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Abstract

In this paper, a downlink communication system, in which a Base Station (BS) equipped withM antennas

communicates withN (N ≫ 1) single-antenna users, in a Rician fading environment is considered. The asymptotic

(in terms of the number of users) sum-rate capacity of the system, as well as the capacity-achieving strategies, are

derived. The main results of the paper are as follows: i) in the region ofK = o(log N), whereK denotes theRician

factor, the sum-rate capacity scales asM log(1+ P

M
η), whereP denotes the SNR andη ,

log N

1+K
, which is achieved

by Zero-Forcing Beam-Forming (ZFBF) along with a low-complexity user selection algorithm that considers only

the scattered component of the users’ channels, ii) in the region K = ω(log N), in the case of co-located transmit

antennas, the capacity scales aslog(1 + MP ), which is achieved by transmitting to any arbitrary user, iii) in the

regionK = ω(log N), in the case of isotropically-distributed specular components, the sum-rate capacity behaves

asM log(1+P ), which is achieved by ZFBF, along with a user selection algorithm that considers only the specular

component of the users’ channels. Simulation results are provided to examine the analytical results in practical

networks. Simulation results are provided to examine the analytical results in practical networks.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems have proved their ability to achieve high bit rates on a

scattering wireless network [1], [2]. In a MIMO broadcast channel, the base station equipped with multiple

antennas communicates with several users. Recently, therehas been a lot of interest in characterizing the

capacity region of this channel [4]–[7]. In these works, it has been demonstrated that the sum-rate capacity

of MIMO broadcast channels can be achieved by applying dirty-paper coding (DPC) [8] at the transmitter.

Despite the fact that the sum-rate capacity of Gaussian MIMO-BC is known, it is still interesting

to study the behavior of sum-rate capacity in various scenarios. [9] compares the achievable sum-rate

of MIMO-BC for DPC to that achieved by using linear precodingschemes, and characterizes the gap
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between the achievable sum-rates in the high SNR regime. [10] compares the achievable sum-rate of

DPC to that of Time Division Multiple Access (TDMA) for a Gaussian MIMO-BC. [11] considers a

MIMO-BC with a large number of users and shows that i) the sum-rate capacity of the system scales

asM log logN , whenN is the number of users in the network, and ii) a simple scheme of “Random

Beam-Forming” asymptotically achieves the sum-rate capacity asN → ∞. References [12]–[14] consider

the same network set-up and prove that one can achieve the sum-rate capacity of the system by utilizing

Zero-Forcing Beam-Forming at the transmitter, provided that the user selection is performed wisely. In

[15] the scaling laws of the sum-rate for fading MIMO Gaussian broadcast channels using time-sharing

to the strongest user, DPC and beamforming, is derived for the asymptotic case ofN → ∞. In all the

mentioned papers ( [9]- [15]), the channel model is assumed to be Rayleigh fading. Therefore, it is of

interest to investigate the sum-rate capacity of MIMO-BC, assuming more general channel models.

One of the most widely-used models for the wireless channelsis Rician fading. This model is suitable

for wireless links when there is a line of sight (LOS) link between the transmitter and receiver. Several

papers in the literature consider Rician fading in the context of point-to-point MIMO communications.

In [16], the authors derive the exact capacity of MIMO Ricianchannel, when perfect Channel State

Information (CSI) is available at the receiver, but the transmitter has neither instantaneous nor statistical

CSI. Reference [17] studies the capacity of MIMO Rician channel in the high and low SNR regimes,

for both coherent and non-coherenet communications. it is shown in [17] that in the low SNR regime,

the specular component of the channel completely determines the form of the optimum signal whereas

in the high SNR regime it has no effect on the optimum signal structure. In [18], the authors consider

the min-capacity of a MIMO Rician channel with an unknown deterministic specular component. [19]

analyzes the capacity of a MIMO Rician channel with isotropically random rank-one specular component,

when the channel is unknown at both the transmitter and receiver sides.

In this paper, we consider a Rician MIMO-BC, in which a transmitter equipped withM antennas

communicates withN (N ≫ 1) single-antenna users. The channels are assumed to be perfectly known

at both the transmitter and receiver sides. The asymptotic (in terms of the number of users) sum-rate

capacity of the system, as well as the capacity-achieving strategies, are derived. The main results of the

paper are as follows: i) in the region ofK = o(logN), whereK denotes theRician factor, the sum-rate

capacity scales asM log(1 + P
M
η), whereP denotes the SNR andη ,

log N
1+K , which is achieved by Zero-

Forcing Beam-Forming (ZFBF) along with a low-complexity user selection algorithm that considers only

the scattered component of the users’ channels, ii) in the region K = ω(logN), in the case of co-located

transmit antennas, the capacity scales aslog(1 + MP ), which is achieved by TDMA, iii) in the region

K = ω(logN), in the case of isotropically-distributed specular components, the sum-rate capacity behaves



asM log(1+P ), which is achieved by ZFBF, along with a user selection algorithm that considers only the

specular component of the users’ channels. Simulation results confirm the validity of analytical results.

