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Abstract

We consider a wireless communication network with a fixed number u of frequency sub-bands to be shared

among N transmitter-receiver pairs. In traditional frequency division (FD) systems, the available band is partitioned

into disjoint clusters (frequency sub-bands) and assigned to different users (each user transmits only in its own

cluster). If the number of users sharing the spectrum is random, this technique may lead to inefficient spectrum

utilization (a considerable fraction of the sub-bands may remain empty most of the time). In addition, this approach

inherently requires either a central network controller for frequency allocation, or cognitive radios which sense and

occupy the empty sub-bands in a dynamic fashion. These shortcomings motivate us to look for a decentralized

scheme (without using cognitive radios) which allows the users to coexist, while utilizing the spectrum efficiently.

A frequency hopping (FH) scheme (with i.i.d. Gaussian code-books) is already proposed in [] where each user

transmits over a selection of sub-bands and hops to another selection (with the same cardinality) from transmission

to transmission. It is shown that in higher ranges of SNR, frequency hopping offers considerable improvement in

terms of various measures such as average sum-rate multiplexing gain and the so called “ ε-outage capacity”. In

this article, we rise the question if hopping is optimum for all ranges of SNR. We consider two different scenarios.

In the first scenario, we consider a wireless network where the absolute value of all the forward channel gains is

more than a threshold ε1 and the absolute value of all the crossover gains is less than a threshold ε2. We show

that as far as ε2
ε1
< 1√

N−1
, there is a γ0 such that if SNR ≤ γ0, the sum-rate of the system is maximized if all

users spread their power on the whole spectrum. In particular, if N = 2, we prove γ0 ≥
√

5−1
4 u. In the sequel,

we consider the case where the fading coefficients and the number of active users in the system are unknown to
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transmitters. Via computing the so called ε-outage capacity, we demonstrate that for sufficiently low SNR values,

hopping has no advantage over the case where all users spread their power on the whole spectrum.

I. INTRODUCTION

Optimal resource allocation is an imperative issue in wireless networks. When multiple users share the

same spectrum, the destructive effect of multi-user interference can limit the achievable rates. As such,

an effective and low complexity frequency sharing strategy which maximizes the degrees of freedom per

user while mitigating the impact of the multi-user interference is desirable. In frequency division (FD)

systems, different users transmit over disjoint frequency sub-bands. Due to practical considerations, such

FD systems usually rely on a fixed number of such frequency sub-bands. The main drawback of FD

systems is that most of the time the majority of the potential users may be inactive, reducing the resulting

spectral efficiency. Reference [1] considers a network of several users with mutual interference. Treating

the interference as noise, a central controller computes the optimum power allocation of each link over

the spectrum to maximize a global utility function. This leads to the best spectrum sharing strategy for a

specific number of users. Clearly, if the number of users changes, the system is not guaranteed to offer the

best possible spectral efficiency. In fact, it is shown in [1] that if the crossover gains are sufficiently greater

than the forward gains, the frequency division is optimum. However, as mentioned earlier, if the number of

users sharing the spectrum is random, FD systems can be highly inefficient in terms of the overall spectral

efficiency. To avoid the need for a central controller, cognitive radios [2] are introduced which can sense the

bands and transmit over an unoccupied portion of the available spectrum. Fundamental limits of wireless

networks with cognitive radios are studied in [3]–[7]. Although cognitive radios avoid the use of a central

controller, they require methods for frequency sensing and dynamic frequency assignment which add to

the overall system complexity. For example, in opportunistic communication, each cognitive device must

search for idle regions of the spectrum or spectrum holes which requires sophisticated detection techniques

[8]–[10]. On the other hand, in both game-theoretic scenarios and cognitive radios, randomness of the

number of users is not taken into account. Noting the above points, it is desirable to have a decentralized

frequency sharing strategy (without the need for cognitive radios) which allows the users to coexist, while

utilizing the spectrum efficiently and fairly.

Being a standard technique in spread spectrum communications and due to its interference avoidance

nature, frequency hopping is the simplest spectrum sharing method to use in decentralized networks. As
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different users typically have no prior information about the codebooks of the other users, the most efficient

method (specially in higher ranges of SNR) is avoiding interference by choosing unused channels. As

mentioned earlier, searching the spectrum to find spectrum holes is not an easy task due to the dynamic

spectrum usage. As such, frequency hopping is a realization of transmission without sensing while avoiding

the collisions as much as possible.

Frequency hopping is one of the standard signaling schemes [15] adopted in ad-hoc networks. In short

range scenarios, bluetooth systems [19]–[21] are the most popular examples of a wireless personal area

network or WPAN. By using frequency hopping over the unlicensed ISM band, a bluetooth system provides

robust communication against unpredictable sources of interference. A modification of frequency hopping

called dynamic frequency hopping (DFH), selects the hopping pattern based on interference measurements

in order to avoid dominant interferers. The performance of the DFH scheme when applied to a cellular

system is assessed in [22]–[24]. Frequency hopping is also proposed in [7] in the context of cognitive

radios where each cognitive transmitter selects a frequency band but quits transmitting if the band is

already occupied by a primary user.

Already in [55], motivated by the fact that frequency hopping leaves a portion of the spectrum clean,

we have considered a decentralized party of N users sharing u discrete frequency sub-bands via fre-

quency hopping. Different transmitters are linked to different receivers through paths with static and

non-frequency-selective fading. Each user is assumed to have no prior knowledge about the code-books

of the other users. We proposed a frequency hopping (FH) strategy in which the ith user selects vi

frequency sub-bands among the u available sub-bands and hops to another set of vi sub-bands for the

next transmission. It is assumed that all users transmit independent Gaussian code-books over their chosen

frequency sub-bands.

As each user hops over different subsets of the sub-bands without informing other users about its

hopping pattern, sensing the spectrum to track the instantaneous interference is a difficult task. This

assumption makes the interference probability density function (PDF) on each frequency sub-band at the

receiver side of each user be mixed Gaussian. Since the channel gains have a continuous PDF, the number

of Gaussian components in the interference PDF on each frequency sub-band is 2N−1 with probability

one. It is presumed that each user is able to derive the interference PDF after a sufficiently long training

period at the receiver side.

It is already shown [54], [55] that FH outperforms FD in terms of different performance measures such
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as average sum-rate multiplexing gain (in case all the channel gains and the number of users are revealed

to transmitters) and the so called εoutage capacity (in case the channel gains and the number of active

users are unknown to transmitters). However, these results are valid for higher ranges of SNR. This paper

deals with the case where SNR is low, i.e., the results are valid under a certain level of SNR.

We consider two different categories. In the first scenario, we consider a wireless network where the

absolute value of all the forward channel gains is more than a threshold ε1 and the absolute value of all

the crossover gains is less than a threshold ε2. We show that as far as ε2
ε1
< 1√

N−1
, there is a γ0 such

that if SNR ≤ γ0, the sum-rate of the system is maximized if all users spread their power on the whole

spectrum. In particular, if N = 2, we prove γ0 ≥
√

5−1
4
u. In the sequel, we consider the case where

the fading coefficients and the number of active users in the system are unknown to transmitters. Via

computing the so called ε-outage capacity, we demonstrate that for sufficiently low SNR values, hopping

has no advantage over the case where all users spread their power on the whole spectrum.

