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Abstract

The capacity of a time-varying block-memoryless channel inwhich the transmitter and

the receiver have access to (possibly different) noisy causal channel side information (CSI) is

obtained. It is shown that the capacity formula obtained in this correspondence reduces to the

capacity formula reported in [1] for the special case where the transmitter CSI is a deterministic

function of the receiver CSI.

Index Terms

Channel capacity, block-memoryless channel, time-varying channel, causal side informa-

tion.

I. INTRODUCTION

Motivated by the result reported in [1], this correspondence studies the capacity

of a stationary and ergodic time-varying block-memoryless(BM) channel where the

transmitter and the receiver have access to noisy causal channel side information (CSI).

The CSI at the transmitter (CSIT) and the CSI at the receiver (CSIR) can be different.

The time variations of the channel are modeled as a set of channel states where the
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channel is at some state at each time instant. A time-varying(state-dependent) BM

channel is memoryless between blocks, however, within eachblock the state and the

channel conditioned on the state can have memory. For example, such a channel model

applies to systems based on frequency hopping with slow mobility. This results in a

quasi-static (block) fading channel model where the channel fading is static within a

block and changes independently between blocks as the frequency hops to a different

carrier. A formal definition of a state-dependent BM channelis given in Section II.

The capacity of time-varying BM channels with CSI at transmitter and receiver

has been studied in [1] and the capacity is obtained for the case that the CSIT is a

deterministic function of the CSIR. As an example, the scenario where the CSIT is a

deterministic function of the CSIR occurs when the receiverquantizes its observation of

the channel state and transmits it via a noiseless channel tothe transmitter. However,

when the feedback channel is noisy, the CSIT will no longer bea deterministic function

of the CSIR. In this correspondence, we obtain the capacity for such a general case.

The key idea comes from the capacity results due to Shannon for state-dependent

discrete memoryless channels with causal side informationat the transmitter [2]. In

the model considered by Shannon, the state of the channel is perfectly known at the

transmitter and unknown at the receiver. Shannon’s work wasextended by Salehi [3] to

the case that (possibly different) noisy versions of the CSIare available at the transmitter

and at the receiver. It was later shown by Caire and Shamai [4]that the capacity with

noisy CSI can be obtained from Shannon’s original work by considering a new state-

dependent channel with CSIT alphabet as the new state alphabet. It is worth mentioning

that in our problem, since CSIT symbols are not available up to the end of the current

block, applying Shannon’s results [2] to super symbols corresponding to blocks would

not yield the capacity.

We will use the following notations throughout the correspondence. Random vari-

ables are denoted by upper case letters (X) and their values are denoted by lower case

letters (x). The sequence of random variablesXm, . . . , Xn is denoted byXn
m; and xn

m
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denotes a particular realization ofXn
m. The sequencesXn

1 andxn
1 are denoted byXn and

xn, respectively. Sets are denoted by calligraphic letters (X ); |X | denotes the cardinality

of X , andX n = X × · · · × X
︸ ︷︷ ︸

n

is then-th Cartesian power ofX .

II. CHANNEL MODEL

The channel model considered in this correspondence is the same as the one intro-

duced in [1] where a state-dependent block-memoryless channel is defined by a finite

channel input alphabetX , a finite channel output alphabetY , a finite state alphabetS, and

transition probabilitiesp(yn0|xn0 , sn0) wheren0 is the channel block length. We denote

the CSIT and the CSIR byU ∈ U andV ∈ V, respectively. The CSIT and the CSIR are

dependent on the state according to the joint distributionp(sn0, un0, vn0).

It is convenient to express the transition probabilities ofthe channel in terms of the

CSIT and the CSIR as

p(yn0, vn0|xn0 , un0) =
∑

sn0

p(yn0, vn0|xn0 , un0, sn0)p(sn0|xn0 , un0)

=
∑

sn0

p(yn0|xn0 , un0, sn0, vn0)p(vn0|xn0 , un0, sn0)p(sn0|xn0 , un0)

=
∑

sn0

p(yn0|xn0 , sn0)p(vn0|un0, sn0)p(sn0 |un0)

=
∑

sn0

p(yn0|xn0 , sn0)p(sn0 , un0, vn0)/p(un0), (1)

wherep(un0) =
∑

sn0 ,vn0
p(sn0 , un0, vn0).

For n = Jn0 uses of the channel, we have

p(yn, vn|xn, un) =

J−1∏

j=0

p
(

y
(j+1)n0

jn0+1 , v
(j+1)n0

jn0+1 |x
(j+1)n0

jn0+1 , u
(j+1)n0

jn0+1

)

, (2)

and

p(sn, un, vn) =

J−1∏

j=0

p
(

s
(j+1)n0

jn0+1 , u
(j+1)n0

jn0+1 , v
(j+1)n0

jn0+1

)

. (3)

We define a(2nR, n) block code of lengthn for the state-dependent BM channel to be

2nR sequences ofn encoding functionsfi : W × Un → X for i = 1, . . . , n such that
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xi = fi(w, ui
1), wherew ∈ W = {1, . . . , 2nR}. Note that the channel input at timei

depends on the CSIT up to timei. In other words, we consider causal knowledge setting.