The rest of the paper is organized as follows. In II, we introduce the system model. Section III is

devoted to analyzing the asymptotic sum-rate capacity of the underlying system. Some simulation results

are presented in section IV, and finally, section V concludesthe paper.

Throughout this paper, the norm of the vectors are denoted by‖.‖, the Hermitian operation is denoted by

(.)H , and the determinant and the trace operations are denoted by|.| andTr(.), respectively.E{.} represents

the expectation, notation “log” is used for the natural logarithm, and the rates are expressed innats. For any

given functionsf(N) andg(N), f(N) = O(g(N)) is equivalent tolimN→∞

∣

∣

∣

f(N)
g(N)

∣

∣

∣
<∞, f(N) = o(g(N))

is equivalent tolimN→∞

∣

∣

∣

f(N)
g(N)

∣

∣

∣
= 0, f(N) = Ω(g(N)) is equivalent tolimN→∞

f(N)
g(N)

> 0, f(N) =

ω(g(N)) is equivalent tolimN→∞
f(N)
g(N)

= ∞, andf(N) = Θ(g(N)) is equivalent tolimN→∞
f(N)
g(N)

= c,

where0 < c <∞, andf(N) ∼ g(N) is equivalent tolimN→∞
f(N)
g(N)

= 1.

II. SYSTEM MODEL

In this work, a MIMO-BC in which a base station equipped withM antennas communicates withN

users, each equipped with single antennas, is considered. The received signal by userk can be written as

yk = Hkx + nk, (1)

wherex ∈ CM×1 is the transmitted signal,Hk ∈ C1×M is the channel vector from the transmitter to

the kth user, which is assumed to be perfectly known at the receiver side and provided to the BS via a

noiseless feedback channel1, andnk ∼ CN (0, 1) is the AWGN at this receiver.

Under Rician channel model,Hk can be written as

Hk =
√

1 − rkGk +
√

rkMbk, (2)

where Gk is a circularly symmetric zero mean unit variance Gaussian vector, reflecting the scattered

component andbk is a unit-norm vector representing the specular component of the channel, andrk is a

constant related to the Rician factorKk
2 via rk = Kk

Kk+1
. We consider two scenarios forbk: (i) The entries

of Hk are i.i.d Gaussian with meanbk and variance1 − |bk|2, wherebk is a complex number satisfying

|bk|2 = rk. In this case, it is easy to observe thatbk = ejθk√
M

1, where1 is the vector of all ones. This

model corresponds to the case that the transmit antennas areco-located, and consequently, the specular

components from all transmit antennas to each of the users are equal3 . ii) The vectorbk is isotropically

1In fact, the BS does not need to have the perfect CSI about all the users’ channels. However, the partial CSI that the BS receives through

feedback is based on the perfect CSI that the receivers have.
2Rician factor is defined as the ratio of the power of the specular component to the power of the scattered component.
3Note that however, the specular components from each transmit antenna to different users are not necessarily equal.



distributed in the unit sphere. This model has been used in [19]. It is assumed thatrk is fixed for all the

users during the whole transmission period and is equal to a constantr, i.e., r1 = r2 = · · · = rN = r.

We assume that the transmitter has an average power constraint P , i.e.,

E {Tr(xx∗)} ≤ P.

The power constraint is assumed to beper frame. In other words, the power constraint is independent of the

channel realization. The channels are assumed to be quasi-static block fading, in which each channelHk

is drawn randomly at the start of each transmission frame andremains constant for the whole transmission

frame, and changes independently to another realization inthe start of the next frame. The frame itself is

assumed to be long enough to allow communication at rates close to the capacity. Defining the sum-rate

capacity of the system in the channel realizationH , {Hk}N
k=1, when the transmitter has perfect CSI

about all users’ channels, asCsum(H), the average sum-rate capacity, denoted asCsum, is defined as the

average over time ofCsum(H), which is by the ergodicity of the channel, equal toEH {Csum(H)}. Csum is

shown in [4] to be equal to

Csum = EH







max
Pk

P

Pk=P

log det

(

IM +
N
∑

k=1

H∗
kPkHk

)







, (3)

wherePk is the transmit power allocated to thekth user.

