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Abstract

We consider a wireless communication network with a fixed number of frequency sub-bands to be shared

among several transmitter-receiver pairs. In traditional frequency division (FD) systems, the available sub-bands

are partitioned into disjoint clusters (frequency bands) and assigned to different users (each user transmits only

in its own band). If the number of users sharing the spectrum is random, this technique may lead to inefficient

spectrum utilization (a considerable fraction of the bands may remain empty most of the time). In addition, this

approach inherently requires either a central network controller for frequency allocation, or cognitive radios which

sense and occupy the empty bands in a dynamic fashion. These shortcomings motivate us to look for a decentralized

scheme (without using cognitive radios) which allows the users to coexist, while utilizing the spectrum efficiently.

We consider a frequency hopping (FH) scheme (with i.i.d. Gaussian code-books) where each user transmits over a

selection of sub-bands and hops to another selection (with the same cardinality) from transmission to transmission.

Developing an upper bound on the differential entropy of a mixed Gaussian random vector and via entropy power

inequality, we offer a lower bound on the achievable rate of each user in the proposed scheme. Thereafter, in

a setup where the number of active users and all the channel gains are unknown to transmitters, we obtain the

maximum transmission rate per user to ensure a specified outage probability at a given SNR level. We demonstrate

that “outage capacity” can be considerably higher in FH than the case of FD for reasonable distributions on the

number of active users which guarantees a higher spectral efficiency in FH.

Index Terms

Frequency Hopping, Spectrum Sharing, Decentralized Networks, Mixed Gaussian Interference, ε-Outage Ca-

pacity



2

I. INTRODUCTION

Optimal resource allocation is an imperative issue in wireless networks. When multiple users share the

same spectrum, the destructive effect of multi-user interference can limit the achievable rates. As such, an

effective and low complexity frequency sharing strategy which maximizes the degrees of freedom per user,

while mitigating the impact of the multi-user interference is desirable. In frequency division (FD) systems,

different users transmit over disjoint frequency bands. Due to practical considerations, such FD systems

usually rely on a fixed number of such frequency bands. The main drawback of FD systems is that most

of the time the majority of the potential users may be inactive, reducing the resulting spectral efficiency.

Reference [1] considers a network of several users with mutual interference. Treating the interference

as noise, a central controller computes the optimum power allocation of each link over the spectrum

to maximize a global utility function. This leads to the best spectrum sharing strategy for a specific

number of users. Clearly, if the number of users changes, the system is not guaranteed to offer the best

possible spectral efficiency. In fact, it is shown in [1] that if the crossover gains are sufficiently greater

than the forward gains, frequency division is optimum. However, as mentioned earlier, if the number of

users sharing the spectrum is random, FD systems can be highly inefficient in terms of the overall spectral

efficiency. To avoid the need for a central controller, cognitive radios [2] are introduced which can sense the

bands and transmit over an unoccupied portion of the available spectrum. Fundamental limits of wireless

networks with cognitive radios are studied in [3]–[7]. Although cognitive radios avoid the use of a central

controller, they require methods for frequency sensing and dynamic frequency assignment which add

to the overall system complexity. For example, in opportunistic communication, each cognitive device

must search for idle regions of the spectrum or spectrum holes which requires sophisticated detection

techniques [8]–[10]. Noting the above points, it is desirable to have a decentralized frequency sharing

strategy (without the need for cognitive radios) which allows the users to coexist, while utilizing the

spectrum efficiently and fairly.

Distributed strategies based on game theoretic arguments have already attracted a great deal of attention

[1], [7], [32], [11]–[14]. In [1], the authors introduce a non-cooperative game theoretic framework to

investigate the spectral efficiency issue when several users compete over an unlicensed band with no

central controller. This approach has been recently followed more in [11] to the case where the users

have incomplete information about the channel gains in the network. This setup is more relevant to a

fast fading environment. Reference [12] offers a brief overview of game theoretic dynamic spectrum
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sharing. Repeated non-cooperstive market game methods are adopted in [13] for resource allocation in

a decentralized network. Recently, in [14] the interaction between multiple random access networks has

been considered from a game theoretic point of view.

Generally speaking, the problem of distributed spectrum sharing is studied from two different view-

points. Many authors consider dynamic usage of idle parts of the spectrum that has been already allocated

to primary licensees [26]–[31]. An elegant approach to make this feasible is utilizing software defined or

cognitive radios. In [30], three different operational models for cognitive radios are mentioned, i.e., overlay,

underlay and opportunistic interweaving. In [31], motivated by the fact that the interference imposed on the

primary users by the secondary users must be below a certain level, the concept of capacity is studied under

constraints at the receiver instead of transmitter. Subsequently, authors in [32] show how the interference

effect of the secondary users can be mitigated in fading environments as deep fading on the cross over

links is to the benefit of the licensees. Another scenario is sharing the spectrum by a certain number of

users competing over a certain open bandwidth [34]–[37]. In [37], through an asynchronous distributed

pricing scheme, users exchange signals that indicate the negative effect of interference at the receivers. In

[36], users affected by the mobility event, self-organize into bargaining groups and adapt their spectrum

assignment to approximate a new optimal assignment.

On the other hand, spread spectrum (SS) communications is a natural setup to share the same bandwidth

by several users. This area has attracted tremendous attention by different authors during the past decades

in the context of centralized uplink/downlink multiuser systems. Appealing characteristics of SS systems

have motivated researchers to utilize these schemes in networks without a certain infrastructure, i.e., packet

radio or ad-hoc networks [15]. In direct sequence spread spectrum (DSSS) systems, the signal of each

user is spread using a pseudo-random noise (PN) code. The challenging point is that the PN codes used

by different users must have relatively small cross-correlation properties. In a network without a central

controller, if two users use the same spreading code, they will not be capable to recover the data at the

receiver side. Distributed code assignment techniques are developed in [38], [39]. In [38], using a greedy

approximation algorithm and invoking graph theory, a distributed code assignment protocol is suggested.

Another category of research is devoted to devise distributed schemes in the reverse link (uplink) of cellular

systems. Distributed power assignments algorithms are proposed in [41], [42]. Reference [43] proposes a

distributed scheduling method called “the token-bucket on-off scenario” utilized by autonomous mobile

stations where its impact on the overall throughput of the reverse link is investigated. On the other hand,
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decentralized rate assignments in a multi-sector CDMA wireless network are discussed in [44].

Being a standard technique in spread spectrum communications and due to its interference avoidance

nature, frequency hopping is the simplest spectrum sharing method to use in decentralized networks.

As different users typically have no prior information about the codebooks of the other users, the most

efficient method is avoiding interference by choosing unused channels. As mentioned earlier, searching

the spectrum to find spectrum holes is not an easy task due to the dynamic spectrum usage. As such,

frequency hopping is a realization of transmission without sensing while avoiding the collisions as much

as possible.

Frequency hopping is one of the standard signaling schemes [15] adopted in ad-hoc networks. In short

range scenarios, bluetooth systems [19]–[21] are the most popular examples of a wireless personal area

network or WPAN. Using frequency hopping over the unlicensed ISM band, a bluetooth system provides

robust communication to unpredictable sources of interference. A modification of frequency hopping called

dynamic frequency hopping (DFH), selects the hopping pattern based on interference measurements in

order to avoid dominant interferers. The performance of a DFH scheme when applied to a cellular system

is assessed in [22]–[24]. Frequency hopping is also proposed in [7] in the context of cognitive radios

where each cognitive transmitter selects a frequency band but quits transmitting if the band is already

occupied by a primary user.