The paper outline is as follows. System model is given in section II. Sections III and IV are devoted

to derive lower and upper bounds on the achievable rates of users respectively. Finally, section V deals

with characterizing the hopping strategy in the low SNR regime.

II. SYSTEM MODEL

We consider a communication system with N users1 where the ith user exploits v ≤ u out of the

u sub-bands and spreads its available power, P , equally over these selected sub-bands by transmitting

Gaussian signals of variance P
v

and mutual correlation coefficient ρi over the v chosen bands. The ith

user selects ρi according to a probability density function f(ρ) over [0, 1]. The function f(ρ) is taken

to be globally known to all users. This user hops to another set of v frequency sub-bands after each

transmission. We denote the achievable rate of the ith user by Ri. The static and non frequency-selective

fading coefficient of the link connecting the ith transmitter to the jth receiver is shown by hi,j . Each

receiver knows already the hopping pattern of its affiliated transmitter. On the other hand, as all users

hop over different portions of the spectrum from transmission to transmission, no user is assumed to be

capable of tracking the instantaneous interference. This assumption makes the interference plus noise PDF

at the receiver side of each user be a mixed Gaussian distribution. In fact, depending on different choices

the other users make to select the frequency sub-bands and values of the crossover gains, the interference

1Each user consists of a transmitter-receiver pair.
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on each frequency sub-band at the receiver side of any user has up to 2N−1 power levels. For each i, the

channel model for the ith user is as follows:

~Yi = hi,i ~Xi + ~Zi (1)

where ~Xi is the u×1 input vector of the ith user and ~Zi is the noise plus interference vector on the receiver

side of the ith user. One may write p ~Xi(~x) =
∑

C∈C
1

(uv)
g(~x, C) where g(~x, C) denotes a zero-mean jointly

Gaussian distribution of covariance matrix C and the set C includes all u × u diagonal matrices where

v out of the u diagonal elements are P
v

while the rest are zeros. Denoting the noise plus interference on

the jth sub-band at the receiver side of the ith user by Zi,j (the jth component of ~Zi), it is clear that

pZi,j(z) is not dependent on j. This is by the fact that crossover gains are not sensitive to frequency and

there is no particular interest in a specific frequency sub-band by any user. We assume there are Li + 1

(Li ≤ 2N−1 − 1) possible non-zero power levels for Zi,j , say {σ2
i,l}

Li
l=0. The occurrence probability of σ2

i,l

is denoted by ai,l. Then, pZi,j(z) is a mixed Gaussian distribution as follows:

pZi,j(z) =

Li∑
l=0

ai,l√
2πσi,l

exp− z2

2σ2
i,l

(2)

where σ2 = σ2
i,0 < σ2

i,1 < σ2
i,2 < ... < σ2

i,Li
(σ2 is the ambient noise power). In fact, one may write

Zi,j =
∑N

k=1
k 6=i

εk,jhk,iXk,j + νi,j where Xk,j is the signal of the kth user sent on the jth sub-band, εk,j is

a Bernoulli random variable showing if the kth user has utilized the jth sub-band and νi,j is the ambient

noise which is a zero-mean Gaussian random variable with variance σ2. Obviously, Pr{εk,j = 1} = v
u

. To

compute Ri, one may see that for each i, the communication channel of the ith user is a channel with

state Si, the hopping pattern, which is independently changing over different transmissions and is known

to both the transmitter and receiver ends of the ith user. The achievable rate of such a channel is given

by

Ri = I( ~Xi; ~Yi|Si) =
∑
si∈Si

Pr(Si = si)I( ~Xi; ~Yi|Si = si) (3)

where I( ~Xi; ~Yi|Si = si) is the mutual information between ~Xi and ~Yi for the specific sub-band selection

dictated by Si = si. The set Si denotes all possible selections of vi out of the u sub-bands. As p ~Zi(~z) is a

symmetric density function, meaning all its components have the same PDF given in (2), we deduce that

I( ~Xi; ~Yi|Si = si) is independent of si. Therefore, we may assume any specific sub-band selection for the



6

ith user in Si, say the first vi out of the u sub-bands. Denoting this specific state by s∗i , we get:

Ri = I( ~Xi; ~Yi|Si = s∗i ). (4)

In this case, we denote ~Yi and ~Xi by ~Yi(s
∗
i ) and ~Xi(s

∗
i ) respectively. Obviously, we have:

Ri = I( ~Xi(s
∗
i ); ~Yi(s

∗
i )) = h(~Yi(s

∗
i ))− h(~Zi). (5)

According to the system model proposed before, one may write:

~Zi =
N∑
k=1
k 6=i

~ξk,i + ~ηi (6)

where ~ξk,i is the mixed gaussian interference vector imposed by the kth user at the receiver side of the

ith user. Based on the specifications of the interference model given in the previous section, we write ~ξk,i

as follows:

~ξk,i = hk,i~ξ
′
k (7)

where ~ξ′k is a random vector of mixed Gaussian distribution where each gaussian component of it

corresponds to a specific occupation of v frequency bands. For example, for u = 2 and v = 1, it

has the following distribution:

p~ξ′k
(a, b) =

1

2
√

2πP

(
δ(b) exp− a2

2P
+ δ(a) exp− b2

2P

)
(8)

where δ(.) is the Dirac delta function. Clearly, ~ξ′k is i.i.d. over k. The achievable rate of the ith user, Ri, is

given in (5). In the following sections, we derive appropriate upper and lower bounds on Ri which enable

us to partially characterize the low SNR regime optimal spectrum sharing rules. The bounds derived here

are different from those obtained in the previous chapter, as the bounds in chapter 2 are useful in the high

SNR regime and are loose in the low SNR case. On the other hand, the bounds obtained in this chapter

are well suited to study the low SNR case and are loose in the high SNR regime.
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III. LOWER BOUNDS ON THE ACHIEVABLE RATES

If we simply replace ~Zi by a gaussian vector of the same covariance matrix, the mutual information

decreases [20]. As such, we have:

Ri ≥
1

2
log

det(C(~Yi(s
∗
i )))

det(C(~Zi))
. (9)

On the other hand, denoting C(~ξk,i) by Ck,i, we have:

C(~Zi) =
N∑
k=1
k 6=i

C(~ξk,i) + C(~ηi) =
N∑
k=1
k 6=i

Ck,i + σ2Iu. (10)

We have:

Ck,i = |hk,i|2E{~ξ′k~ξ′
T

k }. (11)

To compute E{~ξ′k~ξ′
T

k }, we proceed as follows. Let us denote the jth element of ~ξ′k by ξ′k(j) = Xk,jεk,j .

