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Abstract

In this paper, a downlink communication system, in which a@B&tation (BS) equipped with/ antennas
communicates withV (V> 1) single-antenna users, in a Rician fading environmentiisiciered. The asymptotic
(in terms of the number of users) sum-rate capacity of theesysas well as the capacity-achieving strategies, are

derived. The main results of the paper are as follows: i) @rttgion ofIC = o(log N), wherek denotes thé&ician

A log N

T2 » which is achieved

factor, the sum-rate capacity scales®slog(1-+ ﬁn), whereP denotes the SNR angd
by Zero-Forcing Beam-Forming (ZFBF) along with a low-comypty user selection algorithm that considers only
the scattered component of the users’ channels, ii) in th@mnegC = w(log N), in the case of co-located transmit
antennas, the capacity scaleslas(1 + M P), which is achieved by transmitting to any arbitrary usay,ifi the
region K = w(log V), in the case of isotropically-distributed specular comgrtn, the sum-rate capacity behaves
as M log(1+ P), which is achieved by ZFBF, along with a user selection algor that considers only the specular
component of the users’ channels. Simulation results apgiged to examine the analytical results in practical

networks. Simulation results are provided to examine ttredydical results in practical networks.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems have pral/éheir ability to achieve high bit rates on a
scattering wireless network [1], [2]. In a MIMO broadcasanohel, the base station equipped with multiple
antennas communicates with several users. Recently, tfasréeen a lot of interest in characterizing the
capacity region of this channel [4]-[7]. In these works,aslbeen demonstrated that the sum-rate capacity
of MIMO broadcast channels can be achieved by applying ghagyer coding (DPC) [8] at the transmitter.

Despite the fact that the sum-rate capacity of Gaussian MB@Dis known, it is still interesting
to study the behavior of sum-rate capacity in various s¢esaf9] compares the achievable sum-rate
of MIMO-BC for DPC to that achieved by using linear precodischemes, and characterizes the gap
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between the achievable sum-rates in the high SNR regimé.dd®pares the achievable sum-rate of
DPC to that of Time Division Multiple Access (TDMA) for a Gasian MIMO-BC. [11] considers a
MIMO-BC with a large number of users and shows that i) the sata-capacity of the system scales
as M loglog N, when N is the number of users in the network, and ii) a simple schefrf&andom
Beam-Forming” asymptotically achieves the sum-rate capas N — oo. References [12]-[14] consider
the same network set-up and prove that one can achieve theaseroapacity of the system by utilizing
Zero-Forcing Beam-Forming at the transmitter, provideat tthe user selection is performed wisely. In
[15] the scaling laws of the sum-rate for fading MIMO Gausskaoadcast channels using time-sharing
to the strongest user, DPC and beamforming, is derived ®ragdymptotic case aV — oo. In all the
mentioned papers ( [9]- [15]), the channel model is assuroeoket Rayleigh fading. Therefore, it is of
interest to investigate the sum-rate capacity of MIMO-B&suaming more general channel models.

One of the most widely-used models for the wireless chanedician fading. This model is suitable
for wireless links when there is a line of sight (LOS) link Wween the transmitter and receiver. Several
papers in the literature consider Rician fading in the cdnté point-to-point MIMO communications.
In [16], the authors derive the exact capacity of MIMO Ricieimannel, when perfect Channel State
Information (CSI) is available at the receiver, but the srariter has neither instantaneous nor statistical
CSI. Reference [17] studies the capacity of MIMO Rician ct&nn the high and low SNR regimes,
for both coherent and non-coherenet communications. ih@sva in [17] that in the low SNR regime,
the specular component of the channel completely detesrtime form of the optimum signal whereas
in the high SNR regime it has no effect on the optimum signalcstire. In [18], the authors consider
the min-capacity of a MIMO Rician channel with an unknownettgtinistic specular component. [19]
analyzes the capacity of a MIMO Rician channel with isotcafly random rank-one specular component,
when the channel is unknown at both the transmitter and vecsides.

In this paper, we consider a Rician MIMO-BC, in which a trarmssn equipped with)/ antennas
communicates withV (N > 1) single-antenna users. The channels are assumed to betlyekizown
at both the transmitter and receiver sides. The asymptotite(ms of the number of users) sum-rate
capacity of the system, as well as the capacity-achieviraiegjies, are derived. The main results of the

paper are as follows: i) in the region &f = o(log V), whereC denotes theRician factor, the sum-rate

A log N
14K

Forcing Beam-Forming (ZFBF) along with a low-complexityeuselection algorithm that considers only

capacity scales as/ log(1 + ﬁn), where P denotes the SNR angl

which is achieved by Zero-

the scattered component of the users’ channels, ii) in themeéC = w(log N), in the case of co-located
transmit antennas, the capacity scaledog$l + M P), which is achieved by TDMA, iii) in the region

K = w(log N), in the case of isotropically-distributed specular cormgrun, the sum-rate capacity behaves



as M log(1+ P), which is achieved by ZFBF, along with a user selection allgor that considers only the
specular component of the users’ channels. Simulatioritsesonfirm the validity of analytical results.

The rest of the paper is organized as follows. In Il, we intwa the system model. Section Il is
devoted to analyzing the asymptotic sum-rate capacity @futhderlying system. Some simulation results
are presented in section IV, and finally, section V conclutiespaper.