III. A SYMPTOTIC ANALYSIS; CAPACITY COMPUTATION

In this section, we compute the capacity of MIMO-BC under Rician fading, in the asymptotic scenario

of N → ∞. To this end, we consider two cases; (i)K = o(logN) and (ii) K = ω(logN). For each case,

we provide a lower-bound and upper-bound for the capacity and prove that asN → ∞, these bounds

converge to each other.

A. K = o(logN)

Theorem 1 The capacity of the underlying MIMO-BC in the case of K = o(logN) equals

Csum = M log

(

1 +
P

M

logN

1 + K

)

+ o(1), (4)

which is asymptotically achievable by ZFBF.

Proof - The proof is based on the upper-bound and lower-bound given as follows:



1) Upper-bound: Using (2), the upper-bound for the sum-rate capacity can be derived as [11]

Csum ≤ ME

{

log

(

1 +
P

M
‖H‖2

max

)}

≤ ME

{

log

(

1 +
P

M

[√
1 − r‖Gk‖ +

√
rM‖bk‖

]2

max

)}

(a)
= ME







log



1 +
P

M
max

k

[

√

1

1 + K‖Gk‖ +

√

KM
1 + K

]2










= ME

{

log

(

1 +
P

M

1

1 + K‖G‖2
max

)

+

log



1 +

P
M

(

2
√
KM

1+K ‖G‖max + MK
1+K

)

1 + P
M

1
1+K‖G‖2

max











(b)

≤ ME

{

log

(

1 +
P

M

1

1 + K‖G‖2
max

)

+

2
√
KM‖G‖max

M
P

(1 + K) + ‖G‖2
max

+
KM

M
P

(1 + K) + ‖G‖2
max

}

(c)

≤ M log

(

1 +
P

M

1

1 + KE
{

‖G‖2
max

}

)

+ME

{

2
√
KM‖G‖max

M
P

(1 + K) + ‖G‖2
max

}

+

ME

{

KM
M
P

(1 + K) + ‖G‖2
max

}

, (5)

where(a) follows from the facts thatr = K
1+K and‖bk‖ = 1, (b) results from upper-boundinglog(1+x) by

x, and(c) follows from the concavity oflog(.) function which incurs thatE
{

log
(

1 + P
M

1
1+K‖G‖2

max

)}

≤
log
(

1 + P
M

1
1+KE {‖G‖2

max}
)

. DefiningA , M
P

(1+K), t , logN+(M −3) log logN , andA as the event

that ‖G‖2
max ≤ t, we have

E

{

2
√
KM‖G‖max

A + ‖G‖2
max

}

= E

{

2
√
KM‖G‖max

A + ‖G‖2
max

∣

∣

∣

∣

∣

A

}

Pr{A} +

E

{

2
√
KM‖G‖max

A + ‖G‖2
max

∣

∣

∣

∣

∣

AC

}

Pr{AC}

≤
√

KM
A

Pr{A} +
2
√
KMt

A+ t
, (6)

where the second line results from the fact that2‖G‖max

A+‖G‖2
max

≤ 1√
A

and also the function 2‖G‖max

A+‖G‖2
max

is

decreasing for‖G‖2
max ≥ A, noting that asA = o(logN) (sinceK = o(logN)), we havet > A. By a

similar approach, the third term in RH(5) can be upper-bounded as

E

{

KM
M
P

(1 + K) + ‖G‖2
max

}

≤ KM
A

Pr{A} +
KM
A + t

. (7)



In Appendix V, it has been shown that Pr{A} = o
(

1
N

)

. Noting that KM
A

= O(1) and K = o(logN),

which incurs thatK = o(t), we have

E

{

2
√
KM‖G‖max

A + ‖G‖2
max

}

= o(1), (8)

and

E

{

KM
M
P

(1 + K) + ‖G‖2
max

}

= o(1). (9)

Substituting in (5), the upper-bound on the sum-rate capacity can be written as

Csum ≤ M log

(

1 +
P

M

1

1 + KE
{

‖G‖2
max

}

)

+ o(1)

= M log

(

1 +
P logN

M(1 + K)

)

+ o(1), (10)

where the second line follows from the fact thatE {‖G‖2
max} = logN +O(log logN) [11].

2) Achievability: Scheduling based the scattered component: Consider the following algorithm:

Algorithm 1

• Set the thresholdt = logN + (M − 3) log logN

• Among the users in the following set:

S , {k| ‖Gk‖2 > t}, (11)

select one user at random. Call this users1, and defineS1 , S − {s1}.

• For m = 2 to M , repeat the following:

– Denote the set of selected users up to the(m − 1)th step asAm , {s1, · · · , sm−1}. Define

Sm , S −Am.

– DefinePm as the sub-space spanned by the scattered channel components of the users selected

in the previous steps, i.e.,{vsj
}m−1

j=1 , wherevk , Gk

‖Gk‖ , k = 1, · · · , N .