We have:

E{ξ′k(j)2} =

∫ 1

0

E{ξ′k(j)2|ρk = ρ}f(ρ)dρ =
P

v
Pr{εk,j = 1} (12)

and

E{ξ′k(j)ξ′k(j′)}|j 6=j′ =

∫ 1

0

E{ξ′k(j)ξ′k(j′)|ρk = ρ}|j 6=j′f(ρ)dρ

=
P

v
ρ̄Pr{εk,j = εk,j′ = 1, j 6= j′} (13)

where E{ρk} is denoted by ρ̄ for each k. But, Pr{εk,j = 1} =
(u−1
v−1)
(uv)

= v
u

and Pr{εk,j = εk,j′ = 1, j 6=

j′} =
(u−2
v−2)
(uv)

= v(v−1)
u(u−1)

. Let us define a m×m square matrix with all diagonal elements equal to a and all

off-diagonal elements equal to b by S(a, b;m). As such, Ck,i can be expressed as:

Ck,i =
|hk,i|2P

u
S(1, ρ̄

v − 1

u− 1
;u). (14)

Substituting this in (10), we get:

C(~Zi) =
P

u
S(gi, ρ̄gi

v − 1

u− 1
;u) + σ2Iu (15)
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where gi =
∑

k 6=i |hk,i|2. We have C(~Yi(s
∗
i )) = |hi,i|2C( ~Xi(s

∗
i )) + C(~Zi). It is clear that

C( ~Xi(s
∗
i )) =

P

v

S(1, ρ̄; v) Ov×(u−v)

O(u−v)×v O(u−v)×(u−v)

 . (16)

Then:

C(~Yi(s
∗
i )) =

 |hi,i|2Pv
S(1, ρ̄; v) + P

u
S(gi, ρ̄gi

v−1
u−1

; v) + σ2Iv
P
u
ρ̄gi

v−1
u−1

1v,u−v

P
u
ρ̄gi

v−1
u−1

1u−v,v
P
u
S(gi, ρ̄gi

v−1
u−1

;u− v) + σ2Iu−v

 (17)

where we have shown a a×b matrix with all elements equal to one by 1a,b. One may write more compactly

C(~Zi) = S(ti,1, ti,2;u) (18)

and

C(~Yi) =

S(ti,3, ti,4; v) ti,21v,u−v

ti,21u−v,v S(ti,1, ti,2;u− v)

 (19)

where ti,1 = giP
u

+ σ2, ti,2 = P
u
ρ̄gi

v−1
u−1

, ti,3 =
|hi,i|2P

v
+ ti,1 and ti,4 = ρ̄

|hi,i|2P
v

+ ti,2.

To obtain the lower bound in (9), one has to compute det(C(~Zi)) and det(C(~Yi(s
∗
i ))). The following

lemma becomes handy in the sequel:

Lemma 1 Let a 6= b be real numbers. For any S(a, b;m) the following hold:

det(S(a, b;m)) = (a− b)m(1 +
mb

a− b
)

S−1(a, b;m) =
1

a− b
(Im −

b

a+ (m− 1)b
1m,11

T
m,1).

Proof: We notice that for any two matrices Em1×m2 and Fm2×m1 , the following holds:

det(Im1 + EF ) = det(Im2 + FE). (*)

Also, for Am1×m1 , Bm1×m2 , Cm2×m2 and Dm2×m1 , we have the following result known as matrix inversion

lemma:

(A+BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1. (**)

One may write S(a, b;m) as:

S(a, b;m) = (a− b)Im + b1m,11
T
m,1.
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Thus, based on (*), we get:

det(S(a, b;m)) = (a− b)mdet(Im +
b

a− b
1m,11

T
m,1)

= (a− b)m(1 +
b

a− b
1Tm,11m,1) = (a− b)m(1 +

mb

a− b
).

On the other hand, based on (**), we have:

S−1(a, b;m) =
1

a− b
(Im +

b

a− b
1m,11

T
m,1)

−1 =
1

a− b
(Im −

b

a+ (m− 1)b
1m,11

T
m,1).

According to this lemma, we get the following as a direct consequence:

det(C(~Zi)) = (ti,1 − ti,2)u(1 +
uti,2

ti,1 − ti,2
). (20)

To find det(C(~Yi(s
∗
i ))), we invoke the following identity known as schur’s lemma:

det

A1 A2

A3 A4

 = det(A1)det(A4 − A3A
−1
1 A2) (21)

where A1, A4 and the whole matrix are assumed to be square matrices. Applying this to the partitioned

structure of C(~Yi(s
∗
i )), given in (17), yields the following:

det(C(~Yi(s
∗
i ))) = det(S(ti,3, ti,4; v))det(S(ti,1, ti,2;u− v)− t2i,21u−v,vS−1(ti,3, ti,4; v)1v,u−v). (22)

Let us define A = S(ti,1, ti,2;u− v)− t2i,21u−v,vS−1(ti,3, ti,4; v)1v,u−v. According to the lemma, we have:

A = S(ti,1, ti,2;u− v)−
t2i,2

ti,3 − ti,4
1u−v,v(Iv −

ti,4
ti,3 + (v − 1)ti,4

1v,11
T
v,1)1v,u−v. (23)

Since 1u−v,v1v,u−v = v1u−v,u−v and 1u−v,v1v,11
T
v,11v,u−v = v21u−v,u−v, this can be written as:

A = S(ti,1, ti,2;u− v)−
t2i,2

ti,3 − ti,4
(v − v2ti,4

ti,3 + (v − 1)ti,4
)1u−v,u−v. (24)

If we set ti,5 =
t2i,2

ti,3−ti,4 (v − v2ti,4
ti,3+(v−1)ti,4

) =
vt2i,2

ti,3+(v−1)ti,4
, one has the following:

A = S(ti,1 − ti,5, ti,2 − ti,5;u− v). (25)
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Using this in (22), we have:

det(C(~Yi(s
∗
i ))) = det(S(ti,3, ti,4; v))det(S(ti,1 − ti,5, ti,2 − ti,5;u− v))

= (ti,3 − ti,4)v(ti,1 − ti,2)u−v(1 +
vti,4

ti,3 − ti,4
)(1 +

(u− v)(ti,2 − ti,5)
ti,1 − ti,2

). (26)

By (26), (20) and (9), we derive the following lower bound:

Ri ≥ Li(v, f(.); γ) =
1

2
log

(
ti,3 − ti,4
ti,1 − ti,2

)v
(1 +

vti,4
ti,3−ti,4 )(1 +

(u−v)(ti,2−ti,5)

ti,1−ti,2 )

1 +
uti,2

ti,1−ti,2



=
1

2
log

(
t̃i,3 − t̃i,4
t̃i,1 − t̃i,2

)v
(1 +

vt̃i,4
t̃i,3−t̃i,4

)(1 +
(u−v)(t̃i,2−t̃i,5)

t̃i,1−t̃i,2
)

1 +
ut̃i,2

t̃i,1−t̃i,2

 (27)

where t̃i,j =
ti,j
σ2 .