Throughout this paper, the norm of the vectors are denotéd|pyhe Hermitian operation is denoted by
(1), and the determinant and the trace operations are denotedblog Tr(.), respectivelyE{.} represents
the expectation, notatioridg” is used for the natural logarithm, and the rates are exptesmats. For any
13| < oov 1) = olg())
is equivalent tolimy . ‘% =0, f(NV) = Q(g(N)) is equivalent tolimNﬁoo% > 0, f(N) =

f(N

w(g(NN)) is equivalent tolimy . LN; = o0, and f(N) = O(g(N)) is equivalent tolimy_, 9 = G

g(N
where( < ¢ < oo, and f(N) ~ g(N) is equivalent tdimy_. % = 1.

given functionsf(N) andg(N), f(N) = O(g(N)) is equivalent tdimy

—

[l. SYSTEM MODEL
In this work, a MIMO-BC in which a base station equipped with antennas communicates wifli
users, each equipped with single antennas, is considehedreCeived signal by usé&rcan be written as

yr = Hpx +ny, (1)

wherex € CM*! is the transmitted signak, € C'*™ is the channel vector from the transmitter to
the kth user, which is assumed to be perfectly known at the recside and provided to the BS via a
noiseless feedback chanrglandn, ~ CA(0,1) is the AWGN at this receiver.

Under Rician channel model,;, can be written as

Hk:\/l—’f‘ka—i-\/Tkak, (2)

where G, is a circularly symmetric zero mean unit variance Gaussiactor, reflecting the scattered

component andb, is a unit-norm vector representing the specular comportetiteochannel, and, is a

constant related to the Rician factioy, 2 via r, = ;c]f,il- We consider two scenarios foy,: (i) The entries

of H,, are i.i.d Gaussian with mean and variancel — |b;|?, whereb, is a complex number satisfying

&%

|bx|*> = 7. In this case, it is easy to observe that = T where1 is the vector of all ones. This

model corresponds to the case that the transmit antennadoeated, and consequently, the specular

components from all transmit antennas to each of the userscaral® . ii) The vectorb,, is isotropically

1In fact, the BS does not need to have the perfect CSI aboutallisers’ channels. However, the partial CSI that the BSves¢hrough

feedback is based on the perfect CSl that the receivers have.
2Rician factor is defined as the ratio of the power of the specular comporetitet power of the scattered component.
®Note that however, the specular components from each titastenna to different users are not necessarily equal.



distributed in the unit sphere. This model has been useddh [tLis assumed that, is fixed for all the
users during the whole transmission period and is equal tnatantr, i.e.,ry =ry=---=ry =r.

We assume that the transmitter has an average power congaie.,
E{Tr(xx*)} < P.

The power constraint is assumed togee frame. In other words, the power constraint is independent of the
channel realization. The channels are assumed to be gaéisi{dock fading, in which each channHl,

is drawn randomly at the start of each transmission framer@mains constant for the whole transmission
frame, and changes independently to another realizatitimeirstart of the next frame. The frame itself is
assumed to be long enough to allow communication at ratee ¢tothe capacity. Defining the sum-rate
capacity of the system in the channel realizatign= {H,}Y_,, when the transmitter has perfect CSI
about all users’ channels, &s.,,(H), the average sum-rate capacity, denotedas, is defined as the
average over time of,.,(#), which is by the ergodicity of the channel, equalBq {Csum(H)}. Csum IS

shown in [4] to be equal to

N
Coum = By { max log det (IM +) H’,;Pka) : 3)
> Pe=P k=1

where P, is the transmit power allocated to tlh¢h user.

I11. ASYMPTOTIC ANALYSIS; CAPACITY COMPUTATION

In this section, we compute the capacity of MIMO-BC underi&icfading, in the asymptotic scenario
of N — oo. To this end, we consider two cases; Ki)= o(log N) and (ii) £ = w(log N). For each case,
we provide a lower-bound and upper-bound for the capacity @ove that asvV — oo, these bounds

converge to each other.

A. K =o(logN)
Theorem 1 The capacity of the underlying MIMO-BC in the case of K = o(log V) equals
P log N

which is asymptotically achievable by ZFBF.

Proof - The proof is based on the upper-bound and lower-bound gigeolws:



1) Upper-bound: Using (2), the upper-bound for the sum-rate capacity candmwet as [11]

Csum S {lOg (1 + _HHHmaX) }

M fiog (1+ 1 [VI=Tiaul + Vit )]
@ {log
{
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where(a) follows from the facts that = 1+—1c and||b|| = 1, (b) results from upper-boundirigg(1+a:) by

z, and(c) follows from the concavity ofog(.) function which incurs thalf {log (1 + & o 1G||2x) } <
log (1 + 4 = E{lIG[2,..c})- Defining A = Z(14K), t £ log N+ (M —3)loglog N, and2 as the event
that ||G||2,.. < ¢, we have

2VEM||Gllmax | _ 2VEM || G ||max
{0 - o[

A + ”G”max
E 2 \ ”G”max QLC Pr{mC}
A+ G [fax
KM 2V IC Mt
< —Pr 6
where the second line results from the fact t AI‘“;X < ﬁ and also the functlon/% is

decreasing fot|G|?,, > A, noting that asd = o(log N) (since X = o(log N)), we havet > A. By a

similar approach, the third term in b)) can be upper-bounded as

E{ M } ICMPr{Ql} ICM. (7)

PL+K) + Gl A+t



In Appendix V, it has been shown that{Rf} = o (4 ). Noting that® = O(1) and K = o(log N),

which incurs thattC = o(t), we have

2 v ”G”max
E =o(1), (8)
{ A+ G R [ W
and
M
E K = o(1). 9)
FL4K) + G
Substituting in (5), the upper-bound on the sum-rate cépaan be written as
Com < M1 1+£LE{HGH }) +0(1)
sum > og Ml — 0]
Plog N
= M1 1+ ——— 1 1
o8 (14 5y ) + o) (10)

where the second line follows from the fact tf&{||G||%..} = log N + O(loglog N) [11].