In this paper, we consider a decentralized party of N users sharing u discrete frequency sub-bands via

fast frequency hopping. Different transmitters are linked to different receivers through paths with static

and non-frequency-selective fading. Each user is assumed to have no prior knowledge about the code-

books of the other users. We propose a frequency hopping (FH) strategy in which the ith user selects vi

frequency sub-bands among the u available sub-bands and hops to another set of vi sub-bands for the

next transmission. It is assumed that all users transmit independent Gaussian code-books over their chosen

frequency sub-bands.

As each user hops over different subsets of the sub-bands without informing other users about its

hopping pattern, sensing the spectrum to track the instantaneous interference is a difficult task. This

assumption makes the interference probability density function (PDF) on each frequency sub-band at the

receiver side of each user be mixed Gaussian. Since the channel gains have a continuous PDF, the number

of Gaussian components in the interference PDF is 2N−1 with probability one. It is presumed that each

user is able to derive the interference PDF after a sufficiently long training period at the receiver side.
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Deriving an upper bound on the differential entropy of a mixed Gaussian random vector and invoking

entropy power inequality (EPI), we propose a lower bound on the achievable rate of each user in the

FH system. Our proposed lower bound is tight enough to have the same SNR scaling of the achievable

rate itself as SNR goes to infinity. Thereafter, in case no transmitter has the necessary knowledge about

the channel gains and the number of users in the system, we derive lower bounds on ε-outage capacity

defined as

R(ε) = sup{R : Pr{Outage} < ε},

i.e., the maximum transmission rate for each user ensuring an outage probability below ε. Fixing ε,

simulation results show that RFH(ε) can be much greater than RFD(ε) for regular SNR values and

reasonable distributions on the number of active user in the system. We emphasize that the randomness

of the number of users contributes to the outage event.

The paper outline is as follows. System model is given in section II. Section III is devoted to derive

lower bounds on the achievable rates of users. In section IV, based on the results in section III, we discuss

how the users in the FH system fairly share the band while maximizing the outage capacity. Comparison

between the FH and FD systems is given in section V through simulation results. In section VII, the case

where the number of active users is a global knowledge is considered. We use the notation f(γ) ∼ g(γ)

implying limγ→∞
f(γ)
g(γ)

= 1 throughout the paper.

II. SYSTEM MODEL

We consider a communication system with N users1 where the ith user exploits vi(≤ u) out of the

u sub-bands and spreads its available power, P , equally over these selected sub-bands by transmitting

independent Gaussian signals of variance P
vi

over each of the chosen sub-bands. This user hops to another

set of vi frequency sub-bands after each transmission. We denote the achievable rate of the ith user by Ri.

The static and non frequency-selective fading coefficient of the link connecting the ith transmitter to the jth

receiver is shown by hi,j . Each receiver knows already the hopping pattern of its affiliated transmitter. On

the other hand, as all users hop over different portions of the spectrum from transmission to transmission,

no user is assumed to be capable of tracking the instantaneous interference. This assumption makes the

interference plus noise PDF at the receiver side of each user be a mixed Gaussian distribution. In fact,

depending on different choices the other users make to select the frequency sub-bands and values of the

1Each user consists of a transmitter-receiver pair.



6

crossover gains, the interference on each frequency sub-band at the receiver side of any user has up to

2N−1 power levels. For each i, the channel model for the ith user is as follows:

~Yi = hi,i ~Xi + ~Zi (1)

where ~Xi is the u×1 input vector of the ith user and ~Zi is the noise plus interference vector on the receiver

side of the ith user. One may write p ~Xi(~x) =
∑

C∈C
1

(uvi)
g(~x, C) where g(~x, C) denotes a zero-mean jointly

Gaussian distribution of covariance matrix C and the set C includes all u × u diagonal matrices where

vi out of the u diagonal elements are P
vi

while the rest are zeros. Denoting the noise plus interference

on the jth sub-band at the receiver side of the ith user by Zi,j (the jth component of ~Zi), it is clear that

pZi,j(z) is not dependent on j. This is by the fact that crossover gains are not sensitive to frequency and

there is no particular interest to a specific frequency sub-band by any user. We assume there are Li + 1

(Li ≤ 2N−1 − 1) possible non-zero power levels for Zi,j , say {σ2
i,l}

Li
l=0. The occurrence probability of σ2

i,l

is denoted by ai,l. Then, pZi,j(z) is a mixed Gaussian distribution as follows:

pZi,j(z) =

Li∑
l=0

ai,l√
2πσi,l

exp− z2

2σ2
i,l

(2)

where σ2 = σ2
i,0 < σ2

i,1 < σ2
i,2 < ... < σ2

i,Li
(σ2 is the ambient noise power). In fact, one may write

Zi,j =
∑N

k=1,k 6=i εk,jhk,iXk,j + νi,j where Xk,j is the signal of the kth user sent on the jth sub-band, εk,j is

a Bernoulli random variable showing if the kth user has utilized the jth sub-band and νi,j is the ambient

noise which is a zero-mean Gaussian random variable with variance σ2. Obviously, Pr{εk,j = 1} = vk
u

.

Also, a quantity of interest would be the following:

ai,0 = Pr{Zi,j contains no interference} =
∏
k 6=i

Pr{εk,j = 0} =
∏
k 6=i

(1− vi
u

). (3)

We notice that for each l ≥ 1, there exists a ci,l > 0 such that σ2
i,l = σ2+ci,lP where ci,1 < ci,2 < ... < ci,Li .

To compute Ri, one may see that for each i, the communication channel of the ith user is a channel with

state Si, the hopping pattern, which is independently changing over different transmissions and is known

to both the transmitter and receiver ends of the ith user. The achievable rate of such a channel is given

by

Ri = I( ~Xi; ~Yi|Si) =
∑
si∈Si

Pr(Si = si)I( ~Xi; ~Yi|Si = si) (4)
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where I( ~Xi; ~Yi|Si = si) is the mutual information between ~Xi and ~Yi for the specific sub-band selection

dictated by Si = si. The set Si denotes all possible selections of vi out of the u sub-bands. As p ~Zi(~z) is a

symmetric density function, meaning all its components have the same PDF given in (2), we deduce that

I( ~Xi; ~Yi|Si = si) is independent of si. Therefore, we may assume any specific sub-band selection for the

ith user in Si, say the first vi out of the u sub-bands. Denoting this specific state by s∗i , we get:

Ri = I( ~Xi; ~Yi|Si = s∗i ) (5)

In this case, we denote ~Yi and ~Xi by ~Yi(s
∗
i ) and ~Xi(s

∗
i ) respectively. Obviously, we have:

Ri = I( ~Xi(s
∗
i ); ~Yi(s

∗
i )) = h(~Yi(s

∗
i ))− h(~Zi). (6)

III. LOWER BOUNDS ON THE RATES

In this section, we derive lower bounds on the achievable rates of users. We are looking for a lower

bound on Ri having the following possible properties:

• Achieving the same asymptotic expression as that of Ri.

• Not depending on the interference details as much as possible.

• Being positive and within a reasonable distance to Ri for all ranges of SNR.

In what follows, we try to find such a lower bound. The idea behind deriving this lower bound is to

invoke entropy power inequality (EPI). As we will see, this initial lower bound is not in a closed form as

it depends on the entropy of a mixed Gaussian random variable. In appendix A and B, through a careful

examination of such an entropy, we obtain an appropriate upper bound on it which leads us to the final

lower bound on Ri.