IV. UPPER BOUNDS ON THE ACHIEVABLE RATES

To get an upper bound on Ri, we proceed as follows. We start by finding an upper bound and a lower

bound on h(~Yi(s
∗
i )) and h(~Zi) respectively. The former is simply derived if we replace ~Yi(s

∗
i ) with a

gaussian vector of the same covariance matrix. Therefore, we have:

h(~Yi(s
∗
i )) ≤

1

2
log((2πe)udet(C(~Yi(s

∗
i )))

=
1

2
u log(2πe)

+
1

2
log

(
(ti,3 − ti,4)v(ti,1 − ti,2)u−v(1 +

vti,4
ti,3 − ti,4

)(1 +
(u− v)(ti,2 − ti,5)

ti,1 − ti,2
)

)

=
1

2
u log(2πeσ2)

+
1

2
log

(
(t̃i,3 − t̃i,4)v(t̃i,1 − t̃i,2)u−v(1 +

vt̃i,4

t̃i,3 − t̃i,4
)(1 +

(u− v)(t̃i,2 − t̃i,5)
t̃i,1 − t̃i,2

)

)
. (28)

Now, we focus to obtain an upper bound on h(~Zi). Our strategy is based on using entropy power

inequality repeatedly. Since the PDF of the random vector ~ξk,i is not smooth, no lower bound better than

−∞ is known for h(~ξk,i). This results in a weak lower bound on h(~Zi). To circumvent this, as ~ηi is a

gaussian vector of covariance matrix equal to σ2Iu, we propose to decompose this random vector as the

sum of n−1 independent Gaussian vectors of covariance matrices equal to qk,iIu. Denoting these gaussian
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vectors by ~ηk,i, we perturb ~ξk,i by ~ηk,i. The idea behind this perturbation is to smoothen the PDF of the

vectors ~ξk,i so that entropy power inequality yields a tighter lower bound on h(~Zi). Thus, one may write

~Zi differently as follows:

~Zi =
N∑
k=1
k 6=i

(hk,i~ξ
′
k + ~ηk,i) (29)

Defining ~νk,i := hk,i~ξ
′
k + ~ηk,i, we have the following proposition

Proposition 1

h(~νk,i) ≥
1

2
u log(2πeqk,i)

+
1

2

∫ 1

0

log

(
(1 + (1− ρ)

|hk,i|2P
qk,iv

)v−1(1 +
|hk,i|2P
qk,i

(ρ+
1− ρ
v

))

)
f(ρ)dρ.

Proof: See Appendix A.

As ~Zi =
∑N

k=1
k 6=i

~νk,i where {~νk,i}k 6=i are independent, one may repeatedly use entropy power inequality

to get a lower bound on h(~Zi) as follows:

2
2
u
h(~Zi) ≥

N∑
k=1
k 6=i

2
2
u
h(~νk,i). (30)

Using proposition 2 in (30), one has the following lower bound on h(~Zi):

h(~Zi) ≥
u

2
log

2πe
N∑
k=1
k 6=i

qk,i2
1
u

R 1
0 log

„
(1+(1−ρ)

|hk,i|
2P

qk,iv
)v−1(1+

|hk,i|
2P

qk,i
(ρ+ 1−ρ

v
))

«
f(ρ)dρ

 . (31)

Since this is valid for any set of non-negative numbers {qk,i}Nk=1,k 6=i satisfying
∑N

k=1
k 6=i

qk,i = σ2, we tighten

this lower bound as follows:

h(~Zi) ≥
u

2
log(2πeσ2

∗(f(.))) (32)

where

σ2
∗(f(.)) = max

qk,i≥0:
PN
k=1
k 6=i

qk,i=σ2

N∑
k=1
k 6=i

qk,i2
1
u

R 1
0 log

„
(1+(1−ρ)

|hk,i|
2P

qk,iv
)v−1(1+

|hk,i|
2P

qk,i
(ρ+ 1−ρ

v
))

«
f(ρ)dρ

. (33)

The following lemma yields σ2
∗(f(.)):
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Lemma 2

σ2
∗(f(.)) = 2

1
u

R 1
0 log((1+(1−ρ) giγ

v
)v−1(1+giγ(ρ+

1−ρ
v

)))f(ρ)dρσ2.

Proof:

To obtain σ2
∗(f(.)), let us define the Lagrangian as follows:

L =
N∑
k=1
k 6=i

qk,i2
1
u

R 1
0 log

„
(1+(1−ρ)

|hk,i|
2P

qk,iv
)v−1(1+

|hk,i|
2P

qk,i
(ρ+ 1−ρ

v
))

«
f(ρ)dρ

+ λ(
N∑
k=1
k 6=i

qk,i − σ2).

The optimality condition , ∂L
∂qk,i

= 0, yields simply that the ratio |hk,i|2
qk,i

must be a constant, namely ς ,

regardless of the value of k. Therefore, we get:

N∑
k=1
k 6=i

qk,i =
1

ς

N∑
k=1
k 6=i

|hk,i|2 = σ2

which yields ς = gi
σ2 . As a result, the optimum value of qk,i is given by qk,i =

|hk,i|2
gi

σ2. Consequently,

σ2
∗(f(.)) is obtained as follows:

σ2
∗(f(.)) = 2

1
u

R 1
0 log((1+(1−ρ) giγ

v
)v−1(1+giγ(ρ+

1−ρ
v

)))f(ρ)dρσ2.

Substituting this in (32), we obtain the following lower bound on h(~Zi):

h(~Zi) ≥
1

2
u log(2πeσ2) +

1

2

∫ 1

0

log

(
(1 + (1− ρ)

giγ

v
)v−1(1 + giγ(ρ+

1− ρ
v

))

)
f(ρ)dρ (34)

By (28) and (34), we obtain the following upper bound on Ri:

Ri ≤ Ui(v, f(.); γ)

:=
1

2
log

(
(t̃i,3 − t̃i,4)v(t̃i,1 − t̃i,2)u−v(1 +

vt̃i,4

t̃i,3 − t̃i,4
)(1 +

(u− v)(t̃i,2 − t̃i,5)
t̃i,1 − t̃i,2

)

)

−1

2

∫ 1

0

log

(
(1 + (1− ρ)

giγ

v
)v−1(1 + giγ(ρ+

1− ρ
v

))

)
f(ρ)dρ. (35)
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Denoting the sum-rate by SR, we come up with the following lower and upper bounds:

n∑
i=1

Li(v, f(.); γ) ≤ SR ≤
n∑
i=1

Ui(v, f(.); γ). (36)

Let us denote these lower and upper bounds by L(v, f(.); γ) and U(v, f(.); γ) respectively.

Before we proceed, we deem it appropriate to mention an issue. One could obtain a lower bound

on Ri by following the same lines as we did to get an upper bound on Ri. By vector perturbation

and using entropy power inequality, one may get a lower bound on h(~Yi(s
∗
i )), namely hlb(~Yi(s

∗
i )), and

1
2

log((2πe)udet(C(~Zi))) would be an upper bound on h(
−→
Z i). Therefore, we come up with a new lower

bound on Ri given by

L̃i(v, f(.); γ) = hlb(~Yi(s
∗
i ))−

1

2
log((2πe)udet(C(~Zi)))

≤ 1

2
log((2πe)udet(C(~Yi(s

∗
i ))))−

1

2
log((2πe)udet(C(~Zi)))

=
1

2
log

det(C(~Yi))

det(C(~Zi))
= Li(x, f(ρ); γ) (37)

where the inequality is due to the fact that the Gaussian distribution maximizes the entropy of a random

vector under a fixed covariance matrix condition. This shows that L(v, f(.); γ) that we already found is

a tighter lower bound than L̃(v, f(.); γ).