2) Achievability: Scheduling based the scattered component: Consider the following algorithm:
Algorithm 1

. Set the threshold = log N + (M — 3) loglog N

« Among the users in the following set:
S £ {k| |Gl* > t}, (11)

select one user at random. Call this usgrand defineS; £ S — {s,}.
o Form =2 to M, repeat the following:
— Denote the set of selected users up to the— 1)th step asA,, £ {s1,---,5,_1}. Define
Sn=S—An.
— DefineP,, as the sub-space spanned by the scattered channel congpohémt users selected

in the previous steps, i.e{v,, }7" jia !, wherev,, = ”g:”, k=1,---,N.
— Let {®;}""}' bem — 1 orthonormal bases foP,,. Then,

= arg mln Z }Vk<I>H’ (22)

In the above algorithm, the user selection is solely perfﬂfrhased on the scattered component of the
channel. First, the users with scattered channel gainseatie threshold are candidated. After that,
the algorithm tries to find a set of semi-orthogonal chanrmegitars out of the candidate users. To this
end, at each step of the algorithm, the user whose scattbesthel vector is the most orthogonal to the
sub-space spanned by the previously selected users’rechttieannel vectors is selected. After selecting

the users, the BS performs zero-forcing beam-forming on(ifiele) channel vectors of the selected



users. Definingd £ [H”, ---|HSTM}T andu = [uy,--- ,up|’ as the information vector for the selected

users, we have
x = H 'u. (13)

Therefore, the achievable sum-rate of this scheme can litewas

P
R = MEg {log <1+W>} (14)

DefiningB as the event that = |S| > log N, € asé(G¥) > 1+ 2M (log N)~ 71, andD as the event
that |G||?,, <t*, whered(A) denotes the orthogonality defect [20] 4f, || G||2,,, = max; ||G||?, and

tT 2 1log N + M loglog N, we have

P
R = ME og[1+———_||B.¢.2\PB, ¢, D} +

P
ME log[1+ ——— |8 Uecud®} x
H|BC ueCuDC { g ( Tr {[HHH]1}> ’

Pr{B“Uuc’ uD}

P
MEH|%7¢7© {10g (1 + W) ’ %, Q:, @} Pr{iB, Q:,@}

<MlogP — MEgp e { log (Tr { [H H] *1}) ‘ B, ¢, @}) PH{B)Pr{C|B} x
PH{®|B, ¢} (15)

v

Y

In Appendix V, it has been shown that {8} = 1+ o(+) and P{¢[B} = 1+ 0<1og1

), and
PH{D|B,¢} =1+0 <1og2N)

DefiningG £ [GT |- |G8M}T, andB = [b”|-- |bsM} , the term Tr{ [HHH}_I} can be written as
-1
T |_L /_ |1 g MK
T{[m'm "} - { ( - B) ( TG+ 1+K]Bz> }

- -1
— (K+1)Tr{ |G"G + VMK (G"B +B"G) + MKBB| }

- -1
(K +1)Tr! |GG — 2M /CTr{GHG}I} }

< (K4 DT A {G7GI T — 21 /CTr{GHG}I] _1}

Amin {GH G} — 2M¢/CTr{GHG}) - (16)

In the above equatioria) follows from the facts that for any two positive definite niets A andB: i) if
A =< B, then T{A} < Tr{B}, ii) if A < B, thenB~! < A, iii) BB > 0, and iv) GB + BZG ~

— M(K+1)

NE
—_—~ " =



-2,/ MTr{GH”G}I. The latter results from the fact that for aly x M matricesA and B, and any

M x 1 unit norm vectorx, we have

x"(A"B+B"A)x = 2R{x"A"Bx}
> —2|Ax|[Bx|
> =2/ Amax(A) Amax(B)
> —2/Tr{AHA}Tr{BHB}, (17)

where \,...(A) denotes the maximum eigenvalue Af’ A. This implies that

I\(C)| < 2y/Tr{ATA}TI{B"B},

i=1,---, M, where);(C) denotes theth singular value oiC = A¥B + B A. Hence,

ATB +BYA = —2¢/Tr{AEATI{BHB}L (18)

SubstitutingA by G and B by B, noting that T{B”B} = M, (a) follows. Also, (b) results from the
fact thatG”G = A\ (G7G) 1.
Conditioned onB and ®, Tr{G”G} is upper-bounded by/t*. Defininge = 2M(logN)*m,
conditioned on¢, we have
5 () = i |G

G G|
tM

<
Hﬁ\il Ai (GHG)

<l+e

(@) 1+e¢

0 M
= T <l+e

Amin (G G) [Tr(GHG)—Amm(GHG)]

M-1
t]W

1,

<1l+e, (29)

)\min (GHG) |:]V[t+ 7)\min (GHG)

M-1
M-1 i|

where(a) follows from the fact that conditioned dB, we have||G;||* > ¢, (b) results from the fact that

knowing A, (GHG), the product of the rest of the eigenvalues is maximized vtheg are equal, i.e.,

M-1

Mt* — A\pin (GPG)
M-—1

M
[1» (G"G) < Auin (G"G)
1=1

and (c) follows from the fact that conditioned @, Tr (G”G) < Mt*.