At the receiver, a decoding functiong : Yn ×Vn → W is used to decode the transmitted

message aŝw = g(yn
1 , vn

1 ). The rate of the block code isR = 1
n

log |W|, and P
(n)
e is

defined as the probability that a messageW , uniformly distributed overW, is received

in error, i.e.,

P (n)
e = Pr{Ŵ 6= W}. (4)

III. CAPACITY OF BLOCK-MEMORYLESSCHANNELS WITH CSI

The capacity of a time-varying BM channel for the case that the CSIT,Un0 , is a

deterministic function of the CSIR,V n0 , is given by [1]

C = max
p(xn0 |un0)

1

n0
I(Xn0; Y n0|V n0)

=
∑

un0

p(un0) max
p(xn0 |un0)

1

n0

I(Xn0; Y n0 |un0, V n0) (5)

where the maximum is taken over all distributions satisfying the causal side information

constraint, i.e.,

p(xn0 |un0) =

n0∏

i=1

p(xi|x
i−1, ui). (6)

The capacity is achieved by a scheme that adapts itself to channel variations so that for

every realization of the CSIT, the encoder uses a code which is capacity-achieving for

that specific realization. The final coding scheme will be simply a multiplexed version

of the coding schemes for all possible CSIT realizations.

The scenario in which the CSIT is a function of the CSIR describes a situation where

the CSIT is, for example, a quantized version of the CSIR due to rate restrictions on the

capacity of the feedback link between the receiver and the transmitter. However, when the

feedback channel introduces noise, the CSIT will no longer be a deterministic function

of the CSIR. In this case, the decoder will no longer know the transmission strategy

and this complicates capacity analysis. In the following, we show that the Shannon’s
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approach for state-dependent discrete memoryless channels with causal side information

at the transmitter, with some modifications, can be used to obtain the capacity in this

more general case. It should be notes that applying Shannon’s scheme to our channel

with super symbols of sizen0 does not yield the capacity since CSIT is available only

up to the current symbol, not up to the end of the current channel block (super symbol).

We will show that to achieve the capacity, it is sufficient to consider encoding schemes

that use the CSIT up to the current symbol and within the current super symbol. In other

words, there is no loss in capacity by disregarding the past CSIT symbols that are not

within the current super symbol.

Theorem 1: The capacity of a time-varying BM channel with the CSIT and the

CSIR denoted byUn0 andV n0 , respectively, is equal to

C = max
p(tn0 )

1

n0

I(T n0; Y n0 |V n0), (7)

where theequivalent channel fromT n0 to (Y n0, V n0) is defined by1

p(yn0, vn0|tn0) =
∑

un0

p(un0)p
(
yn0, vn0|xi = ti(u

i)|n0

i=1, u
n0

)
. (8)

Proof:

Achievability: Consider the following encoding scheme. A messagew ∈ {1, . . . , 2nR}

is encoded to
(

tn0

1 (w), t2n0

n0+1(w), . . . , tn(J−1)n0+1(w)
)

, wheretjn0+i ∈ X |U|i is a function

from U i to X 2, j = 0, 1, . . . , J − 1, i = 1, 2, . . . , n0. Then, for any CSIT sequenceun
1 ,

the channel input sequencexn
1 is given byxjn0+i = tjn0+i

(
ujn0+i

jn0+1

)
, j = 0, 1, . . . , J − 1,

i = 1, 2, . . . , n0. The new channel fromT n0 to (Y n0, V n0) defined by (8) is not state

dependent and for which the rate1
n0

I(T n0 ; Y n0 , V n0) is achievable for a fixedp(tn0).

1Theorem 1 may equaivalently be stated as follows. The capacity is given by (7) in which the maximization is

restricted to distributions satisfyingp(tn0 , un0 , vn0 , xn0 , yn0) = p(tn0)p(un0)p(xn0 |tn0 , un0)p(yn0 , vn0 |xn0 , un0)

andxi = ti(u
i), i = 1, . . . , n0. I.e., T n0 is independent ofUn0 andp(xn0 |tn0 , un0) takes values zero and one only.

2There is a one-to-one correspondence between the elements of U i and the elements of
{
1, 2, . . . , |U|i

}
. A function

from U i to X can be represented by a|U|i-tuple composed of elements ofX . Each component of the|U|i-tuple

represents the value of the function for a specific element ofU i.
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However, we have

I(T n0; Y n0 , V n0) = I(T n0 ; V n0) + I(T n0 ; Y n0|V n0)

= I(T n0 ; Y n0|V n0), (9)

sinceT n0 is independent ofV n0 . Hence, the rateC given in (7) is achievable.