V. CHARACTERIZATION OF THE OPTIMAL HOPPING STRATEGY

We start this section with the following key result.

Proposition 2 Let f(ρ) be any probability density function. Then Ui(v, f(.); γ) ≤ Ui(v, δ(.); γ) for any

1 ≤ i ≤ N .

Proof: We give the proof in two steps.

Step 1 According to (26), det(C(~Yi(s
∗
i ))) is given by:

det(C(~Yi(s
∗
i ))) = (ti,3 − ti,4)v(ti,1 − ti,2)u−v(1 +

vti,4
ti,3 − ti,4

)(1 +
(u− v)(ti,2 − ti,5)

ti,1 − ti,2
).

We notice that ti,3 ≥ ti,4, ti,1 ≥ ti,2. Also, ti,2 and ti,4 are increasing linear functions in terms of ρ̄, and
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ti,1 and ti,3 are not functions of ρ̄. On the other hand, ti,5 vanishes as ρ̄ = 0. As such, we have:

det(C(~Yi(s
∗
i )))

det(C(~Yi(s∗i )))|f(.)=δ(.)

=
(ti,3 − ti,4)v(ti,1 − ti,2)u−v(1 +

vti,4
ti,3−ti,4 )(1 +

(u−v)(ti,2−ti,5)

ti,1−ti,2 )

tvi,3t
u−v
i,1

= (1− ti,4
ti,3

)v(1− ti,2
ti,1

)u−v(1 +
vti,4

ti,3 − ti,4
)(1 +

(u− v)(ti,2 − ti,5)
ti,1 − ti,2

)

≤ (1− ti,4
ti,3

)v(1− ti,2
ti,1

)u−v(1 +
vti,4

ti,3 − ti,4
)(1 +

(u− v)ti,2
ti,1 − ti,2

).

The inequality is valid as ti,5 ≥ 0. Now, we verify that

(1− ti,4
ti,3

)v(1 +
vti,4

ti,3 − ti,4
) ≤ 1

and

(1− ti,2
ti,1

)u−v(1 +
(u− v)ti,2
ti,1 − ti,2

) ≤ 1.

We prove the first claim. The proof of the second claim is exactly the same. Let us define F (ti,4) =

(1 − ti,4
ti,3

)v(1 +
vti,4

ti,3−ti,4 ). If f(.) = δ(.), then ti,4 = 0 and F (0) = 1. As f(.) deviates from δ(.), ρ̄ and

therefore ti,4 increases. To verify the claim, it suffices to show that F (ti,4) is a decreasing function of ti,4.

One simply has d
dti,4 lnF (ti,4) = − v

ti,3−ti,4 (1 − ti,3
ti,3+(v−1)ti,4

) which is negative, and we are done by the

claims. As a result, we conclude the following:

det(C(~Yi(s
∗
i ))) ≤ det(C(~Yi(s

∗
i )))|f(.)=δ(.).

Step 2 Here, we show that σ2
∗(δ(.)) ≤ σ2

∗(f(.)) for any probability density function f(.). By lemma 2,

σ2
∗(f(.)) = 2

1
u

R 1
0 log((1+(1−ρ) giγ

v
)v−1(1+giγ(ρ+

1−ρ
v

)))f(ρ)dρσ2. Let us consider the function G(ρ) = (1 + (1 −

ρ)giγ
v

)v−1(1 + giγ(ρ + 1−ρ
v

)). One simply has d
dρ lnG(ρ) = −(giγ)2(1− 1

v
) ρ

(1+giγ(ρ+
1−ρ
v

))(1+(1−ρ) giγ
v

)
. This

shows that G(ρ) is a decreasing function of ρ. Thus:

σ2
∗(f(.)) = 2

1
u

R 1
0 log(G(ρ))f(ρ)dρσ2 ≥ 2

1
u

log(G(0))
R 1
0 f(ρ)dρσ2

= 2
1
u

log(G(0))
R 1
0 δ(ρ)dρσ2 = 2

1
u

R 1
0 log(G(0))δ(ρ)dρσ2

= 2
1
u

R 1
0 log(G(ρ))δ(ρ)dρσ2 = σ2

∗(δ(ρ)).
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The claim of the proposition is clear now. As Ui(v, f(.); γ) = 1
2

log((2πe)udet(C(~Yi(s
∗
i ))))−1

2
u log(2πeσ2

∗(f(.))),

based on the results of the above two steps, the claim of the proposition is proved.

From now on, we denote U(v, δ(.); γ) and L(v, δ(.); γ) by U(v; γ) and L(v; γ) respectively. Substituting

f(.) = δ(.) in (27) and (35), we have:

Li(v; γ) =
1

2
v log

(
1 +

|hi,i|2γ
v(giγ

u
+ 1)

)
(38)

and

Ui(v; γ) =
1

2
v log

(
1 +

|hi,i|2γ
v(giγ

u
+ 1)

)
+

1

2
u log(

γgi
u

+ 1)− 1

2
v log(1 +

giγ

v
). (39)

Proposition 3 For every realization of the crossover gains,

lim
γ→0

L(u; γ)

U(u− 1; γ)
= 1.

Also, and as far as

PN
i=1

(PN
k=1
k 6=i
|hk,i|2

)2

PN
i=1 |hi,i|4

< 1,

lim
γ→0

d
dγ

L(u; γ)

U(u− 1; γ)
> 0.

Proof: See Appendix B.

Proposition 4 If

PN
i=1

(PN
k=1
k 6=i
|hk,i|2

)2

PN
i=1 |hi,i|4

< 1, there exists γ0 > 0 such that for γ < γ0 the function U(v; γ) is

an increasing function of v.

Proof: See Appendix B.

Now, we are ready to express the main theorem of this section:

Theorem 1 If

PN
i=1

(PN
k=1
k 6=i
|hk,i|2

)2

Pi=N
i=1 |hi,i|4

< 1, then the best strategy for all users in terms of sum-rate maximiza-

tion is to set f(.) = δ(.) and to spread their power on the whole available band, i.e., v = u.

Proof: By proposition 4, there exists a γ1 > 0 such that if γ < γ1 then for

PN
i=1

(PN
k=1
k 6=i
|hk,i|2

)2

PN
i=1 |hi,i|4

< 1 we

have U(u−1; γ) < L(u; γ). On the other hand, by proposition 5, there exists a γ0 > 0 such that if γ < γ0

then for

PN
i=1

(PN
k=1
k 6=i
|hk,i|2

)2

PN
i=1 |hi,i|4

< 1 we have U(u−1; γ) > U(t; γ) where t ∈ {1, 2, ..., u−2}. As such, takingPN
i=1

(PN
k=1
k 6=i
|hk,i|2

)2

PN
i=1 |hi,i|4

< 1 and for every γ < min{γ0, γ1}, we have L(u, γ) > U(t; γ) where t ∈ {1, 2, ..., u−
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1}. Also, as proved in proposition 3, U(t; γ) ≥ U(t, f(ρ); γ) for any distribution f(ρ). Therefore, we

conclude that n the low SNR regime taking v = u and f(.) = δ(.) yields a higher SR than v < u and

any arbitrary PDF f(.). One can easily check that L(u; γ) = U(u; γ) ≥ U(u, f(.); γ). Summarizing the

above, we see that SR is maximized for v = u and f(.) = δ(.) as long as
PN
i=1(

PN
k=1,k 6=i |hk,i|2)

2PN
i=1 |hi,i|4

< 1.