Let us define ~X ′i to be the vi × 1 signal vector2 of the ith transmitter which is sent through the first vi

chosen frequency sub-bands. Let ~Y ′i = hi,i ~X
′
i + ~Z ′i where ~Z ′i is the noise plus interference vector at the

receiver side of the ith user on the first vi frequency sub-bands. According to EPI, we have:

2
2
vi

h(~Y ′i ) ≥ 2
2
vi

h(hi,i ~X
′
i) + 2

2
vi

h(~Z′i). (7)

Dividing both sides by 2h(~Z′i), we get:

h(~Y ′i )− h(~Z ′i) ≥
vi
2

log(2
2
vi

(h(hi,i ~X
′
i)−h(~Z′i)) + 1). (8)

2 ~X ′i consists of the first vi elements of ~Xi(s∗i ).



8

On the other hand, since ~Y ′i is a subvector of ~Yi(s∗i ), we have:

Ri = I( ~Xi(s
∗
i ); ~Yi(s

∗
i )) ≥ I( ~X ′i; ~Y

′
i ) = h(~Y ′i )− h(~Z ′i). (9)

Based on (8) and (9), we get the following lower bound on Ri:

Ri ≥
vi
2

log(2
2
vi

(h(hi,i ~X
′
i)−h(~Z′i)) + 1). (10)

As ~Z ′i is a mixed Gaussian vector, there is no closed-form formula for h(~Z ′i). To circumvent this difficulty,

we have to find an appropriate upper bound on h(~Z ′i). A general upper bound on the entropy of a random

vector is the entropy of a Gaussian vector of the same covariance matrix. But, it can be verified that this

leads to a lower bound on Ri which is less than a constant threshold for all values of γ, and hence would

not be suitable for our purposes. To find a sufficiently tight upper bound on h(~Z ′i), we must investigate

the exact PDF of ~Z ′i. In appendix A, we have shown the following lemma:

Lemma 1 Let ~Z be a u× 1 mixed Gaussian random vector having the following density:

p~Z(~z) =
L∑
l=1

al

(2π)
u
2

√
detCl

exp−~zTC−1
l ~z. (11)

Then,
1

2

L∑
l=1

al log
(
(2πe)u detCl

)
≤ h(~Z) ≤ 1

2

L∑
l=1

al log
(
(2πe)u detCl

)
+H (12)

where H = −
∑L

l=1 al log al is the discrete entropy of {al}Ll=1.

Proof: See appendix A.

The following lemma deals with a special class of mixed Gaussian random vectors and is quite useful in

terms of yielding a tight lower bound on Ri having desirable properties mentioned above.

Lemma 2 Let ~Z be a u× 1 mixed Gaussian random vector with different covariance matrices {σ2
l Iu}Ll=1

and corresponding probabilities {al}Ll=1 where σ2
1 < · · · < σ2

L. Then,

h(~Z) ≤ 1

2
u

L∑
l=1

al log(2πeσ2
l ) +H− G (13)

where

H = −
L∑
l=1

al log al (14)
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and

G =
σu1
σuL

L∑
l=2

al log(1 +
σuL
σu1

∑l−1
m=1 am
al

). (15)

Proof: See appendix B.

Using the chain rule for the entropy function, one has the following bound:

h(~Z ′i) ≤
vi∑
j=1

h(Zi,j). (16)

Applying the special case of lemma 3 for a scalar mixed Gaussian random variable given in (2), we get:

h(Zi,j) ≤
1

2

Li∑
l=0

ai,l log(2πeσ2
i,l) +Hi − Gi (17)

where

Hi = −
Li∑
l=0

ai,l log ai,l (18)

and

Gi =
σ

σi,Li

Li∑
l=1

ai,l log(1 +
σi,Li
σ

∑l−1
m=0 ai,m
ai,l

) (19)

• Hi is only a function of {ai,l}Lil=1, i.e., it does not depend on the crossover gains. However, Gi is

implicitly a function of all crossover gains as the partial sums
∑l−1

m=1 ai,m for 2 ≤ l ≤ Li depend on the

ordering of the crossover gains. This will be more investigated in lemma 4.

• The upper bound given on h(Zi,j) replacing Zi,j by a Gaussian random variable of the same variance

is equal to to 1
2
log(2πe

∑Li
l=0 ai,lσ

2
i,l). In contrast, one can see that although by Jensen’s inequality∑Li

l=0 ai,l log(2πeσ2
i,l) ≤ log(2πe

∑Li
l=0 ai,lσ

2
i,l), the upper bound 1

2
log(2πe

∑Li
l=0 ai,lσ

2
i,l) might still be less

than the upper bound 1
2

∑Li
l=0 ai,l log(2πeσ2

i,l) + Hi − Gi for relatively small values of P . But, as SNR

increases sufficiently, the upper bound in (17) is way tighter than 1
2
log(2πe

∑Li
l=0 ai,lσ

2
i,l). To see this, one

simply has

lim
P→∞

1
2

∑Li
l=0 ai,l log(2πeσ2

i,l) +Hi − Gi
1
2
log(2πe

∑Li
l=0 ai,lσ

2
i,l)

= 1− ai,0 < 1. (20)

This shows that as P increases the bound in (17) is a tighter upper bound than the Gaussian upper bound.

By (10), (16) and (17), we have:

Ri ≥
vi
2

log

(
2

2
vi

„
1
2

log(2πe
|hi,i|

2P

vi
)vi−vi

(
1
2

PLi
l=0 ai,l log(2πeσ2

i,l)+Hi−Gi
)«

+ 1

)
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=
vi
2

log

(
2−2Hi22Gi |hi,i|2γ

vi
∏Li

l=1(ci,lγ + 1)ai,l
+ 1

)
. (21)

Let us define

R(1)
i,lb =

vi
2

log

(
2−2Hi22Gi |hi,i|2γ

vi
∏Li

l=1(ci,lγ + 1)ai,l
+ 1

)
. (22)

R(1)
i,lb is a lower bound having desirable properties listed beow.

• It is easily seen that R(1)
i,lb ∼ 1

2
viai,0 log γ, i.e., R(1)

i,lb has the same asymptotic form [54] as that of Ri.

• R(1)
i,lb is positive and continuous for all values on γ.

• It is notable that as
∏Li

l=1(ci,lγ + 1)ai,l ≤
∏Li

l=1(ci,Liγ + 1)ai,l = (ci,Liγ + 1)(1−ai,0), one gets a looser

version of the bound given in (22) as

R(2)
i,lb =

vi
2

log

(
2−2Hi22Gi |hi,i|2γ
vi(ci,Liγ + 1)1−ai,0

+ 1

)
. (23)

• R(2)
i,lb still has the same asymptotic expression as that of R(1)

i,lb.

• In case all the signal and noise components are assumed to be circular complex Gaussian (called the

complex setup),

R(2)
i,lb = vi log

(
2−Hi2Gi |hi,i|2γ

vi(ci,Liγ + 1)1−ai,0
+ 1

)
(24)

where Gi is given by:

Gi =
σ2

σ2
i,Li

Li∑
l=1

ai,l log(1 +
σ2
i,Li

σ2

∑l−1
m=0 ai,m
ai,l

). (25)

Let us consider a “fair” FH system in which vi = v for all 1 ≤ i ≤ N . As Li = 2N−1−1 with probability

one, and each user selects a certain frequency band with probability v
u

, the collection {ai,l}Lil=0 consists of

the numbers ( v
u
)i(1− v

u
)N−1−i repeated

(
N−1
i

)
times for 0 ≤ i ≤ N − 1. Generally, Hi is only a function

of {ai,l}Lil=0. On the other hand, Gi depends on details about the ordering of {ci,l}Lil=0. To avoid this, the

following lemma introduces a lower bound on Gi which only depends on ci,Li i.e., the largest interference

crossover gain.