. A Amin(GHG) . .
Definingy = —5—~, from the above equation, we can write

Y(M =M @M
(M— 1M1 7~ 1y

(20)



Sincet = log N + (M — 3)loglog N and ¢t = log N + M loglog N, it follows that - > 1 — 3loglog N

log N
Hence, using the inequalify —z)” > 1—nz, for0 < z < 1, we have(t%)M > 1—%. Moreover,
using the fact thaqi > 1 — ¢, the above equation can be rewritten as
V(M — )M
e 21
(M — 1)1 ¥, (21)

A 3Mloglog N

wherey = + e. Since the function = W=7 s an increasing function over
log N 8

(Mfl)lu 1
the interval [0, 1], writing the Tailor series off(v) about1, noting that f(1) = 1, f'(1) = 0, and

f"(1) = ==, we have

V(M — )M
(M — 1)M-1
M(1 —v)?
s —1) =Y
2(M — )0
=

> 11—

—v>1- (22)

Having the fact that) = O <(10g N)~ 207~ 1>> the above equation yields that conditionedBn ¢ and
@,
>\min (GHG) = t+ [1 + O <(10g N) 4(M— 1)>i|
— logN [1 +0 <(10g N o= >)] , (23)

log N

where the second line follows from the fact that= log N + M loglog N = log N [1 + 0 <M)] =
log N [1 +0 <(10g N)~ a0 1))]. Substituting in (16) yields that conditioned &, ¢, and®,

Tr { (7] ‘1} < M(K+1) (t* [1 +0 <(log N) T )] - QMW)

MK+1)] - 1
@ MK+ 1) o
- e ( log )77 )|

M(K + 1)
- - @ 7 4(M 1)

log N < (log N)- >] ’ 24
where(a) follows from the fact that— @] log N) Uy . Substituting in (15) yields
\/logN

M log (% [1 +0 <(10g N >)]) Pr{%B,¢, D}

) {Mlog (%) +0 <(logN) o= >>} {1 +0 (IO;N)}

Plog N S

R
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—
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Since K = o(log K), it follows that log (f;(liig)) — log <1 + Aﬁgfﬁ%) + o(1). Noting this fact and
comparing the above lower-bound with the upper-bound ddrim (10) completes the proof of Theorem
1.

B. K =w(log N)

1) Co-located transmit antennas. In this scenario, the specular components from all tranantiénnas

. 0 . .
to each receiver are equal. In other worbg, = f/ﬁ’“lM, where 1,; the all-one vector with sizé/.

However, the scattered component of all users’ channdtsifdhe circularly symmetric complex Gaussian

distribution. The following theorem gives the capacity ofMUD-BC in this scenario:

Theorem 2 The capacity of MIMO-BC in the case of X = w(log N) and co-located transmit antennas

scales as
Coum = log(1 + MP) + o(1), (26)
which is achievable by TDMA.

Proof - Like the proof of Theorem 1, we first give an upper-bound ongiw-rate capacity and then,

by giving an achievable rate which is asymptotically eqoalite upper-bound the theorem is proved.



Upper-bound: Writing the sum-rate capacity of MIMO-BC from (3), we have

N
_ H
Coam = Ey rr}%x log |1, + E H, P.H;
> P=P k=1

N
= E@ II}DaX log IM+Z|:\/1—Tka+\/Tkak:|HPk [\/1—Tka+\/7‘]€Mbki|

k
> Pr=
— E@{ H}Dax log IM+rMZbk P.bi| +
ZPk k=1

log

N
Ly + 714, (Z Pk> 1| +
k=1

N N
IM+< Vi =r)MY " [GY Pby + b PG| + (1= 1) > by Piby
k=1 =

)]
}

N
Iy + /r(1—7) ZGkPkkarkaka] (1-7)> G{ PGy

k=1

= E@{ max log
Pk
2 Pr=

N N
IM+< Vr(L=r)M ) [G{ Piby + by PGy +(1—T)ZkaPkbk) P
k=1

< log(14+rMP)+
{ max log
ZPk

log (1+7P)+

}

S 2P (Vi = MTH{GEb + (1= )TrH{GEGy }) }

INS

MIE@{ max log [ 1+ i

E:F%

(27)

where® 2 {G})_, andP 2 (I, + rP1%1,,) . In the above equatiotia) follows from i) I+ AB| =

I+ BA|, and hence|l,, + rP151),| = 1+ P11}, noting thatl,,1%, = M, and ii) asP < I, we
have

log

N N
I + <\/r(1 —r)M Y [Gf b + by PG| + (1—=7) ) kaPkbk> P| <
k=1 k=1

log

N N
Ly +/r(L—=1)M Y [GF Piby, + b PGy] + (1 — 7)Y b Pby|.
k=1

k=1

Moreover, (b) results from the fact that for anjy = 0, |A| < (Tr{A}> Noting that T{Gb;} =

Tr{blG.} < ||Gi|l||br]| = ﬁ||Gk’|’|' and T{GIG,} = |G|, the second term in the right hand side



of the above equation, denoted By, can be further upper-bounded as follows:

S 2P (VT =Gl + (1= 1) [Gul)

Ry < MEg<{ max log |1+

- P, M
S P=P
0 v fo () PTG e+ (1= 1)IG )
= og + i
E{Glmas} | E{IG30,}

(v) P< Vi T Tk )
< Mlog |1

P O(y/log N) _'_O(logN)
9 Mlog |14+ ¥ R
2 o(1), (28)

where |G||lmax = maxy ||Gg||. In the above equation(z) results from the fact that the solution to the

optimization problem in (28) is to allocate all the transmawer to the user with the highest scattered

gain. (b) follows from i) the concavity oflog function along with the Jensen’s inequality which enables

us to move the expectation inside the, and ii) the fact that = HL,C which incurs that- < 1, and

(¢) results from [11], in which it is shown thatG|?,. = log N + O(loglog N) with

l—r = max

1
1+
probability one, which incurs tha@{||G|]2,.} = O(log N) andE{||G||max} = O(v/Iog N), and finally,
(d) follows from the assumption df = w(log N) and the fact thalog(1 + o(1)) = o(1). SubstitutingR,

in (27) yields

Coum < log(14+rPM)+ o(1)

< log(1+ PM)+o(1), (29)

where the last line comes from the fact thaf 1.