It is notable that in a decentralized network, different users are not necessarily aware of all the channel

gains. Theorem 3, offers a criterion which requires all the users to be aware of hi,i and gi for all i. This

might not be applicable in a distributed network. On the other hand, the users might be able to bound these

quantities. Assume that it is almost surely true that |hi,i| > ε1 and |hi,j| < ε2 for i 6= j where ε1 and ε2 are

specific thresholds. Then,

PN
i=1

0@PN
k=1
k 6=i
|hk,i|2

1A2

PN
i=1 |hi,i|4

<
(N−1)2ε42

ε41
. Therefore, ε2

ε1
< 1√

N−1
is a sufficient condition

for all the users to distribute their power on the whole band in the low SNR regime. For example, if

N = 2, then ε2 < ε1, i.e., the crossover gains be smaller than the forward gains. We are able to give a

more detailed argument in the special case N = 2 in terms of offering a computable low SNR range. Let

us call the users as A and B. We suppose the forward gains are one and the crossover gains of user A on

user B and user B on user A are a and b respectively. We suppose a, b < 1. By the theorem above, we

know that in the low SNR regime, the best choice would be to occupy all the available band. We show

that as long as γ
u
<
√

5−1
4

the same conclusion holds, and as such, [0,
√

5−1
4
u] is an explicit characterization

of the low SNR regime. For the moment, let us assume that a = b = 1. Let link A, occupy the first v

bands. The other transmitter also uses v bands of which a number of v∗ bands are among the first v

bands. Clearly, we have v∗ ≤ v and v− v∗ ≤ u− v which yields max{2v− u, 0} ≤ v∗ ≤ v . In this case,

it is easy to check that the achievable rate of user A is:

RA(v∗) =
1

2
log

(
(1 +

2P

vσ2
)v
∗
(1 +

P

vσ2
)v−2v∗

)
=

1

2
v∗ log(1 +

2γ

v
) +

1

2
(v − 2v∗) log(1 +

γ

v
) (40)

On the other hand, for a fixed input distribution, the mutual information for an additive noise channel is

a convex function of the noise PDF. Thus, we obtain the following:

RA ≤
v∑

v∗=max{0,2v−u}

pv∗RA(v∗) (41)
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where pv∗ is the probability that the two users coincide on v∗ sub-bands. Clearly, pv∗ =
( vv∗)(

u−v
v−v∗)

(uv)
.

Denoting the above upper bound by UB, we get:

UB =
1

2

 v∑
v∗=max{2v−u,0}

y

(
v
v∗

)(
u−v
v−v∗

)(
u
v

)
 log(1 +

2γ

v
)

+
1

2

 v∑
v∗=max{2v−u,0}

(v − 2v∗)

(
v
v∗

)(
u−v
v−v∗

)(
u
v

)
 log(1 +

γ

v
). (42)

We recall that the probability function of a hypergeometric random variable T is given by:

Pr{T = t} =

(
M1

t

)(
M2−M1

m−t

)(
M2

m

) (43)

where max{0,M1 +m−M2} ≤ t ≤ min{M1,m}. Also, one has E{T} = M1m
M2

. If we set M1 = m = v

and M2 = u, then we see that ( vv∗)(
u−v
v−v∗)

(uv)
is actually a hypergeometric probability function. As such, the

summation terms in (42) are computed as follows:

v∑
v∗=max{2v−u,0}

v∗
(
v
v∗

)(
u−v
v−v∗

)(
u
v

) =
v2

u
(44)

and
v∑

v∗=max{2v−u,0}

(
v
v∗

)(
u−v
v−v∗

)(
u
v

) = 1 (45)

Replacing these terms in (42), we get:

UB =
1

2

v2

u
log(1 +

2γ

v
) +

1

2
(v − 2v2

u
) log(1 +

γ

v
). (46)

It is interesting to note that UB|v=u = RA(u) ,i.e, the upper bound is tight at v = u. We just need to see

for which range of SNR the upper bound is an increasing function of v. In fact, if UB is an increasing

function of v, the optimum value of v to maximize SR would be u. We have the following proposition:

Proposition 5 UB is an increasing function of v as long as γ ∈ [0,
√

5−1
4
u].

Proof: See Appendix C.

Hence, [0,
√

5−1
4
u] is an explicit range of SNR for which sum-rate is maximized if v = u for all a, b < 1.

We notice that by Theorem 3, for all a, b satisfying a4 + b4 ≤ 2, the optimum choice is v = u. In this

example, we are assuming that a, b ∈ [0, 1] which is included in the region specified by Theorem 3. The



18

following figure illustrates the regions specified here.

Fig. 1. Dash Line: The region a4 + b4 ≤ 2, Straight Line: The region 0 ≤ a, b ≤ 1

remark 1 It is easy to see that in general for N = 2,

Ri ≤ (v − v2

u
) log(1 +

|hi,i|2γ
v

) +
v2

u
log

(
1 +

|hi,i|2γ
v

1 +
|hi′,i|2γ

v

)
(47)

where for i ∈ {1, 2}, i′ := 3− i.

Now, we consider a setup in a decentralized network of two users where the number of active users and

the channel gains are unknown to all transmitters. We set qn = Pr{N = n} for 1 ≤ n ≤ 2. Hence, the

randomness of the number of users contributes in the outage event. Denoting this event for the ith user

by Oi, we have:

Oi = {N, h1,i, h2,i : Ri < R} (48)

where R is the transmission rate of the ith user. We define the ε−outage capacity of any user with hopping

parameter v by:

R(ε; v) := sup{R : Pr{Oi} ≤ ε}. (49)

We aim to show that for low SNR values, R(ε; v) is maximized at v = u.

Let

Rub(ε; v) := sup{R : Pr{N, h1,i, h2,i : Ri,ub < R} ≤ ε} (50)
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where

Ri,ub :=


v log(1 +

|hi,i|2γ
v

) N = 1

(v − v2

u
) log(1 +

|hi,i|2γ
v

) + v2

u
log

(
1 +

|hi,i|
2γ

v

1+
|hi′,i|

2γ

v

)
N = 2

. (51)

Ri,ub is an upper bound on Ri in case N = 1 and N = 2 respectively. Clearly2, {Ri,ub < R} ⊂ Oi. This

yields

{R : Pr{Oi} ≤ ε} ⊂ {R : Pr{Ri,ub < R} ≤ ε}. (52)

Thus,

R(ε; v) ≤ Rub(ε; v). (53)

Proposition 6 If v < u,

Rub(ε; v)

= sup{R : q1(1−exp
(v
γ

(1−2
R
v )
)

+q2

∫ ∞
0

(
1B+exp

(v
γ
− z

2
uR
v2 (1 + zγ

v
)1−u

v − 1

)
(1A−1B)

)
exp(−z)dz ≤ ε}

(54)

where

A = {z : 2
uR
v2 (1 +

zγ

v
)1−u

v > 1} (55)

and

B = {z : 2
uR
v2 (1 +

zγ

v
)−

u
v > 1}. (56)

Also, if v = u,

Rub(ε;u) = sup{R : 1− exp(
u

γ
(1− 2

R
u ))(q1 + q22

−R
u ) ≤ ε}. (57)

Proof: See appendix D.