– Let {Φj}m−1
j=1 bem− 1 orthonormal bases forPm. Then,

sm = arg min
k∈Sm

m−1
∑

j=1

∣

∣vkΦ
H
j

∣

∣ . (12)

In the above algorithm, the user selection is solely performed based on the scattered component of the

channel. First, the users with scattered channel gains above the thresholdt are candidated. After that,

the algorithm tries to find a set of semi-orthogonal channel vectors out of the candidate users. To this

end, at each step of the algorithm, the user whose scattered channel vector is the most orthogonal to the

sub-space spanned by the previously selected users’ scattered channel vectors is selected. After selecting

the users, the BS performs zero-forcing beam-forming on the(whole) channel vectors of the selected



users. DefiningH ,
[

HT
s1
| · · · |HT

sM

]T
andu = [u1, · · · , uM ]T as the information vector for the selected

users, we have

x = H
−1u. (13)

Therefore, the achievable sum-rate of this scheme can be written as

R = MEH

{

log

(

1 +
P

Tr
{

[HHH]−1}

)}

. (14)

DefiningB as the event thatL , |S| > logN , C asδ(GH) > 1+2M (logN)−
1

2(M−1) , andD as the event

that ‖G‖2
max ≤ t+, whereδ(A) denotes the orthogonality defect [20] ofA, ‖G‖2

max , maxk ‖Gk‖2, and

t+ , logN +M log logN , we have

R = MEH|B,C,D

{

log

(

1 +
P

Tr
{

[HHH]−1}

)∣

∣

∣

∣

∣

B,C,D

}

Pr{B,C,D} +

MEH|BC∪CC∪DC

{

log

(

1 +
P

Tr
{

[HHH]−1}

)∣

∣

∣

∣

∣

BC ∪ CC ∪ DC

}

×

Pr{BC ∪ CC ∪ DC}

≥ MEH|B,C,D

{

log

(

1 +
P

Tr
{

[HHH]−1}

)∣

∣

∣

∣

∣

B,C,D

}

Pr{B,C,D}

≥
(

M logP −MEH|B,C

{

log
(

Tr
{

[

H
H

H
]−1
})∣

∣

∣
B,C,D

})

Pr{B}Pr{C|B} ×

Pr{D|B,C}. (15)

In Appendix V, it has been shown that Pr{B} = 1 + o
(

1
N

)

and Pr{C|B} = 1 + o
(

1
log N

)

, and

Pr{D|B,C} = 1 +O
(

1
log2 N

)

.

Defining G ,
[

GT
s1
| · · · |GT

sM

]T
, andB ,

[

bT
s1
| · · · |bT

sM

]T
, the term Tr

{

[

HHH
]−1
}

can be written as

Tr
{

[

H
H

H
]−1
}

= Tr











(

√

1

K + 1
G +

√

MK
1 + KB

)H (√

1

K + 1
G +

√

MK
1 + KB

)





−1





= (K + 1)Tr

{

[

G
H

G +
√
MK

(

G
H

B + B
H

G
)

+MKB
H

B

]−1
}

(a)

≤ (K + 1)Tr

{

[

G
H

G − 2M
√

KTr{GHG}I
]−1
}

(b)

≤ (K + 1)Tr

{

[

λmin

{

G
H

G
}

I − 2M
√

KTr{GHG}I
]−1
}

= M(K + 1)
(

λmin

{

G
H

G
}

− 2M
√

KTr{GHG}
)−1

. (16)

In the above equation,(a) follows from the facts that for any two positive definite matricesA andB: i) if

A � B, then Tr{A} ≤ Tr{B}, ii) if A � B, thenB−1 � A−1, iii) B
H

B � 0, and iv) G
H

B + B
H

G �



−2
√

MTr{GHG}I. The latter results from the fact that for anyM ×M matricesA and B, and any

M × 1 unit norm vectorx, we have

xH
(

AHB + BHA
)

x = 2ℜ{xHAHBx}

≥ −2 |Ax| |Bx|

≥ −2
√

λmax(A)λmax(B)

≥ −2
√

Tr{AHA}Tr{BHB}, (17)

whereλmax(A) denotes the maximum eigenvalue ofAHA. This implies that

|λi(C)| ≤ 2
√

Tr{AHA}Tr{BHB},

i = 1, · · · ,M , whereλi(C) denotes theith singular value ofC = AHB + BHA. Hence,

AHB + BHA � −2
√

Tr{AHA}Tr{BHB}I. (18)

SubstitutingA by G and B by B, noting that Tr{BHB} = M , (a) follows. Also, (b) results from the

fact thatGHG � λmin

(

GHG
)

I.