Achievability - In order to show that the sum-rate given in (26) is achieyabke propose a random

selection scheme, in which the transmitter selects a usesnalom and communicates with that user.

Therefore, the maximum achievable rate is equal to the dgpafca MISO Rician channel, expressed as

bellow:

R = Egu mgx log (1+HkQHkH)
Tr{Qy<r

= E{log (1+ P||H.[)}
> E{log(upjm—muckuf)}. (30)

k



Let us define¢ as the event thafG||? < log N. R can be lower-bounded as

R > E {log (1+P’W—\/1—T"Gk”’2) e} Pr{¢}
@ Jog (1 + PrM + o(1)) Pr{e}
© log(1 + PM) + o(1). (31)

In the above equatioria) follows from the assumption df = w(log N), which implies that conditioned
on & V1 —7|Gy| = \”/% = o(1). (b) follows from i) as [|G.[|* has Chi-Square distribution with
2M degrees of freedom, Rg} ~ % = o(1) and ii) asr = KLH and £ = w(log V), we have
r=1+o <@) This completes the proof of achievability and hence, treopof Theorem 2.

[

2) The case of isotropic specular components. In this case, it is assumed that the specular component
of all users’ channels, i.eb,, k = 1,--- | N, are isotropically distributed in the unit sphere. Theatiince
between this case and the previous case is that in the caselotated transmit antennas, there is only
one available coordinate in the system (the coordinate,gf for transmission, and as a result, we don’t
have the)M -fold capacity increase, as we expect in Gaussian MIMO-B@wéter, in this case, by wisely
selecting the users one can achievethdold capacity increase. The following theorem gives thegacity

in this case:

Theorem 3 The capacity of Rician MIMO-BC in the case of K = w(log N) and isotropic specular
components is equal to

Proof - Upper-bound: In [11], Appendix B, an upper-bound on the capacity of MIM@-Bs given as

P
< L 2
Com = 21 {log (1+ 1817 ) |

< ME {log (1 b [V 4 VTG
)

P
< Mlog (1 + ME{’\/TM—F V1 —7||Gl|max

)

P
© M log (1—1— i ’VTM—FO(l)

= Mlog(l1+7P)+o0(1)

9 Mlog(1+ P) + o(1). (33)
In the above equatior{a) follows from the concavity ofog function along with the Jensen’s inequality,
(b) results from the fact thaf|G|m.x = O(log N) and sincel —r = & = o(@), we have

VI = 7||G|lmax = 0(1), and (c) results fromr = 1 + o(1).



Achievability; Scheduling based on specular component Consider the following algorithm:
Algorithm 2

. select one user at random. Call this usgrand defineS; £ S — {s1}.

« Form =2 to M, repeat the following:

— Denote the set of selected users up to the— 1)th step asA4,, = {si, -+ ,5,_1}. Define
Sm =S — A,

— DefineP,, as the sub-space spanned by the specular channel compohé&mésusers selected
in the previous steps, i.e{b,,}"".

— Let {®;}"}' bem — 1 orthonormal bases faP,,. Then,

m—1

Sm = arg krglsri Zl }bki'ﬂ . (34)
=

« After selecting the users, the BS performs zero-forcingrbé&@ming on the (whole) channel vectors
of the selected users. Definiri§ = [HT |---|H? ]T andu = [uy,---,uy]” as the information

SM

vector for the selected users, we have
x = H 'u. (35)

Defining the evenf £ {§(B) < 1 + ¢} andQ £ {Tr{G”G} < log N}, whereB = [bl |- - |bsM}T,
G=[GL|---|G,,]", ande £ 2M N7 similar to (15), we have

P

Sinceb,’s are isotropic unit vectors, P§} can be computed similar to &5}, which is performed in

Appendix V, and shown to bé& + o(%) 4. Moreover, since the scattered component is not considered
the selection, it follows thatz can be considered as ad x M circularly symmetric complex Gaussian
matrix, and as a result, J6’G} has Chi-Square distribution witA)/? degrees of freedom which

immmsmmFﬁTQGHG}>ng}:U%Nﬁixf%Nu+qn]:o<kg%ﬁi);memmm,%Q}:

14+ 0 (%) =0 (\/Lﬁ) Having computed R} and P{Q}, noting that as the specular and

scattered components of the channels are indepenglemtd andQ are also independent, we have

PH&Q}:1+0(§f). (37)

“To this end, it is sufficient to substituleg N by NV in the steps of proof.



Similar to (16), Tr{ [HHHTl} can be upper-bounded as
_1 -1
Tr { [HH] } < (K+1)Tr { <MIC]]EBHIB% M /KTH{GIG} ) }

< (K+1)Tr{<M’C*min (BYB) T —2M ’CTr{GHG})_l}

— (1 + %) <)\min (B"B) — 2\/%11((;}) : : (38)

Conditioned onQ, we have T{G"G} < log N, and sincekl = w(log N), it follows that 24/ Tr{GkHG} =
o(1). Moreover, conditioned of, i.e., §(B) < 1 + ¢, and following the equations (19)-(23) with=

tt =1, we have
Anin (B7B) =1+ 0 (N"77 ). (39)
Combining the above equation with (38) yields
Tr{ [B7H] '} <1+ 0(1). (40)
Substituting in (36), noting (37), we have
R > Mlog(l+ P) + o(1), (41)

which completes the proof of Theorem 3.
|
Remark - Comparing the sum-rate capacity of the system in the twosca$eco-located transmit
antennas and isotropic specular components Wiier w(log V), it follows that in the first case, the
capacity grows logarithmically with\/, while in the second case it scales linearly with Moreover,
since(1+ z)™ > 1 + Mz, Vx, M, it follows that

Cz"sotropic Z Cco—located‘ (42)

sum sum

C. K =06(log N), Isotropic specular components

The following theorem gives the asymptotic sum-rate in tase:

Theorem 4 The sum-rate capacity of the system in the case of K = ©(log N) and isotropic specular

components can be obtained as

Coum = M log (1 +P {1 + \/%} ) +0(1), (43)

log N

where 7 £ limy_.o .