Fig. 3 sketches Rub(ε; v) for 1 ≤ v ≤ 4 in a system with u = 4 at γ = 0dB. It is seen that all the curves

overlap on each other implying that hopping has no particular advantage. It is notable that Rub(ε; v = 4)

is the exact ε-outage capacity as Ri,ub is tight for v = u. Therefore, we conclude that ε-outage capacity

for v = 4 is at least as large as the same quantity in case v < 4.

2By {Ri,ub < R}, we mean {N,h1,i, h2,i : Ri,ub < R}.
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Fig. 2. Depiction of Rub(ε; v) for 1 ≤ v ≤ 4 in a system with u = 4 at γ = 0dB

VI. APPENDIX A

In this appendix, we prove proposition 1. We are concerned to get a lower bound on the differential en-

tropy of ~νk,i := hk,i~ξ
′
k+~ηk,i. If we set ~τk,i := hk,i~ξ

′
k, then we have p~τk,i(~τ) = 1

(uv)

∑(uv)
l=1

∫ 1

0
g(~τ ,Dl,k,i)f(ρ)dρ

where each Dl,k,i is a matrix which has a v × v principal sub-matrix equal to |hk,i|2P
v

S(1, ρ; v) and the

rest of its elements are zero. Each Dl,k,i shows a specific occupation of v frequency bands out of the u

bands. We have

p~νk,i(~ν) = p~τk,i(~ν) ∗ g(~ν, qk,iIu)

=
1(
u
x

) (uv)∑
l=1

∫ 1

0

(g(~ν,Dl,k,i) ∗ g(~ν, qk,iIu))f(ρ)dρ =
1(
u
v

) (uv)∑
i=1

∫ 1

0

g(~ν,Dl,k,i + qk,iIu)f(ρ)dρ.

Since differential entropy is a concave function of probability density function, we get the following result:

h(~νk,i) ≥
1

2

1(
u
v

) (uv)∑
l=1

∫ 1

0

log((2πe)udet(Dl,k,i + qk,iIu))f(ρ)dρ. (*)

Clearly, det(Dl,k,i + qk,iIu) is independent of l. To compute this quantity, we consider the case where the

first v rows and v columns of Dl,k,i consist the aforementioned principal sub-matrix which is equal to
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P
v
S(1, ρ; v). In this, we have:

det(Dl,k,i + qk,iIu) = det

S(
|hk,i|2P

v
+ qk,i,

|hk,i|2P
v

ρ; v) 0v,u−v

0u−v,v qk,iIu−v


= qu−vk,i det(S(

|hk,i|2P
v

+ qk,i,
|hk,i|2P

v
ρ; v)) = qu−vk,i (

|hk,i|2P
v

(1− ρ) + qk,i)
v(1 +

ρ|hk,i|2
|hk,i|2P

v
(1− ρ) + qk,i

)

= quk,i(
|hk,i|2P
vqk,i

(1− ρ) + 1)v(1 +

ρ|hk,i|2P
qk,i

|hk,i|2P
vqk,i

(1− ρ) + 1
).

Substituting this in (*), we get:

h(~νk,i) ≥
1

2
u log(2πeqk,i) +

1

2

∫ 1

0

log

(1 + (1− ρ)
|hk,i|2P
qk,iv

)v(1 +

ρ|hk,i|2P
qk,i

|hk,i|2P
vqk,i

(1− ρ) + 1
))

 f(ρ)dρ

=
1

2
u log(2πeqk,i) +

1

2

∫ 1

0

log

(
(1 + (1− ρ)

|hk,i|2P
qk,iv

)v−1(1 +
|hk,i|2P
qk,i

(ρ+
1− ρ
v

))

)
f(ρ)dρ

which is the desired result.

VII. APPENDIX B

Let us define gi =
∑N

k=1
k 6=i
|hk,i|2 and fi = |hi,i|2. We notice that the following holds:

U(v; γ) = L(v; γ) + ∆(v; γ)

where ∆(v; γ) = 1
2
u
∑N

i=1 log(γgi
u

+ 1)− 1
2
v
∑N

i=1 log(1 + giγ
v

). As L(u; 0) = U(u− 1; 0) = 0, we have:

lim
γ→0

L(u; γ)

U(u− 1; γ)
=

L′(u; 0)

U ′(u− 1; 0)

and

lim
γ→0

d
dγ

L(u; γ)

U(u− 1; γ)
=
U ′(u− 1; 0)L′′(u; 0)− L′(u; 0)U ′′(u− 1; 0)

2(U ′(u− 1; 0))2
.

After simple calculations, we get:

L′(v, 0) = U ′(v; 0) =

∑
i fi
2

, (*)

L′′(v; 0) = −1

2

∑
i

fi(
fi
v

+
2gi
u

),
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∆′′(v; 0) =
1

2

∑
i

g2
i (

1

v
− 1

u
)

and

U ′′(v; 0) = L′′(v; 0) + ∆′′(v; 0) = −1

2

∑
i

fi(
fi
v

+
2gi
u

) +
1

2

∑
i

g2
i (

1

x
− 1

u
). (**)

As L′(u; 0) = U ′(u− 1; 0) the first part of proposition 4 is derived. By the same token, the second part

is deduced if the condition L′′(u; 0) > U ′′(u− 1; 0) is satisfied. This yields the following:

∑
i

g2
i (

1

u− 1
− 1

u
) <

∑
i

f 2
i (

1

u− 1
− 1

u
)

which is simplified to
P
i g

2
iP

i f
2
i
< 1. To prove proposition 5, we show the following two claims hold for

s > t:

lim
γ→0

U(s; γ)

U(t; γ)
= 1

and

lim
γ→0

d
dγ
U(s; γ)

U(t; γ)
> 0.

as U(s; 0) = U(t; 0) = 0, we have:

lim
γ→0

U(s; γ)

U(t; γ)
=
U ′(s; 0)

U ′(t, 0)

and

lim
γ→0

d
dγ
U(s; γ)

U(t; γ)
=
U ′(t; 0)L′′(s; 0)− L′(s; 0)U ′′(t; 0)

2(U ′(t; 0))2
.