Lemma 3 In a “fair” FH system, considered in the complex setup,

Hi = −(N − 1)
(v
u

log
v

u
+ (1− v

u
) log(1− v

u
)
)

(26)
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and

Gi ≥ Gi,lb :=
E
{

log
(
1 +

(
1− ( v

u
)B
)
ci,Liγ

)}
− (N − 1) v

u
log v

u

ci,Liγ + 1
(27)

where B is a binomial random variable of parameters (N − 1, v
u
)

Proof: Let us define p = v
u

. By the fact stated before to the lemma, we have:

Hi = −
N−1∑
i=0

(
N − 1

i

)
pi(1− p)N−1−i log(pi(1− p)N−1−i)

= −
(N−1∑

i=0

i

(
N − 1

i

)
pi(1− p)N−1−i

)
log p

−
(N−1∑

i=0

(N − 1− i)
(
N − 1

i

)
pi(1− p)N−1−i

)
log(1− p)

= −(N − 1)p log p− (N − 1− (N − 1)p) log(1− p) = (N − 1)H(p, 1− p). (28)

On the other hand, by (19), we have:

Gi =
1

ci,Liγ + 1

Li∑
l=1

ai,l log
(
1 +

∑l−1
m=0 ai,m
ai,l

(ci,Liγ + 1)
)
. (29)

Computation of
∑l−1

m=0 ai,m is not an easy task. In fact, it all depends on the ordering of the cross over

gains. For example, if N = 4,

2∑
m=0

a1,m =

 2p(1− p)2 + p2(1− p) if |h2,1|2 < |h3,1|2 < |h2,1|2 + |h3,1|2 < |h4,1|2

3p(1− p)2 if |h2,1|2 < |h3,1|2 < |h4,1|2 < |h2,1|2 + |h3,1|2
. (30)

To avoid this difficulty of describing Gi, we derive a lower bound on it which is not sensitive to the

ordering of crossover gains. Taking each ai,l, there is a 0 ≤ s ≤ N − 1 such that ai,l = ps(1− p)N−1−s.

This implies that ai,l corresponds to the interference plus noise power level
Ps
j=1 |hkj,i|

2

v
P + σ2 for some

1 ≤ k1 < · · · < ks ≤ N where kj 6= i for 1 ≤ j ≤ s. Since
Ps
j=1 |hkj,i|

2

v
P +σ2 >

P
t∈A({1,2,··· ,s} |hkt,i|

2

v
P +σ2

for all sets A ( {1, 2, · · · , s}, and
P
t∈A${1,2,··· ,s} |hkt,i|

2

v
P + σ2 is itself an interference plus noise power

level, we can deduce that its associated probability, p|A|(1 − p)N−1−|A| is an element in the sequence

(ai,0, ai,1, · · · , ai,l−1). Therefore, we come up with the following lower bound:

l−1∑
m=0

ai,m ≥
∑

A({1,2,··· ,s}

p|A|(1− p)N−1−|A| =
s−1∑
s′=0

(
s

s′

)
ps
′
(1− p)N−1−s′ . (31)
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Using (31) in (29) yields:

Gi ≥
1

ci,Liγ + 1

N−1∑
s=0

(
N − 1

s

)
ps(1− p)N−1−s log(1 +

∑s−1
s′=0

(
s
s′

)
ps
′
(1− p)N−1−s′

ps(1− p)N−1−s (ci,Liγ + 1))

=
1

ci,Liγ + 1

N−1∑
s=0

(
N − 1

s

)
ps(1− p)N−1−s log(1 +

∑s−1
s′=0

(
s
s′

)
ps
′
(1− p)s−s′

ps
(ci,Liγ + 1))

=
1

ci,Liγ + 1

N−1∑
s=0

(
N − 1

s

)
ps(1− p)N−1−s log(1 +

1− ps

ps
(ci,Liγ + 1))

= − 1

ci,Liγ + 1

N−1∑
s=0

(
N − 1

s

)
sps(1− p)N−1−s log p

+
1

ci,Liγ + 1

N−1∑
s=0

(
N − 1

s

)
ps(1− p)N−1−s log(1 + (1− ps)ci,Liγ)

E{log
(
1 + (1− pB)ci,Liγ

)
} − (N − 1)p log p

ci,Liγ + 1
(32)

where B is a binomial random variable of parameters (N − 1, p).

From now on, we replace Gi by Gi,lb in all the expression offered for the lower bounds on Ri. In a “fair”

FH system, we denote ai,0, Hi and Gi,lb by a(v,N), H(v,N) and Gi,lb(v,N) respectively. It is notable

that considering the tern Gi.lb results in improvement for relatively lower ranges of SNR. In fact, it is seen

that Gi.lb goes to zero as SNR goes to infinity. We will point out this fact again in example 1 given in

section V.

On the other hand, let us assume vi = u for all i, i.e., all users spread their power on the whole

spectrum. We call this the full-band spreading scenario or FBS. Then ai,l = 0 for l ≤ Li−1 and ai,Li = 1.

This yields a(u,N) = H(u,N) = Gi,lb(u,N) = 0. In fact, R(2)
i,lb is tight for v = u, i.e., R(2)

i,lb is exactly the

achievable rate of the ith user while all users transmit over the whole spectrum. We denote this rate by

Ri,FBS . In the complex setup, Ri,FBS is given by

Ri,FBS =
u

2
log

(
|hi,i|2γ

u(ci,Liγ + 1)
+ 1

)
. (33)

IV. SYSTEM DESIGN, PART I: THE NUMBER OF ACTIVE USERS IS UNKNOWN

In this section, we consider the complex setup where signals, ambient noise and channel gains are

circular complex Gaussian random variables. In particular, we assume hi,j ∼ CN (0, 1). Generally, the
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number of active users in the system is a random variable N . Each user is assumed to have no knowledge

about the channel gains and the number of active users. The FD system is originally designed to service K

users based on frequency division multiplexing. Therefore, each user occupies u
K

sub-bands upon activation

and is not allowed to occupy the sectors that are assigned to other users. However, if the distribution of

the number of active users changes, this scenario is highly inefficient on the heels that a considerable

portion of the sub-bands is unused. Assume, the number of active users follows the distribution ~q where

qn = Pr{N = n} and q1 ≥ q2 ≥ · · · . This is a reasonable assumption as the probability that two users

become active simultaneously is less than the probability that only one active user is in the system, etc.

Also, Pr{N > K ′} = 0 where K ′ < K. Comparison between a “fair” FH system and a FD system is

made according to a performance measure called “ε-outage capacity” described as follows.

Denoting the transmission rate of the ith user by R, the outage event for this user is

Oi = {N, {hj,i}1≤j≤N : Ri < R}. (34)

We notice that the randomness of the number of active users is considered in the outage event. Let us

define the ε-outage capacity as follows:

R(ε) := sup{R : Pr{Oi} ≤ ε} (35)

, i.e., the maximum transmission rate of a typical user such that its outage probability is below ε. We

denote this quantity in the frequency division, full-band spreading and frequency hopping by RFD(ε),

RFBS(ε) and RFH(ε) respectively.