Proof - Upper-bound: Similar to (33), we can write

P
Csum S MlOg (]_—F—E{‘\/TM‘F \/1—7‘||G||max

-/}

1G2
= Ml 1 E vr max
og + ‘ M + 1+ K

@ M log (1 + i [\/erL V[l —|—0(1)]]2>

® Mlog <1 + P [1 4+ \/%]2> +0(1), (44)

log N

where(a) follows from the facts that i) G||7,,, = log N +o(log V), with probability one, and ii)) ~ £,

and (b) results from the fact that & = O(log V), we haver ~ 1.
Achievability; Scheduling based on both specular and scattered components. Consider the following

algorithm:
Algorithm 3:
« Select the thresholds= log N — 2.5loglog N and~ = @
« Construct the following set:
SO = {k‘ éR(Vk? bk’) >1- ’7}7 (45)
whereR(z) denotes the real part of, andv; = ”(G;:”, k=1,--- N.
« Among the users in the following set:
S 2 {ke S| |G| > t}, (46)

select one user at random. Call this usgrand defineS; £ S — {s;}.
o Form =2 to M, repeat the following:
— Denote the set of selected users up to the— 1)th step asA4,, = {si, -+ ,5,_1}. Define
Sm =S — A
— DefineP,, as the sub-space spanned by the scattered channel congpohémt users selected
in the previous steps, i.efv,, }7".
— Let {®;}"}' bem — 1 orthonormal bases foP,,. Then,

= arg k{g}gn Z }qu)H‘ 47)

— After selecting the users, the BS performs zero-forcingnb&arming on the (whole) channel

vectors of the selected users, i.e.,

x =H 'u. (48)



As can be observed, the above algorithm is very similar tooAlgm 1, with the difference in putting
an extra constraint for the user selection, which is, thétesesd and specular components of the selected
users must be almost in the same direction.

Defining the event&, ¢, and® as in the proof of the achievability part of Theorem 1, simita(15),

we have

P
R > MEH‘%7¢7@ {log (1 + Tr{[HHH}]_1}> ‘ %,Q,@} X
Pr{B}PH{C|B}P{D|B, C}. (49)

Pr{¢|B} and P{D|®B,¢} can be computed from Appendix V ds+ o <@) and 1 + O< L )

log N
respectively. For computing PB}, we first computet £ Pr{k ¢ S} as follows:

f Pr{%(vk,bk) >1-— Y, ||Gk||2 > t}

—~
S
N

Pr{R(ve, by) > 1 — 7 }PH||G||* > t}

WS

Pr{z(vi, by) > 1 — 0.5y}Pr{cos [O(v;by)] > 1 —0.5v} Pr{||G|]*> > t}

—
(2}
~

= (0.57)M—1g(tMii€1; [1+0(1/1)] (50)

2log”
Vv2log* N 140 loglog N 7
(M —1)IN log N

where©(x) denotes the phase of a complex numbeand for anyl x M vectorsu andv, z(u,v) is

luv ]2

defined asp mrom- In the above equatioria) follows from the facts that ik (v, bx) is a function of

I=

(51)

only the direction ofGG, and for Gaussian vectors, norm and direction are indepénded ii) b, andvy,
are independent of each othé) comes from the fact that sind&(vy, by,) = z(vy, by,) cos [O(vibf!)],
having the events(vy,by) > 1 — 0.5y and cos [O(vibf)] > 1 — 0.5y yields R(vy, by) > 1 — v, and
also the fact that the norm and phasevgb!’ are independent of each othér) results from i) asby
andv, are two independent isotropic unit vectors, the pdfZof z(vy, b,) is computed in Lemma 3 of
[12], as

pz(2) = (M =11 =) — Pr{Z>1—~)=~M"1 (52)

ii) for small enoughz, cos(z) ~ 1 — % and hence, the evenmbs [O(v;bi)] > 1 — 0.5v is equiv-
alent to [O(vy, by)| < /7, and sinceO(vy, by) is uniformly distributed betwee and 27w, we have
Pr{cos [0(GybI)] > 1 —0.57} ~ ¥, and iii) Since||Gy||* has Chi-square distribution with\/ degrees

of freedom [21], it can be shown that
M—-1_—t

PHIGH" > 1) = (37— gy 1+ O (/1) (53)

Finally, (d) follows from substitution oft = log N — 2.5loglog N and~y = 1og2N in (50).