By (*), we have:

U ′(s; 0) = U ′(t, 0) =

∑
i fi
2

which yields the first claim. Considering this fact, the second claim is derived whenever U ′′(s; 0) >

U ′′(t; 0). According to (**), this can be written as:

∑
i

g2
i <

∑
i

f 2
i

which yields
P
i g

2
iP

i f
2
i
< 1.
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VIII. APPENDIX C

We have:

UB =
v2

u
log

√
1 + 2γ

v

1 + γ
v

+
1

2
log(1 +

γ

v
)

= u

v2

u2
log

√
1 + 2γ

v

1 + γ
v

+
1

2

v

u
log(1 +

γ

v
)

 .

Let c = γ
u

and w = v
u

. Therefore,

UB = u

w2 log

√
1 + 2c

w

1 + c
w

+
1

2
w log(1 +

c

w
)


= u

(
w2 log

√
w(w + 2c)

w + c
+

1

2
w log

w + c

w

)

= u

(
w2 − w

2
logw +

w2

2
log(w + 2c)− (w2 − w

2
) log(w + c)

)
.

Let us define:

ϕ(w, c) =
w2 − w

2
lnw +

w2

2
ln(w + 2c)− (w2 − w

2
) ln(w + c).

We have:
∂ϕ(w, c)

∂w
=
w2 − w

2

1

w
+
w2

2

1

w + 2c
− (w2 − w

2
)

1

w + c

+
2w − 1

2
lnw + w ln(w + 2c)− (2w − 1

2
) ln(w + c).

One observes that ∀w ∈ (0, 1] : ∂ϕ(w,c)
∂v
|c=0 = 0. On the other hand, ∂2ϕ(w,c)

∂c∂w
is computed as follows:

∂2ϕ(w, c)

∂c∂w
=
c (4(1− 2w)c2 + 2w(2− 3w)c+ w2))

2(w + c)2(w + 2c)2
.

Now, for each value of w ∈ (0, 1], we investigate the behavior of the following quadratic polynomial as

a function of c:

ψw(c) = 4(1− 2w)c2 + 2w(2− 3w)c+ w2.

The following cases occur:

• w = 1
2



24

In this case, ψ 1
2
(c) = 1

2
c+ 1

4
is a line which is positive for all c ≥ 0.

• w ∈ (0, 1
2
)

In this case, ψw(c) is a parabola that has a minimum at c0 = −w(2−3w)
4(1−2w)

. Clearly, c0 < 0 for w ∈ (0, 1
2
).

On the other hand, ψw(0) = w2 > 0. Hence, ∀c ≥ 0 : ψw(c) ≥ 0.

• w ∈ (1
2
, 1]

In this case, ψw(c) is a parabola achieving its maximum at c0 which is a positive number for w ∈ (1
2
, 2

3
)

and a negative one for w ∈ (2
3
, 1]. On the other hand, the roots of ψw(c) are given by:

c1,2 =
−w(2− 3w)± w

√
w(9w − 4)

4(1− 2w)
.

The term (9w − 4) is positive for w ∈ (1
2
, 1], and therefore the root are real. Since ψw(0) = w2, one of

the real roots is always positive and the other one is always negative. Denoting the positive root by c+,

we have:

c+ =
−w(2− 3w)− w

√
w(9w − 4)

4(1− 2w)
.

Let us sketch c+ as a function of w ∈ (1
2
, 1]. As can be seen from this figure, c+ is a monotonically

decreasing function of w. As such, we have infw∈( 1
2
,1] c+ = c+|w=1 =

√
5−1
4

. From the above, we conclude:

Fig. 3. c+(w) is a decreasing function of v for v ∈ ( 1
2
, 1)
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∀w ∈ (0, 1],∀c ∈ [0,

√
5− 1

4
] :
∂2ϕ(w, c)

∂c∂w
> 0.

As ∀w ∈ (0, 1] : ∂ϕ(w,c)
∂v
|c=0 = 0, this has a nice interpretation. For each c ∈ [0,

√
5−1
4

], ϕ(w, c) is an

increasing function of w, and the theorem is proved.

IX. APPENDIX D

In what follows, we derive an expression for Rub(ε; v). We have:

Pr{Ri,ub < R} = q1 Pr{Ri,ub < R|N = 1}+ q2 Pr{Ri,ub < R|N = 2}. (58)

Taking h1,i and h2,i to be CN (0, 1), then |h1,i|2 and |h2,i|2 are exponential random variables of parameter

one. It is easy to see that

Pr{Ri,ub < R|N = 1} = 1− exp(
v

γ
(1− 2

R
v )). (59)

On the other hand, in case v < u,

Pr{Ri,ub < R|N = 2} = Pr{(v − v2

u
) log(1 +

|hi,i|2γ
v

) +
v2

u
log

(
1 +

|hi,i|2γ
v

1 +
|hi′,i|2γ

v

)
< R}

= Ehi,i

{
Pr
{

(v − v2

u
) log(1 +

|hi,i|2γ
v

) +
v2

u
log

(
1 +

|hi,i|2γ
v

1 +
|hi′,i|2γ

v

)
< R

∣∣∣hi,i}}. (60)

But,

Pr
{

(v − v2

u
) log(1 +

|hi,i|2γ
v

) +
v2

u
log

(
1 +

|hi,i|2γ
v

1 +
|hi′,i|2γ

v

)
< R

∣∣∣hi,i}

= µ1(µ2 + exp
(v
γ
− |hi,i|2

2
uR
v2 (1 +

|hi,i|2γ
v

)1−u
v − 1

)
µ̄2) (61)

where

µ1 =

 1 2
uR
v2 (1 +

|hi,i|2
v

)1−u
v > 1

0 oth.
(62)

and

µ2 =

 1 2
uR
v2 (1 +

|hi,i|2
v

)−
u
v > 1

0 oth.
. (63)
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Clearly, if µ2 = 1, then µ1 = 1. Thus µ1µ2 = µ2. Hence,

Pr
{

(v − v2

u
) log(1 +

|hi,i|2γ
v

) +
v2

u
log

(
1 +

|hi,i|2γ
v

1 +
|hi′,i|2γ

v

)
< R

∣∣∣hi,i}

= µ2 + exp
(v
γ
− |hi,i|2

2
uR
v2 (1 +

|hi,i|2γ
v

)1−u
v − 1

)
(µ1 − µ2). (64)

Finally, we have:

Pr{Ri,ub < R|N = 2}

=

∫ ∞
0

(
1B + exp

(v
γ
− z

2
uR
v2 (1 + zγ

v
)1−u

v − 1

)
(1A − 1B)

)
exp(−z)dz (65)

where

A = {z : 2
uR
v2 (1 +

zγ

v
)1−u

v > 1} (66)

and

B = {z : 2
uR
v2 (1 +

zγ

v
)−

u
v > 1}. (67)

Therefore,

Rub(ε; v)

= sup{R : q1(1−exp
(v
γ

(1−2
R
v )
)

+q2

∫ ∞
0

(
1B+exp

(v
γ
− z

2
uR
v2 (1 + zγ

v
)1−u

v − 1

)
(1A−1B)

)
exp(−z)dz ≤ ε}.

(68)

If v = u, after similar calculations, we get:

Rub(ε;u) = sup{R : 1− exp(
u

γ
(1− 2

R
u ))(q1 + q22

−R
u ) ≤ ε}. (69)
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