A. Computing RFD(ε)

In the FD system, the spectrum is already divided into K non-overlaping units each containing u
K

sub-bands. Each user that becomes active occupies one of the units. In this way, there is no interference

at all, and the outage event is

Oi,FD = {hi,i :
u

K
log(1 +

K|hi,i|2γ
u

) < R}. (36)
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As hi,i ∼ CN (0, 1), defining Gi,i := |hi,i|2, we have:

pGi,i(g) =

 exp(−g) g ≥ 0

0 oth.
, (37)

i.e., Gi,i is an exponential random variable of parameter one. Thus,

Pr{Oi,FD} = 1− exp
( u
K

1

γ
(1− 2

KR
u )
)
. (38)

Using this in (35) yields:

RFD(ε) = sup{R : exp
( u
K

1

γ
(1− 2

KR
u )
)
> 1− ε} =

u

K
log
(
1− Kγ

u
ln(1− ε)

)
. (39)

B. Computing RFBS(ε)

Using (33), the following proposition yields RFBS(ε):

Proposition 1

RFBS(ε) = sup{R : exp
(u
γ

(1− 2
R
u )
) K′∑
n=1

qn2
− (n−1)R

u > 1− ε}. (40)

Proof: See appendix C.

RFBS(ε) yields the maximum rate of each user assuming all users spread their power on the whole

spectrum while the outage probability per user is maintained below ε.

C. Computing RFH(ε)

Let us consider a “fair” FH system in which vi = v for all i. In this part, we derive lower bounds on

RFH(ε) using different lower bounds {R(k)
i,lb}k∈{1,2} on Ri derived in the previous section.

Taking the lower bound R(k)
i,lb on Ri for any k ∈ {1, 2}, it is clear that Oi,FH ⊂ {N, {hj,i}1≤j≤N :

R(k)
i,lb < R}. This yields3 Pr{Oi,FH} ≤ Pr

{
R(k)
i,lb < R

}
, and hence

{
R : Pr

{
R(k)
i,lb < R

}
≤ ε
}
⊂ {R : Pr{Oi,FH} ≤ ε}. (41)

Defining

R
(k)
FH(ε) := sup

{
R : Pr

{
R(k)
i,lb < R

}
< ε}, (42)

3By Pr{R(k)
i,lb < R}, we mean Pr{{N, {hj,i}1≤j≤N : R(k)

i,lb < R}}



15

we get

R
(k)
FH(ε) ≤ RFH(ε). (43)

In the following subsections we separately compute {R(k)
FH(ε)}k∈{1,2}.

1) Computation of R(2)
FH(ε): We start with the following definition.

Definition 1 Let n ∈ N. For c ∈ (0, 1] and b > 0, define the function αn(.; b, c) : R+ → R+ as

αn(z; b, c) =
E{log

(
1 + b(1− cB)z

)
} − (n− 1)c log c

bz + 1
(44)

where B is a binomial random variable of parameters (n−1, c). Also, for b1 < 0, b2 > 0 and c1, c2 ∈ [0, 1],

define the function φn(b1, b2, c1, c2) as

φn(b1, b2, c1, c2) =
1

(n− 2)!

∫ ∞
0

zn−2 exp
(
b1(b2z + 1)c12−αn(z;b2,c2) − z

)
dz. (45)

Using this class of functions, the following proposition yields R(2)
FH(ε).

Proposition 2

R
(2)
FH(ε) = max

v
sup{R : q1 exp(

v

γ
(1− 2

R
v )) +

K′∑
n=2

qnφn(b1,n, b2,n, c1,n, c2,n) > 1− ε} (46)

where b1,n = v
γ
2H(v,n)(1− 2

R
v ), b2,n = γ

v
, c1,n = 1− a(v, n) and c2,n = v

u
.

Proof: See appendix D.

The functions φn appearing in the formulation of R(2)
FH(ε) involve numerical integrations. The following

corollary, proved in appendix E, yields a closed form lower bound on R(2)
FH(ε).

Corollary 1 Let

R
(3)
FH(ε) := max

v
sup{R : q1 exp(

v

γ
(1− 2

R
v )) +

K′∑
n=2

qn
(n− 2)!

exp
(
b1,n
(
(n− 1)b2,n + 1

)1−a(v,n))
> 1− ε}.

(47)

Then,

R
(2)
FH(ε) ≥ R

(3)
FH(ε) (48)

where b1,n = v
γ
2H(v,n)(1− 2

R
v ) and b2,n = γ

v
.

Proof: See appendix E.
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2) Computation of R(1)
FH(ε): We start with the following definition.

Definition 2 For b1 < 0, b2 > 0 and c ∈ [0, 1], we define

ψn(b1, b2, c) =

∫
z1≥0,··· ,zn−1≥0

exp

(
b12
−αn(zn−1,n−1;b2,c)

n−1∏
m=1

(n−1
m )∏

m′=1

(b2zm,m′ +1)cm,n − zn−1,n−1

)
dz1 · · · dzn−1

(49)

where for each m, {zm,m′}
(n−1
m )

m′=1 consists of all possible summations of m elements in the set {zi}n−1
i=1 and

cm,n = cm(1− c)n−1−m.

For example,

ψ2(b1, b2, c) =

∫ ∞
0

exp

(
b12
−α2(z;b2,c)(b2z1 + 1)c − z1

)
dz1 (50)

and

ψ3(b1, b2, c) =

∫
z1,z2>0

exp

(
b12
−α3(z2,2;b2,c)

(
(b2z1 + 1)(b2z2 + 1)

)c(1−c)
(b2z2,2 + 1)c

2 − z2,2

)
dz1dz2 (51)

where z2,2 = z1 + z2 by definition. It is notable that ψ2(b1, b2, c) = φ2(b1, b2, c, c).

The following proposition offers an expression to compute R(1)
FH(ε).

Proposition 3 Let

R
(1)
FH(ε; v) = sup

{
R : q1 exp(

v

γ
(1− 2

R
v ))) +

K′∑
n=2

qnψn
(
b1,n, b2,n, cn

)
> 1− ε

}
(52)

where b1,n = v
γ
2H(v,n)(1− 2

R
v ), b2,n = γ

v
and cn = v

u
. Then,

R
(1)
FH(ε) = max

v
R

(1)
FH(ε; v). (53)

Proof: See appendix F.

The expression given in (53) is quite complicated. On one hand, the multiple integrals do not have a

closed form. On the other hand, the maximization over v must be computed numerically. By the way,

R
(1)
FH(ε) is the best lower bound on RFH(ε) as R(1)

1,lb is the best lower bound we have found on R1. Fig.

1 shows the three lower bounds R(k)
FH(ε) for k ∈ {1, 2, 3} we have developed in a system with K ′ = 4,

(q1, q2, q3, q4) = (.4, .2, .2, .2), u = 15 and γ = 100.