Similar to (16), Tr{ [HHH]A} can be written as

H —1 i 1 o \/MIC o o M’C H
T{[m"m "} = T F0"G+ 7 (C"B+BYG) + BB
(54)
In Appendix V, it has been shown thatG;,, G,,) <, for i # j, wheree = 1 — L — &

) 1+2M(log N) 2(M-1)
2M (log N) 207-17. As a result, conditioned o, ¢, and®, we have

2
’GsiGg < t%. (55)

Moreover, since conditioned 0B, |G, ||* > t, we have
G"G =D, (56)

whereD is an M x M matrix with D;; = ¢ andD;; = G, G, Sincet” =1+0 <1°g1°gN> from (55) it
follows that® = I+ eO(I), whereO(I) denotes a matrix whose eigenvalues @xg). Moreover, since

log N ~ nK andt = log N — 2.5loglog N, we have

1 H
- -
e 1@ G = nI+ o(I). (57)

For computlng—F whereF £ G#B+BYG, we need to find,; = G, bl +b, Gl = 2R (G bH> =
2||Gy, [|R (Vsibﬁf), Vi, j. Fori = j, due to the algorithm, we hau#&; > 2v/t(1 —~). Also, fori # j, F

can be upper-bounded Q#Gslbf Writing by, as oz” ; a v WherevL is perpendicular tov,,,
=b,,vll, and|lv; || = 1. Hence,
Fij < 2|G.bl

H
= 2|Gg (a”vs +alvl>

< 2|Gyvi + || G,

()

< 2[\/t+e+ 2715*}

= VitO(Ve). (58)

where (a) follows from i) |a + b| < |a| + |b], ii) |a”| < 1, and iii) ‘G vi ‘ < ||Gg,||, and (b) results
from i) ’G VI =G|\ /2(Gs,, G ) which is conditioned o€ and® upper-bounded by/t*¢, and
i) Jot| = \/1 ol = /1= o v < /1 - [R(b,vi1)]* < VT—(T—7)% < v27. This implies
that F = 21/t [I + 1/eO(I)]. Consequently, noting thdbg N ~ 7K andt = log N — 2.5loglog N, we

have

VMK

o F =2V [+ o(D). (59)




Finally, having the facts thaB”B| . = ||b;||> = 1, and fori # j,

i

= |b, b

Si Sj

H
— I Lol I Lot
= <% Vs, + Qv ) |GV + a5V

[BB],,

v

—
INe

+ o | + log | + o5 ] a ]

Vet 2y/2y + 4y,

= 0(Ve), (60)
in which (a) follows from the facts that io]| < 1,|al| < 1,]af| < 1,]af| < 1, and i) v, vI| <
1, vslvj]H] < 1, and (b) results from the facts that ip;"| < /2y and conditioned ore,
vsivH‘ < V€, we haveB”B = I+ /eO(I), and consequently,

Sj

H
ViV,

INS

1 H
VSZ,VS],} <1,

MK
— " BB = MI 1. 1
1 +/€O(I) (61)

Combining (54), (57), (59), and (61) yields
Tr { [HH] *1} — T { [nI + o) + 20/ MT + o(T) + MI + \/EO(I)] 1}

— T { [(ﬁ + VM) + 0(1)] 1}
® e L) ©

where (a) follows from the fact thafl + o(I)]~! = I + o(I). Substituting in (49) yields

—~

R > Mlog (1 + P {1 + \/% 2 + 0(1)) Pr{B}Pr{¢|B}PH{D|B, ¢}
= [Mlog <1+P{1+\/%r)+0(1) [1+O(1O;N)]
= Mlog (1 +P [1 + \/%} 2) + o(1). (63)

This completes the proof of Theorem 4.

V. SIMULATION RESULTS

In this section, we examine the analytical results in thevipres section by simulation. Figures 1-3
present the plots of the sum-rate capacity versus the nuafhesers, for different values of Rician factor
K =1, K =10, and K = 100, respectively. The SNRK) is assumed to b&0 dB in these figures and

the number of transmit antennag is set to2. Also, the plots of the achievable sum-rate for ZFBF and
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Fig. 1. Sum-rate capacity versus the number of users; 1.

TDMA are given for comparison. The user selection algoritsed for ZFBF is the same as Algorithm 1
in [12]. As can be observed in th figures the following obsgores can be made: i) The sum-rate capacity
of the system in the case of isotropic specular componerésgsr than the sum-rate capacity in the case
of co-located transmit antennas. ii) In the case of isotrgpecular components, ZFBF performs well for
all values ofC, while in the case of co-located transmit antennas the paence of ZFBF is degraded
significantly by increasingC. iii) in the case of co-located transmit antennas @&he- 100, the sum-rate
of TDMA is almost close to the sum-rate capacity, which is patible with the result of Theorem 2.
Figure 4 presents the plots of sum-rate capacity versus S Rifferent values of Rician factor and
two cases of isotropic specular components and co-locededrit antennas. It is assumed that= 100
and M = 2 in this figure. As can be observed, by increasing the valub®Rician factor, the difference
between the sum-rate capacity of the system in the two cdsiestoopic specular components and co-
located transmit antennas increases. Moreover, the slbffgeaurves in the case of isotropic specular
components is equal ®, regardless of the value &, while the slope of the curves in the case of co-
located transmit antennas decreases Without increases with SNR. However, for high values of SNR,
the slope of all curves approach2simplying that the multiplexing gain of the systemdsregardless

of the distribution of the specular components and the vafuie Rician factor.

V. CONCLUSION

In this paper, we have derived the asymptotic sum-rate dgpacMIMO-BC with large number of
users in a Rician fading environment. It is observed thattéregionC = o(log V), the capacity achieving
strategy is exactly the same as the Rayleigh fading caskelregionC = w(log V), the sum-rate capacity

depends on the distribution of the specular component; enctise of co-located transmit antennas, it is
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demonstrated that TDMA achieves the sum-rate capacity lsddpacity grows logarithmically with the
number of transmit antennas. In the case of isotropicaliyributed specular components, ZFBF along
with a user selection strategy which selegfsusers with semi-orthogonal specular components is shown

to be optimum. Moreover, the sum-rate capacity grows ligeaith the number of transmit antennas.