Conditioned onB and D, Tr{GHG} is upper-bounded byMt+. Defining ε , 2M(logN)−
1

2(M−1) ,

conditioned onC, we have

δ
(

G
H
)

=

∏M
i=1 ‖Gi‖2

|GHG| < 1 + ε

(a)
=⇒ tM

∏M
i=1 λi (GHG)

< 1 + ε

(b)
=⇒ tM

λmin (GHG)
[

Tr(GHG)−λmin(GHG)
M−1

]M−1
< 1 + ε

(c)
=⇒ tM

λmin (GHG)
[

Mt+−λmin(GHG)
M−1

]M−1
< 1 + ε, (19)

where(a) follows from the fact that conditioned onB, we have‖Gi‖2 ≥ t, (b) results from the fact that

knowingλmin

(

GHG
)

, the product of the rest of the eigenvalues is maximized whenthey are equal, i.e.,

M
∏

i=1

λi

(

G
H

G
)

≤ λmin

(

G
H

G
)

[

Mt+ − λmin

(

GHG
)

M − 1

]M−1

,

and (c) follows from the fact that conditioned onD, Tr
(

GHG
)

< Mt+.

Defining γ ,
λmin(GHG)

t+
, from the above equation, we can write

γ(M − γ)M−1

(M − 1)M−1
>

(t/t+)M

1 + ε
. (20)



Sincet = logN + (M − 3) log logN and t+ = logN + M log logN , it follows that t
t+
> 1 − 3 log log N

log N
.

Hence, using the inequality(1−x)n ≥ 1−nx, for 0 ≤ x ≤ 1, we have
(

t
t+

)M
> 1− 3M log log N

log N
. Moreover,

using the fact that 1
1+ε

> 1 − ε, the above equation can be rewritten as

γ(M − γ)M−1

(M − 1)M−1
> 1 − ψ, (21)

whereψ ,
3M log log N

log N
+ ε. Since the functionf(γ) = γ(M−γ)M−1

(M−1)M−1 is an increasing function ofγ over

the interval [0, 1], writing the Tailor series off(γ) about 1, noting thatf(1) = 1, f ′(1) = 0, and

f ′′(1) = − M
M−1

, we have

γ(M − γ)M−1

(M − 1)M−1
> 1 − ψ

=⇒ M(1 − γ)2

2(M − 1)
< ψ

=⇒ γ > 1 −
√

2(M − 1)ψ

M
. (22)

Having the fact thatψ = O
(

(logN)
− 1

2(M−1)

)

, the above equation yields that conditioned onB, C and

D,

λmin

(

G
H

G
)

= t+
[

1 + O
(

(logN)
− 1

4(M−1)

)]

= logN
[

1 +O
(

(logN)−
1

4(M−1)

)]

, (23)

where the second line follows from the fact thatt+ = logN +M log logN = logN
[

1 +O
(

log log N
log N

)]

=

logN
[

1 +O
(

(logN)−
1

4(M−1)

)]

. Substituting in (16) yields that conditioned onB, C, andD,

Tr
{

[

H
H

H
]−1
}

≤ M(K + 1)
(

t+
[

1 +O
(

(logN)−
1

4(M−1)

)]

− 2M
√
KMt+

)−1

=
M(K + 1)

t+

[

1 +O
(

(logN)−
1

4(M−1)

)

+O

(

1√
t+

)]

(a)
=

M(K + 1)

t+

[

1 +O
(

(logN)
− 1

4(M−1)

)]

=
M(K + 1)

logN

[

1 +O
(

(logN)−
1

4(M−1)

)]

, (24)

where(a) follows from the fact that 1√
t+

= O
(

1√
log N

)

= o
(

(logN)
− 1

4(M−1)

)

. Substituting in (15) yields

R ≥ M log

(

P logN

M(1 + K)

[

1 +O
(

(logN)−
1

4(M−1)

)]

)

Pr{B,C,D}

(b)
=

[

M log

(

P logN

M(1 + K)

)

+O
(

(logN)−
1

4(M−1)

)

] [

1 +O

(

1

logN

)]

= M log

(

P logN

M(1 + K)

)

+O
(

(logN)−
1

4(M−1)

)

. (25)



SinceK = o(logK), it follows that log
(

P log N
M(1+K)

)

= log
(

1 + P log N
M(1+K)

)

+ o(1). Noting this fact and

comparing the above lower-bound with the upper-bound derived in (10) completes the proof of Theorem

1.

�

B. K = ω(logN)

1) Co-located transmit antennas: In this scenario, the specular components from all transmitantennas

to each receiver are equal. In other words,bk = eiθk√
M

1M , where1M the all-one vector with sizeM .