Converse: For any(2nR, n) code for the state-dependent BM channel with arbitrary

small probability of error, we have

nR = H(W ) (10)

= I(W ; Y n, V n) + H(W |Y n, V n) (11)

≤ I(W ; Y n, V n) + nǫn (12)

=
J−1∑

j=0

I
(

W ; Y
(j+1)n0

jn0+1 , V
(j+1)n0

jn0+1 |Y jn0

1 , V jn0

1

)

+ nǫn (13)

≤
J−1∑

j=0

I
(

W, Y jn0

1 , V jn0

1 ; Y
(j+1)n0

jn0+1 , V
(j+1)n0

jn0+1

)

+ nǫn (14)

≤

J−1∑

j=0

I
(

W, U jn0

1 ; Y
(j+1)n0

jn0+1 , V
(j+1)n0

jn0+1

)

+ nǫn (15)

=

J−1∑

j=0

I
(

W, U jn0

1 ; Y
(j+1)n0

jn0+1 |V
(j+1)n0

jn0+1

)

+ nǫn (16)

=

J−1∑

j=0

I
(

Tj ; Y
(j+1)n0

jn0+1 |V
(j+1)n0

jn0+1

)

+ nǫn (17)

≤ nC + nǫn, (18)

whereǫn = 1
n
+P

(n)
e R → 0 for largen; (12) follows from Fano’s inequality; (15) follows

from the data processing inequality for the Markov chain(W, Y jn0

1 , V jn0

1 ) → (W, U jn0

1 ) →

(Y
(j+1)n0

jn0+1 , V
(j+1)n0

jn0+1 ); (16) follows since(W, U jn0

1 ) is independent ofV (j+1)n0

jn0+1 ; Tj =

(W, U jn0

1 ); and (18) follows by comparingI
(

Tj; Y
(j+1)n0

jn0+1 |V
(j+1)n0

jn0+1

)

with (7) and noting

thatTj is independent ofU (j+1)n0

jn0+1 andXjn0+i = fjn0+i

(
Tj , U

jn0+i
jn0+1

)
, for j = 0, . . . , J−1,

i = 1, . . . , n0.
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In the sequel, we show that the capacity formula (7), reducesto (5) whenUn0 is

a deterministic function ofV n0 , i.e., Un0 = k(V n0). Any distributionp(tn0) induces a

distributionp(xn0 |un0) according to

p(xn0 |un0) =
∑

tn0 :tn0 (un0 )=xn0

p(tn0), ∀xn0 ∈ X n0, ∀un0 ∈ Un0 , (19)

where tn0(un0) = xn0 implies xi = ti(u
i), i = 1, . . . , n0. On the other hand, for any

distributionp(xn0 |un0), there is a corresponding distributionp(tn0) which can be obtained

by solving (19). Given a realization of the CSIT,un0, we have the Markov chainT n0 →

Xn0|un0 → (Y n0 , V n0)|un0. Therefore, by averaging over all realizations, we have

I(T n0; Y n0, V n0|Un0) ≤ I(Xn0; Y n0 , V n0|Un0). (20)

However,

I(T n0; Y n0V n0 |Un0) = I(T n0; V n0 |Un0) + I(T n0; Y n0|V n0 , Un0)

= I(T n0; Y n0|V n0), (21)

sinceT n0 is independent of(Un0 , V n0), andUn0 = k(V n0). Furthermore,

I(Xn0; Y n0 , V n0 |Un0) = I(Xn0 ; V n0|Un0) + I(Xn0 ; Y n0|V n0 , Un0)

= I(Xn0 ; Y n0|V n0), (22)

SinceV n0 → Un0 → Xn0 form a Markov chain. Hence,

max
p(tn0 )

I(T n0; Y n0|V n0) ≤ max
p(xn0 |un0)

I(Xn0; Y n0 |V n0). (23)

On the other hand,

I(T n0; Y n0 |V n0) = H(Y n0|V n0) − H(Y n0|T n0, V n0) (24)

= H(Y n0|V n0) − H(Y n0|T n0, V n0 , Un0) (25)

= H(Y n0|V n0) − H(Y n0|T n0, V n0 , Un0 , Xn0) (26)

≥ H(Y n0|V n0) − H(Y n0|V n0 , Un0 , Xn0) (27)

= H(Y n0|V n0) − H(Y n0|Xn0, V n0) (28)

= I(Xn0; Y n0 |V n0), (29)
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where (25) and (28) follow sinceUn0 = k(V n0); (26) follows sinceXn0 is a function of

T n0 andUn0 ; and (27) follows since conditioning reduces entropy. Hence,

max
p(tn0 )

I(T n0; Y n0|V n0) ≥ max
p(xn0 |un0)

I(Xn0; Y n0 |V n0). (30)

Comparing (23) and (30), we conclude the result.

IV. CONCLUSION

In this work, we obtained the capacity of time-varying block-memoryless channels

where (possibly different) noisy causal CSI is available atthe transmitter and at the

receiver. We showed that for the case that the CSIT is a deterministic function of the

CSIR, the obtained result reduces to the capacity expression reported in [1].
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