Remark 1 One may construct a lower bound on RFH(ε) mixing the bounds R(1)
FH(ε) and R(2)

FH(ε). Let us
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Fig. 1. Depictions of R(k)
FH(ε) for k ∈ {1, 2, 3} in a setup where K′ = 4, (q1, q2, q3, q4) = (.4, .2, .2, .2), γ = 100 and u = 15.

write Pr{Oi} as

Pr{Oi} =
K′∑
n=1

Pr{Oi|N = n}qn. (54)

For n = 1, we have Pr{Oi|N = 1} = 1− exp
(
v
γ
(1− 2

R
v )
)
. For n > 1, one can find an upper bound on

each Pr{Oi|N = n} using either of the lower bounds R(k)
i,lb on Ri for k ∈ {1, 2}. Using R(1)

i,lb, we get the

following:

Pr{Oi|N = n} ≤ 1− ψn(b1,n, b2,n, cn). (55)

On the other hand, using R(2)
i,lb, we have:

Pr{Oi|N = n} ≤ 1− φn(b1,n, b2,n, c1,n, c2,n). (56)

The bound in (55) is tighter than the bound in (56), but its computation is more involving. Therefore, one

may choose the bound (55) for those n for which qn is relatively larger. Assume for n ∈ N ⊂ {2, · · · , K ′},

we use the bound in (55). Then our recommended upper bound on Pr{Oi} would be

Pr{Oi} ≤ 1− q1 exp
(v
γ

(1− 2
R
v )
)
−
∑
n∈N

qnψn(b1,n, b2,n, cn)−
∑
n/∈N

qnφn(b1,n, b2,n, c1,n, c2,n). (57)
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Defining R(4)
FH(ε;N ) as

R
(4)
FH(ε;N ) =

max
v

sup{R : q1 exp
(v
γ

(1− 2
R
v )
)
+
∑
n∈N

qnψn(b1,n, b2,n, cn)+
∑
n/∈N

qnφn(b1,n, b2,n, c1,n, c2,n) ≥ 1− ε}, (58)

we get the forth type lower bound on RFH(ε) as

RFH(ε) ≥ R
(4)
FH(ε;N ). (59)

V. DISCUSSIONS AND SIMULATION RESULTS

In this section, we consider different examples to demonstrate cases where the FH system outperforms

the FD system, i.e., RFH(ε) > RFD(ε) for an ε and at a given SNR. In fact, for any (K, {qn}K
′

n=1, u, ε), we

have three strategies to investigate, i.e., FD, FH and FBS. We have no expression for RFH(ε). However,

we have developed the following set of lower bounds on this quantity:

RFH(ε) ≥ R
(1)
FH(ε) ≥ R

(4)
FH(ε,N ) ≥ R

(2)
FH(ε) ≥ R

(3)
FH(ε). (60)

R
(1)
FH(ε) is the best lower bound, however, its computation involves multiple integrals of up to order K ′−1

for any K ′. Computing R
(2)
FH only involves single integrals for all K ′. Computation of R(3)(ε) involves

no integrals. R(4)
FH(ε,N ) is a lower bound on RFH(ε) mixing the lower bounds of type one and two. In

the following examples, we always assume K ′ ≤ 4. This enables us to use our best lower bound R(1)
FH as

we encounter double and triple integrals. Let us define

fFD(R; γ) = exp
( u
K

1

γ
(1− 2

KR
u )
)
, (61)

fFBS(R; γ) = exp
(u
γ

(1− 2
R
u )
) K∑
n=1

qn2
− (n−1)R

u , (62)

f
(2)
FH(R, v; γ) = q1 exp(

v

γ
(1− 2

R
v )) +

K∑
n=2

qnφn(
v

γ
2H(v,n)(1− 2

R
v ),

γ

v
, 1− a(v, n),

v

u
) (63)

and

f
(1)
FH(R, v; γ) = q1 exp(

v

γ
(1− 2

R
v ))) +

K∑
n=2

qnψn
(
v,
v

γ
2H(v,n)(1− 2

R
v ),

γ

v
,
v

u

)
. (64)
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Now, by (39), (40), (46) and (53),

RFD(ε) = sup{R : fFD(R; γ) > 1− ε}, (65)

RFBS(ε) = sup{R : fFBS(R; γ) > 1− ε}, (66)

R
(k)
FH(ε) = max

v
sup{R : f

(k)
FH(R, v; γ) > 1− ε} (67)

for k ∈ {1, 2}.

A. FH vs FD

To get a better insight, we include the FBS scenario in all the figures in this section.

Example 1 In this example, we consider a system with u = 20, K = 10, K ′ = 2 and (q1, q2) = (.5, .5).

We have sketched the ε-outage capacity for the FH, FBS and FD systems in fig. 2 for γ = 21.76dB. In case

of FH , the best lower bound is obtained for v = 9 in the given range of ε. We have included the curve

R
(1)
FH(ε; v = 2) for comparison. Also, there are two curves for the case v = 5. The blue curve considers

the term Hi and Gi,lb proposed in lemmas 2 and 3. On the other hand, the red curve only considers the

term Hi. It is seen that the resulted improvement (the lift in the lower bound) by considering the term

Gi,lb enables us to conclude that for ε ∈ [.13, .17], FH outperforms FBS. Clearly, the red curve which

does not consider this improvement is below the curve RFBS(ε) for this range of ε. Also, using the blue

curve, it is seen that for all ε ≥ .12, FH outperforms FD. However, if we use the red curve the anticipated

advantage of FH over FD is observed for ε ≥ .14. Fig. 3 depicts the same setup at γ = 30dB. It is seen

that the improvement offered by introducing Gi,lb fades away as γ increases.

Example 2 Assume u = K = 20, K ′ = 3 and (q1, q2, q3) = (.5, .3, .2). Let γ = 20dB. Fig. 4 depicts

the lower bound on RFH(ε) for different hopping patterns, i.e., different values of v. It is observed that

for smaller values of v, we get a stronger lower bound. The curves for v = 2 and v = 3 are very close

to each other. It is seen that for ε < .075, taking v = 2 yields a better performance while for ε > .075,

the hopping pattern must be set at v = 3. Also, for all ε > .075, the ε-outage capacity of FH (by setting

v = 3) is larger than that of FD. However, at ε = .15, the curve RFBS(ε) is above R(1)
FH(ε; v = 3), and

hence, we are unable to claim any advantage of FH over FBS in the range ε > .15. Therefore, a main

conclusion of the simulation result in this certain case is that FH outperforms both FD and FBS as long
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Fig. 2. Comparison of FH and FD for u = 20, K = 10, K′ = 2, γ = 21.76dB and (q1, q2) = (.5, .5).

Fig. 3. Comparison of FH and FD for u = 20, K = 10, K′ = 2, γ = 30dB and (q1, q2) = (.5, .5).

as ε ∈ [.075, .15]. Now, let us increase the SNR value. Let γ = 30dB. Fig. 5 offers a comparison of

R
(1)
FH(ε; v = 2) (hopping pattern set at v = 2), RFBS(ε) and RFD(ε) at γ = 30dB. It is seen that for at

least all ε ∈ [.01, .2], FH offers a considerably higher performance than the cases of FBS and FD.
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Fig. 4. Comparison of FH and FD for u = K = 20, K′ = 3, γ = 20dB and (q1, q2, q3) = (.5, .3, .2).

Fig. 5. Comparison of FH and FD for u = K = 20, K′ = 3, γ = 30dB and (q1, q2, q3) = (.5, .3, .2).