However, the scattered component of all users’ channels follow the circularly symmetric complex Gaussian

distribution. The following theorem gives the capacity of MIMO-BC in this scenario:

Theorem 2 The capacity of MIMO-BC in the case of K = ω(logN) and co-located transmit antennas

scales as

Csum = log(1 +MP ) + o(1), (26)

which is achievable by TDMA.

Proof - Like the proof of Theorem 1, we first give an upper-bound on thesum-rate capacity and then,

by giving an achievable rate which is asymptotically equal to the upper-bound the theorem is proved.



Upper-bound: Writing the sum-rate capacity of MIMO-BC from (3), we have

Csum = EH







max
Pk

P

Pk=P

log

∣

∣

∣

∣

∣

IM +
N
∑

k=1

HH
k PkHk

∣

∣

∣

∣

∣







= EG







max
Pk

P

Pk=P

log

∣

∣

∣

∣

∣

IM +

N
∑

k=1

[√
1 − rkGk +

√

rkMbk

]H

Pk

[√
1 − rkGk +

√

rkMbk

]

∣

∣

∣

∣

∣







= EG

{

max
Pk

P

Pk=P

log

∣

∣

∣

∣

∣

IM + rM
N
∑

k=1

bH
k Pkbk

∣

∣

∣

∣

∣

+

log

∣

∣

∣

∣

∣

IM +

(

√

r(1 − r)M
N
∑

k=1

[

GH
k Pkbk + bH

k PkGk

]

+ (1 − r)
N
∑

k=1

bH
k Pkbk

∣

∣

∣

∣

∣

)

P

}

= EG

{

max
Pk

P

Pk=P

log

∣

∣

∣

∣

∣

IM + r1H
M

(

N
∑

k=1

Pk

)

1M

∣

∣

∣

∣

∣

+

log

∣

∣

∣

∣

∣

IM +

(

√

r(1 − r)M
N
∑

k=1

[

GH
k Pkbk + bH

k PkGk

]

+ (1 − r)
N
∑

k=1

bH
k Pkbk

)

P

∣

∣

∣

∣

∣

}

(a)

≤ log (1 + rMP ) +

EG

{

max
Pk

P

Pk=P

log

∣

∣

∣

∣

∣

IM +
√

r(1 − r)M
N
∑

k=1

[

GH
k Pkbk + bH

k PkGk

]

+ (1 − r)
N
∑

k=1

GH
k PkGk

∣

∣

∣

∣

∣

}

(b)

≤ log (1 + rP ) +

MEG

{

max
Pk

P

Pk=P

log



1 +

∑N
k=1 2Pk

(

√

r(1 − r)MTr
{

GH
k bk

}

+ (1 − r)Tr
{

GH
k Gk

}

)

M





}

,

(27)

whereG , {Gk}N
k=1 andP ,

(

IM + rP1H
M1M

)−1
. In the above equation,(a) follows from i) |I+AB| =

|I + BA|, and hence,
∣

∣IM + rP1H
M1M

∣

∣ = 1 + rP1M1H
M , noting that1M1H

M = M , and ii) asP � I, we

have

log

∣

∣

∣

∣

∣

IM +

(

√

r(1 − r)M
N
∑

k=1

[

GH
k Pkbk + bH

k PkGk

]

+ (1 − r)
N
∑

k=1

bH
k Pkbk

)

P

∣

∣

∣

∣

∣

≤

log

∣

∣

∣

∣

∣

IM +
√

r(1 − r)M

N
∑

k=1

[

GH
k Pkbk + bH

k PkGk

]

+ (1 − r)

N
∑

k=1

bH
k Pkbk

∣

∣

∣

∣

∣

.

Moreover,(b) results from the fact that for anyA � 0, |A| ≤
(

Tr{A}
M

)M

. Noting that Tr{GH
k bk} =

Tr{bH
k Gk} ≤ ‖Gk‖‖bk‖ = 1√

M
‖Gk‖‖, and Tr{GH

k Gk} = ‖Gk‖2, the second term in the right hand side



of the above equation, denoted byR2, can be further upper-bounded as follows:

R2 ≤ MEG







max
Pk

P

Pk=P

log



1 +

∑N
k=1 2Pk

(

√

r(1 − r)‖Gk‖ + (1 − r)‖Gk‖2
)

M











(a)
= ME







log



1 +
P
(

√

r(1 − r)‖G‖max + (1 − r)‖G‖2
max

)

M











(b)

≤ M log



1 +
P
(

E{‖G‖max}√
1+K + E{‖G‖2

max}
1+K

)

M





(c)
= M log



1 +
P
(

O(
√

log N)√
1+K + O(log N)

1+K

)