APPENDIX A

We have

P2t} = Pr{]|G|. <1t}

max

= (PrlGl <™. (64)

Using the fact that|G,||* has Chi-square distribution with\/ degrees of freedom [21], we have

M-1

tm
PIGIR <t} =1-D  —e" (65)
m=0
Substitutingt = log N + (M — 3)loglog N, the above equation can be rewritten as
log> N log log N
PH{|G|2 <t} =1-— 1 — = |. 66
(Gl <0 —1- 255 (10 (FEE (66)

Substituting in (64), it is concluded that
B log? N log log N N

1
_ O(N). (67)

APPENDIX B

Calculation of Pr{8}:

Consider a randomly selected ugerUsing (65) and (66), we have

log® N loglog N
Prik e 5} = "5 |10 (REEYY). (68)




Therefore,L = |S| is a Binomial random variable with parametérs, p), wherep = Pr{k € S}. Using

the Gaussian approximation for Binomial distribution, wavé

N

LIRS A

I=|log N |+1

log N — Np
Q( le—m>

Np —log N
1_Q< Nﬂl—m>

Q

—
S
=

_ (Np—log N)2

> 1 —e 2n8p(-p)
Np
> 1— Ne 2
®)
O 1o 1/N), (69)

where(a) results from the fact tha(z) < e~*"/? and (b) follows from the fact thatVp ~ log? N \which

1)
incurs thate="?/2 = o(N—2).

Calculation of Pr{¢|®B}:

Using equation (144) in Appendix E of [12], we have

1
5(GH) = 5(‘1’) = SM-1 5 (70)
Hﬁ1 ' @
where® £ [vZ]...|vH ] andg; denotes the projection of,,,, overP;, , which denotes the null space
of P;.1, the subspace spanned by, }i_,. Defininge = 1 — L from (70), P{c“|B}
. 1+2M(log N) 2(M-1)
can be written as
M-1
P{¢|B} = Pr{H Gi<l—e %}
=1
© MAPrﬁ 1- S |»
= L {p<1-51/m}
) )
< Yo Pr{f <1 (logN) | B}, (71)

where (a) follows from the fact that the everi[)";"' 5; < 1 — e is a subset of the event!” " {B; <

1 — <£1. To show this, we observe that if none of the evefits < 1 — ﬁ}f\:l occur, it means that
1

118> (1—5)" > 1 -« Also, (b) results from the fact that a& — oo, 2M (log N) ™ Zm=1 < 1.



From the algorithm/3; can be written ad — minges,,, 21, Wherez,; denotes the projection of;,
over P;1. The probability density function (pdf) of; ; is given in the equation (146) in [12] &s

(M)
P = T o)

SinceV,’s are i.i.d. random variables (since the channel vectorsefrsi are independent of each other),

11— )M (72)

it follows that 2, ;'s are also i.i.d.. Hence, definimy= 1 — (log N)_2<Ml—1>, we have

—
Na

Pr{g, <6|B} = (Pr{z,;>1-0})""
= (1 zM z(l _9))L_i
%) (1 M 1>L*i
J— 1 1 -
B < Vlog N)
(c) 1 log N—1t
: (1 x/log N)
~ ei
= o <lo;N) . (73)

In the above equatioriu) results from the fact thdtS;,,| = L — ¢, and(b) follows from the the fact that
Liar—i(0) > Iny—11(0) = 0™~1. (c) comes from the fact that conditioned @, L > log N. Combining
the avove equation with (71) yields RI°|B} = o < ) which implies that Pf¢|B} =1+ o0 (k)gN)

Computation of Pr{®|B, ¢}

To compute PfD B, ¢}, we first note that since the norm and direction of circulagtynmetric complex
Gaussian vectors are independent of each other and hawrigdts thats and® depend solely on the
norm of {G,}i_, and € depends only on the direction of these vectors, it followat t8 and © are

independent of. Therefore, we can ignoré in the condition and write

P{®|®B,¢} = Pr{D|B}
Pr{D,B}

Pr{B}
@ Pr{D} - Pr{B}
- Pr{B}

(74)

SNote that since the norm and direction of circularly symigetomplex Gaussian vectors are independent of each otteedistribution

of zy,; is independent of the conditio®.



Since we have already computed{®r} in this appendix, it suffices to compute {&r}. P{D°} is

computed in Lemma 3 of [12], and shown to scaleaaé

140 () +o ()

) Hence,

Pr{®|B, ¢
torw.cl 1+0(%)
_ Ho( ) (75)
APPENDIX C
Conditioned on¢, we have]‘[j‘i;1 ;> L = 1—¢€. Sincefs; < 1, this incurs that
1+2M (log N) 2(M-1)

0G; > 1 —¢, Vi. In other words;y; < ¢, where~; denotes the projection of,

.., overP,;. Now, consider

{<I>j}j.:1 asj orthonormal bases fdP;,,. Sincev,, € P, Vj < i, we can write

7
Vsj - E al¢l7
=1

(76)

whereY";_, |a|* = 1. Therefore, for alki, j, j < i, we have

2(Gspy, Gy,)

Si+19

. 2
where(a) follows from the fact tha*Z}zl albl)

2(Vsi, Vsj-)

2
H
Vsiv1 Vsj

i
Z a{I (VS¢+1¢'F)
=1
i

H12
§ ‘VSi-H‘I)l ‘

=1
Vi

€, (77)

< (Zii af?) (i 10f?). noting thaty™;_, |af* = 1
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