Example 3 In this example, we propose another method to choose the hopping pattern. In [54], we have

determined the sum-rate multiplexing gain in a “fair” FH system with N users as

MGFH(N, v) = Nv(1− v

u
)N−1. (68)
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We propose to select v by the following rule:

v∗ = arg max
1≤v<u

E{MGFH(N, v)} = arg max
1≤v<u

vE{N(1− v

u
)N−1}. (69)

Let us consider the setup in example 2 above. As u = 20 and the distribution of N is given by (q1, q2, q3) =

(.5, .3, .2), we have:

v∗ = arg max
1≤v<20

v
(
.5 + .6(1− v

20
) + .6(1− v

20
)2
)
. (70)

Fig. 6 yields the sketch of E{MGFH(N, v)}. It is seen that v∗ = 15. Clearly, the value of γ has no

Fig. 6. Sketch of E{MGFH(N, v)} in terms of v

role to determine v∗. By the results of example 2, at γ = 20dB, the ε-outage capacity is maximized

for vopt = 3 for all ε ∈ [.075, .2]. Fig. 4 depicts both R
(1)
FH(ε; v = 3) and R

(1)
FH(ε; v = 15). Comparing

these two shows that taking v = v∗ = 15 implies no advantage in terms of ε-outage capacity. However,
E{MGFH(N,3)}
E{MGFH(N,15)} = .5340. In fact, by fig. 6, taking v = 3 is far from maximizing E{MGFH(N, v)}.

Finally, we wrap up with an observation about FH and FBS in a busy network of two users, i.e., q2 > q1.

B. FBS vs FH

Assume K ′ = 2 and u = 10. Intuitively, one might expect that for q1 > .5, FBS is the best scenario.

On the other hand, if q1 ≤ .5, i.e., there are two active users in the system with probability more that 1
2
,
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FH might be better as it partly avoids collisions. This intuition is valid only in higher ranges of SNR.

As SNR increases, the FBS scenario leads to saturation of the rates of all active users. On the other

hand, the FH system confers each user a certain amount of multiplexing gain which is v(1− v
u
) in case

the two users are active [49]. Let q1 = .1, i.e., the two users become active with probability .9. Let us

take γ = 20dB. Fig. 7 sketches RFH,lb(ε) and RFD(ε). The best lower bound on the FH performance is

obtained for v = 2. It is seen that the ε-outage capacity for FH is considerably larger than that of FBS

for all ε. Clearly, the same holds for all γ > 20dB.

Fig. 7. Comparison of FH and FBS for u = 10, γ = 20dB, K′ = 2 and (q1, q2) = (.1, .9)

VI. APPENDIX A

In this appendix, we prove lemma 2. Let us consider a general u×u vector mixed gaussian distribution

p~Z(~z) with different covariance matrices {Cl}Ll=1 and associated probabilities {al}Ll=1 given by:

pZ(z) =
L∑
l=1

alg(~z, Cl) (71)

where g(~z, Cl) = 1

(2π)
u
2 (detCl)

1
2

exp−1
2
~zTC−1

l ~z. Hence, we get:

I :=

∫
pZ(z) ln pZ(z)dz =

L∑
l=1

Jl (72)
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where Jl = al
∫
g(~z, Cl) ln p~Z(~z)d~z for 1 ≤ l ≤ L. To find a proper lower bound on each Jl in this

expression, we proceed as follows:

Jl = al

∫
g(~z, Cl) ln

( L∑
m=1

amg(~z, Cm)

)
d~z ≥ al

∫
g(~z, Cl) ln

(
alg(~z, Cl)

)
d~z

= al ln
( al

(2π)
u
2 (detCl)

1
2

) ∫
g(~z, Cl)d~z −

1

2
al

∫
~zTC−1

l ~zg(~z, Cl)d~z

= al ln
( al

(2π)
u
2 (detCl)

1
2

)
− 1

2
alE{~ZT

GC
−1
l
~ZG} (73)

where ~ZG is a Gaussian vector with PDF g(~z, Cl). However,

E{~ZT
GC
−1
l
~ZG} = E{tr

(
~ZT
GC
−1
l
~ZG
)
} = E{tr

(
~ZG ~Z

T
GC
−1
l

)
}

= tr
(
E{~ZG ~ZT

G}C−1
l

)
= trIu = u. (74)

Thus,

Jl ≥ al ln
( al

(2π)
u
2 (detCl)

1
2

)
− u

2
al. (75)

On the other hand,

h(~Z) = −(log e)I = −(log e)
L∑
l=1

Jl

≤ −
L∑
l=1

al
(
log
( al

(2π)
u
2 (detCl)

1
2

)
− u

2
log e

)
= −

L∑
l=1

al log
al

(2πe)
u
2 (detCl)

1
2

=
1

2

L∑
l=1

al log((2πe)u detCl) +H(a1, · · · , aL) (76)

where H(a1, · · · , aL) = −
∑L

l=1 al log al is the discrete entropy of {al}Ll=1. On the other hand, we know

that differential entropy is a concave function of the density. Thus,

h(~Z) ≥ 1

2

L∑
l=1

al log((2πe)u detCl). (77)

This concludes the lemma.
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VII. APPENDIX B

In this appendix, we try to improve the upper bound derived in appendix A on the differential entropy

of a mixed Gaussian random vector for a special class of such vectors. Consider the PDF given in (71),

where Cl = σ2
l Iu. Assume σ2

1 < σ2
2 < · · · < σ2

L. We modify the bounding in (73) as follows. We know

that

Jl = al

∫
g(~z, Cl) ln

( L∑
m=1

amg(~z, Cm)
)
d~z. (78)

On the other hand,

ln
( l∑
m=1

amg(~z, Cm)
)

= ln(alg(~z, Cl)) + ln(1 +
l−1∑
m=1

am
al

g(~z, Cm)

g(~z, Cl)
+

L∑
m=l+1

am
al

g(~z, Cm)

g(~z, Cl)
). (79)

However, the term
∑L

m=l+1
am
al

g(~z,Cm)
g(~z,Cl)

=
∑L

m=l+1
am
al

σul
σum

exp−
(

1
2
( 1
σ2
m
− 1

σ2
l
)~zT~z

)
is always greater than∑L

m=l+1
am
al

σul
σum

. Hence,

ln
( l∑
m=1

amg(~z, Cm)
)
≥ ln(alg(~z, Cl)) + ln(1 +

L∑
m=l+1

am
al

σul
σum

+
l−1∑
m=1

am
al

g(~z, Cm)

g(~z, Cl)
). (80)

On the other hand, the term
∑l−1

m=1
am
al

g(~z,Cm)
g(~z,Cl)

=
∑l−1

m=1
am
al

σul
σum

exp−
(

1
2
( 1
σ2
m
− 1

σ2
l
)~zT~z

)
is always less than∑l−1

m=1
am
al

σul
σum

. Now, we use the following inequality 4which is valid for any b > 0 and 0 ≤ x ≤ a,

ln(1 + b+ x) ≥ (1− x

a
) ln(1 + b) +

x

a
ln(1 + a+ b). (81)

Utilizing this in the expression on the right hand side of (80), we get:

ln
( l∑
m=1

amg(~z, Cm)
)
≥
(
1− 1

νl

l−1∑
m=1

am
al

g(~z, Cm)

g(~z, Cl)

)
ln(1 + µl) +

1

νl

l−1∑
m=1

am
al

g(~z, Cm)

g(~z, Cl)
ln(1 + νl + µl) (82)

where µl =
∑L

m=l+1
am
al

σul
σum

and νl =
∑l−1

m=1
am
al

σul
σum

. Using this in (78) yields:

Jl ≥ al

∫
g(~z, Cl) ln(alg(~z, Cl))dz + (al −

∑l−1
m=1 am
νl

) ln(1 + µl) +

∑l−1
m=1 am
νl

ln(1 + νl + µl). (83)

One may notice that the part al
∫
g(~z, Cl) ln(alg(~z, Cl))dz is the lower bound on Jl used in appendix A.