M





(d)
= o(1), (28)

where‖G‖max = maxk ‖Gk‖. In the above equation,(a) results from the fact that the solution to the

optimization problem in (28) is to allocate all the transmitpower to the user with the highest scattered

gain. (b) follows from i) the concavity oflog function along with the Jensen’s inequality which enables

us to move the expectation inside thelog, and ii) the fact thatr = K
1+K , which incurs thatr ≤ 1, and

1 − r = 1
1+K . (c) results from [11], in which it is shown that‖G‖2

max = logN + O(log logN) with

probability one, which incurs thatE{‖G‖2
max} = O(logN) and E{‖G‖max} = O(

√
logN), and finally,

(d) follows from the assumption ofK = ω(logN) and the fact thatlog(1+ o(1)) = o(1). SubstitutingR2

in (27) yields

Csum ≤ log(1 + rPM) + o(1)

≤ log(1 + PM) + o(1), (29)

where the last line comes from the fact thatr ≤ 1.

Achievability - In order to show that the sum-rate given in (26) is achievable, we propose a random

selection scheme, in which the transmitter selects a user atrandom and communicates with that user.

Therefore, the maximum achievable rate is equal to the capacity of a MISO Rician channel, expressed as

bellow:

R = EHk











max
Q

Tr{Q}≤P

log
(

1 + HkQHH
k

)











= E
{

log
(

1 + P‖Hk‖2
)}

≥ E

{

log

(

1 + P
∣

∣

∣

√
rM −

√
1 − r‖Gk‖

∣

∣

∣

2
)}

. (30)



Let us defineE as the event that‖Gk‖2 < logN . R can be lower-bounded as

R ≥ E

{

log

(

1 + P
∣

∣

∣

√
rM −

√
1 − r‖Gk‖

∣

∣

∣

2
)∣

∣

∣

∣

E

}

Pr{E}
(a)
= log (1 + PrM + o(1)) Pr{E}
(b)
= log(1 + PM) + o(1). (31)

In the above equation,(a) follows from the assumption ofK = ω(logN), which implies that conditioned

on E,
√

1 − r‖Gk‖ = ‖Gk‖√
K+1

= o(1). (b) follows from i) as ‖Gk‖2 has Chi-Square distribution with

2M degrees of freedom, Pr{E} ∼ logM N
(M−1)!N

= o(1) and ii) asr = K
K+1

and K = ω(logN), we have

r = 1 + o
(

1
log N

)

. This completes the proof of achievability and hence, the proof of Theorem 2.

�

2) The case of isotropic specular components: In this case, it is assumed that the specular component

of all users’ channels, i.e.,bk, k = 1, · · · , N , are isotropically distributed in the unit sphere. The difference

between this case and the previous case is that in the case of co-located transmit antennas, there is only

one available coordinate in the system (the coordinate of1M ) for transmission, and as a result, we don’t

have theM-fold capacity increase, as we expect in Gaussian MIMO-BC. However, in this case, by wisely

selecting the users one can achieve theM-fold capacity increase. The following theorem gives the capacity

in this case:

Theorem 3 The capacity of Rician MIMO-BC in the case of K = ω(logN) and isotropic specular

components is equal to

Csum = M log(1 + P ) + o(1). (32)

Proof - Upper-bound: In [11], Appendix B, an upper-bound on the capacity of MIMO-BC is given as

Csum ≤ ME

{

log

(

1 +
P

M
‖H‖2

max

)}

≤ ME

{

log

(

1 +
P

M

∣

∣

∣

√
rM +

√
1 − r‖G‖max

∣

∣

∣

2
)}

(a)

≤ M log

(

1 +
P

M
E

{

∣

∣

∣

√
rM +

√
1 − r‖G‖max

∣

∣

∣

2
})

(b)
= M log

(

1 +
P

M

∣

∣

∣

√
rM + o(1)

∣

∣

∣

2
)

= M log(1 + rP ) + o(1)

(c)
= M log(1 + P ) + o(1). (33)

In the above equation,(a) follows from the concavity oflog function along with the Jensen’s inequality,

(b) results from the fact that‖G‖max = O(logN) and since1 − r = 1
1+K = o

(

1
log N

)

, we have
√

1 − r‖G‖max = o(1), and(c) results fromr = 1 + o(1).



Achievability; Scheduling based on specular component Consider the following algorithm:

Algorithm 2

• select one user at random. Call this users1, and defineS1 , S − {s1}.

• For m = 2 to M , repeat the following:

– Denote the set of selected users up to the(m − 1)th step asAm , {s1, · · · , sm−1}. Define

Sm , S −Am.

– DefinePm as the sub-space spanned by the specular channel componentsof the users selected

in the previous steps, i.e.,{bsj
}m−1

j=1 .

