
3

)

, (106)

R(1) − r
(1)
Bin + r

(2)
Bin ≤ t2I

(

X
(2)
1 ; Y

(2)
3

)

. (107)

with input distributions

p(x
(1)
0 , x

(1)
2 ) = p(x

(1)
2 )p(x

(1)
0 |x(1)

2 ),

p(x
(2)
0 , x

(2)
1 ) = p(x

(2)
1 )p(x

(2)
0 |x(2)

1 ).
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Now, we show that (101)-(107) is equivalent to

Clow
BMEback

≤ max
0≤t1,t2,t1+t2=1

min
(

t1I
(

X
(1)
0 , X

(1)
2 ; Y

(1)
1

)

, t2I
(

X
(2)
0 , X

(2)
1 ; Y

(2)
2

)

,

t1I
(

X
(1)
0 ; Y

(1)
1 | X

(1)
2

)

+ t2I
(

X
(2)
0 ; Y

(2)
2 | X

(2)
1

)

,

t1I
(

X
(1)
2 ; Y

(1)
3

)

+ t2I
(

X
(2)
1 ; Y

(2)
3

))

. (108)

First, it is easy to verify that (101)-(107) imply (108). Now, in order to prove that the converse is also true, we

show that for every possible rater satisfying (108), there exists a quad-tupple
(

R(1), R(2), r
(1)
Bin, r

(2)
Bin

)

such that

R(1) + R(2) = r,
(

R(1), R(2), r
(1)
Bin, r

(2)
Bin

)

satisfies (101)-(107), and moreover at least one of bin ratesis equal to

zero, i.e.r(1)
Bin = 0 or r

(2)
Bin = 0.

Let us defineR(1) , min
(

r, t1I
(

X
(1)
0 ; Y

(1)
1 | X

(1)
2

))

, R(2) , r − R(1). As r satisfies (108), we conclude

that (R(1), R(2)) satisfies (101), (104), and (105). Furthermore, asR(1) + R(2) = r ≤ t1I
(

X
(1)
2 ; Y

(1)
3

)

+

t2I
(

X
(2)
1 ; Y

(2)
3

)

, we conclude that eitherR(1) ≤ t2I
(

X
(2)
1 ; Y

(2)
3

)

or R(2) ≤ t1I
(

X
(1)
2 ; Y

(1)
3

)

. For the sake

of symmetry, let us assume that the first case has occurred, i.e. R(1) ≤ t2I
(

X
(2)
1 ; Y

(2)
3

)

. Now, we definer(1)
Bin , 0

and r
(2)
Bin , max

(

0, R(2) − t1I
(

X
(1)
2 ; Y

(1)
3

))

. Obviously, (102), (103), and (106) are valid. Considering(107),

we have

R(1) − r
(1)
Bin + r

(2)
Bin = R(1) + max

(

0, r − R(1) − t1I
(

X
(1)
2 ; Y

(1)
3

)) (a)

≤ t2I
(

X
(2)
1 ; Y

(2)
3

)

(109)

where (a) follows from the facts thatr ≤ t1I
(

X
(1)
2 ; Y

(1)
3

)

+ t2I
(

X
(2)
1 ; Y

(2)
3

)

and R(1) ≤ t2I
(

X
(2)
1 ; Y

(2)
3

)

.

Hence, (107) is also valid. The second case in whichR(2) ≤ t1I
(

X
(1)
2 ; Y

(1)
3

)

can be dealt with in a similar

manner.

Hence, from the above argument, the achievable rate of BME scheme with backward decoding can be simplified

as follows:

Clow
BMEback

≤ max
0≤t1,t2,t1+t2=1

min
(

t1I
(

X
(1)
0 , X

(1)
2 ; Y

(1)
1

)

, t2I
(

X
(2)
0 , X

(2)
1 ; Y

(2)
2

)

,

t1I
(

X
(1)
0 ; Y

(1)
1 | X

(1)
2

)

+ t2I
(

X
(2)
0 ; Y

(2)
2 | X

(2)
1

)

,

t1I
(

X
(1)
2 ; Y

(1)
3

)

+ t2I
(

X
(2)
1 ; Y

(2)
3

))

, (110)

with probabilities

p(x
(1)
0 , x

(1)
2 ) = p(x

(1)
2 )p(x

(1)
0 |x(1)

2 ),

p(x
(2)
0 , x

(2)
1 ) = p(x

(2)
1 )p(x

(2)
0 |x(2)

1 ).
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