This finally leads to the upper bound of appendix A. But, here, we have an extra term which makes the

4One may verify this using Jensen’s inequality and concavity of the ln(.) function.
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upper bound tighter. Briefly, we get:

h(~Z) ≤ 1

2

L∑
l=1

log((2πe)u detCl) +H− G ′′ (84)

where

G ′′ =
L∑
l=1

(
(al −

∑l−1
m=1 am
νl

) ln(1 + µl) +

∑l−1
m=1 am
νl

ln(1 + νl + µl)
)
. (85)

G ′′ is a complicated function of {σl}Ll=1. To simplify it, one may notice that G ′′ is an increasing function

of µl. Hence, using µl ≥ 0, we get a lower bound on G ′′, namely G ′ given by:

G ′ =
L∑
l=2

ln(1 + νl)

νl

l−1∑
m=1

am. (86)

On the other hand, using the fact that ln(1+x)
x

is a decreasing function of x, one may obtain a lower bound

on G ′ by finding an upper bound on νl for each l. One option is νl ≤
σuL
σu1

Pl−1
m=1 am
al

. Thus, we come up with

the following lower bound on G ′

G ′ ≥ G :=
σu1
σuL

L∑
l=2

al log(1 +
σuL
σu1

∑l−1
m=1 am
al

). (87)

VIII. APPENDIX C

We first compute Pr{Ri,FBS < R}. By (33),

Pr{Ri,FBS < R} = Pr{u log(1 +
|hi,i|2γ

u(1 + γ
u
IN)

) < R} (88)

where

IN =


∑N

j=1,j 6=i |hj,i|2 N > 1

0 N = 1
. (89)

Therefore,

Pr{Ri,FBS < R} =
K′∑
n=1

qn Pr{Ri,FBS < R|N = n}

= q1 Pr{u log(1 +
|hi,i|2γ
u

) < R}+
N∑

n=1,n 6=i

q2 Pr{u log(1 +
|hi,i|2γ

u(1 + γ
u
In)

) < R}. (90)

The first term can be computed easily as:

Pr{v log(1 +
|hi,i|2γ
u

) < R} = 1− exp(
u

γ
(1− 2

R
u )). (91)
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As |hi,i|2 and In are independent random variables for each n, one can write:

Pr{u log(1 +
|hi,i|2γ

u(1 + γ
u
In)

) < R} = EIn{Pr{u log(1 +
|hi,i|2γ

u(1 + γ
u
In)

) < R|In}} (92)

Since |hi,i|2 is an exponential random variable with parameter one,

Pr{u log(1 +
|hi,i|2γ

u(1 + γ
u
In)

) < R|In} = 1− exp
(u
γ

(1− 2
R
u )(1 +

γ

u
In)
)
. (93)

Replacing this in (92) yields:

Pr{u log(1 +
|hi,i|2γ

u(1 + γ
u
In)

) < R} = EIn{1− exp
(u
γ

(1− 2
R
u )(1 +

γ

u
In)
)
}

= 1− exp(
u

γ
(1− 2

R
u ))EIn{exp

(
(1− 2

R
u )In

)
} = 1− exp(

u

γ
(1− 2

R
u ))2−

(n−1)R
u (94)

where we have used the fact that E{exp(tIn)} = 1
(1−t)n−1 as 2In ∼ χ2

2(n−1). Thus, RFBS(ε) is given by:

RFBS(ε) = sup{R : exp
(u
γ

(1− 2
R
u )
) K′∑
n=1

qn2
− (n−1)R

u > 1− ε}. (95)

IX. APPENDIX D

Let us compute Pr{R(2)
i,lb < R}. By (23),

R(2)
i,lb =

v

2
log

(
2−H(v,N)2Gi,lb(v,N)|hi,i|2γ
v(γ

v
IN + 1)1−a(v,N)

+ 1

)
(96)

where IN is given in (89). Thus, following the same lines in appendix C, we have:

Pr{R(2)
i,lb < R} = q1ξ1 +

K′∑
n=2

qnξn (97)

where

ξ1 = 1− exp(
v

γ
(1− 2

R
v )) (98)

and

ξn|n≥2 = 1− EIn
{

exp

(
v

γ
2H(v,n)(1− 2

R
v )2αn(IN ; γ

v
, v
u
)(
γ

v
In + 1)1−a(v,n)

)}
. (99)

Since 2In ∼ χ2
2(n−1), we have pIn(z) = 1

(n−2)!
zn−2 exp−z. Therefore, (99) can be expressed as

ξn|n≥2 = 1− φn(
v

γ
2H(v,n)(1− 2

R
v ),

γ

v
, 1− a(v, n),

v

u
). (100)
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Thus,

R
(2)
FH = max

v
sup{R : q1 exp(

v

γ
(1−2

R
v ))+

K′∑
n=2

qnφn(
v

γ
2H(v,n)(1−2

R
v ),

γ

v
, 1−a(v, n),

v

u
) > 1− ε}. (101)

X. APPENDIX E

As b1 < 0 and 0 < 2−αn(z;b2,c2) < 1, we have:

φn(b1, b2, c1, c2) ≥
1

(n− 2)!

∫ ∞
0

zn−2 exp
(
b1(b2z + 1)c1 − z

)
dz. (102)

One may easily check that 1
(n−2)!

zn−2 exp(−z) is a PDF. Let us define the random variable Z as pZ(z) =

1
(n−2)!

zn−2 exp(−z). Thus, (102) can be written as

φn(b1, b2, c1, c2) ≥ E{exp
(
b1(b2Z + 1)c1

)
}. (103)

However, as b1 < 0 and 0 < c1 < 1, the function exp
(
b1(b2Z + 1)c1

)
is a convex function of Z. Hence,

applying Jensen’s inequality yields

φn(b1, b2, c1, c2) ≥ exp
(
b1(b2E{Z}+ 1)c1

)
= exp

(
b1
(
(n− 1)b2 + 1

)c1) (104)

where we have used E{Z} = n− 1. Using (104) in (46), we get the desired lower bound.

XI. APPENDIX F

By (22),

Pr{R(1)
i,lb < R} = Pr{v log

(
2−H(v,N)2Gi.lb(v,N)|hi,i|2γ

v
∏N−1

m=1

∏(N−1
m )

m′=1 (γ
v
Jm,m′ + 1)cm,N

+ 1

)
< R} (105)

where cm,N = ( v
u
)m(1− v

u
)N−1−m and

Gi,lb(v,N) = αN(JN−1,1;
γ

v
,
v

u
). (106)

For each m, {Jm,m′}
(N−1
m )

m′=1 consists all possible summations of m elements in the set {|hj,i|2}Nj=1,j 6=i .

Following the same lines as in appendix C, we get:

Pr{R(2)
i,lb < R} = q1ξ1 +

K′∑
n=2

qnξn, (107)
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where

ξ1 = 1− exp(
v

γ
(1− 2

R
v )) (108)

and

ξn|n≥2 = 1− E
{

exp

(
v

γ
2H(v,n)(1− 2

R
v )2−αn(JN−1,1; γ

v
, v
u
)

n−1∏
m=1

(n−1
m )∏

m′=1

(
γ

v
Jm,m′ + 1)am(v,n)

)}
. (109)

As a result, we get

R
(1)
FH(ε) = max

v
sup

{
R : q1 exp(

v

γ
(1− 2

R
v ))) +

K′∑
n=2

qnψn
(v
γ

2H(v,n)(1− 2
R
v ),

γ

v
,
v

u

)
> 1− ε

}
. (110)
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