– Let {Φj}m−1
j=1 bem− 1 orthonormal bases forPm. Then,

sm = arg min
k∈Sm

m−1
∑

j=1

∣

∣bkΦ
H
j

∣

∣ . (34)

• After selecting the users, the BS performs zero-forcing beam-forming on the (whole) channel vectors

of the selected users. DefiningH ,
[

HT
s1
| · · · |HT

sM

]T
and u = [u1, · · · , uM ]T as the information

vector for the selected users, we have

x = H
−1u. (35)

Defining the eventF , {δ(BH) < 1 + ǫ} and Q ,
{

Tr{GHG} < logN
}

, whereB =
[

bT
s1
| · · · |bsM

]T
,

G =
[

GT
s1
| · · · |GsM

]T
, andǫ , 2MN− 1

2(M−1) , similar to (15), we have

R ≥MEH|F,Q

{

log

(

1 +
P

Tr
{

[HHH]−1}

)∣

∣

∣

∣

∣

F,Q

}

Pr{F,Q}. (36)

Sincebk’s are isotropic unit vectors, Pr{F} can be computed similar to Pr{C|B}, which is performed in

Appendix V, and shown to be1 + o( 1
N

) 4. Moreover, since the scattered component is not consideredin

the selection, it follows thatG can be considered as anM ×M circularly symmetric complex Gaussian

matrix, and as a result, Tr{GHG} has Chi-Square distribution with2M2 degrees of freedom which

implies that Pr
{

Tr{GHG} > logN
}

= [log N ]M
2
−1e− log N

(M−1)!
[1+ o(1)] = O

(

[log N ]M
2
−1

N

)

. Therefore, Pr{Q} =

1 + O
(

[log N ]M
2
−1

N

)

= o
(

1√
N

)

. Having computed Pr{F} and Pr{Q}, noting that as the specular and

scattered components of the channels are independent,F and andQ are also independent, we have

Pr{F,Q} = 1 + o

(

1√
N

)

. (37)

4To this end, it is sufficient to substitutelog N by N in the steps of proof.



Similar to (16), Tr
{

[

HHH
]−1
}

can be upper-bounded as

Tr
{

[

H
H

H
]−1
}

≤ (K + 1)Tr

{

(

MKB
H

B − 2M
√

KTr{GHG}I
)−1
}

≤ (K + 1)Tr

{

(

MKλmin

(

B
H

B
)

I − 2M
√

KTr{GHG}I
)−1
}

=

(

1 +
1

K

)

(

λmin

(

B
H

B
)

− 2

√

Tr{GHG}
K

)−1

. (38)

Conditioned onQ, we have Tr{GHG} < logN , and sinceK = ω(logN), it follows that 2
√

Tr{GHG}
K =

o(1). Moreover, conditioned onF, i.e., δ(BH) < 1 + ǫ, and following the equations (19)-(23) witht =

t+ = 1, we have

λmin

(

B
H

B
)

= 1 +O
(

N− 1
4(M−1)

)

. (39)

Combining the above equation with (38) yields

Tr
{

[

H
H

H
]−1
}

≤ 1 + o(1). (40)

Substituting in (36), noting (37), we have

R ≥M log(1 + P ) + o(1), (41)

which completes the proof of Theorem 3.

�

Remark - Comparing the sum-rate capacity of the system in the two cases of co-located transmit

antennas and isotropic specular components whenK = ω(logN), it follows that in the first case, the

capacity grows logarithmically withM , while in the second case it scales linearly withM . Moreover,

since(1 + x)M > 1 +Mx, ∀x,M , it follows that

Cisotropic
sum ≥ Cco−located

sum . (42)

C. K = Θ(logN), Isotropic specular components

The following theorem gives the asymptotic sum-rate in thiscase:

Theorem 4 The sum-rate capacity of the system in the case of K = Θ(logN) and isotropic specular

components can be obtained as

Csum = M log

(

1 + P

[

1 +

√

η

M

]2
)

+ o(1), (43)

where η , limN→∞
log N
K .



Proof - Upper-bound: Similar to (33), we can write

Csum ≤ M log

(

1 +
P

M
E

{

∣

∣

∣

√
rM +

√
1 − r‖G‖max

∣

∣

∣

2
})

= M log



1 +
P

M
E







∣

∣

∣

∣

∣

√
rM +

√

‖G‖2
max

1 + K

∣

∣

∣

∣

∣

2










(a)
= M log

(

1 +
P

M

[√
rM +

√

η[1 + o(1)]
]2
)

(b)
= M log

(

1 + P

[

1 +

√

η

M

]2
)

+ o(1), (44)

where(a) follows from the facts that i)‖G‖2
max = logN+o(logN), with probability one, and ii)η ∼ log N

K+1
,

and (b) results from the fact that asK = Θ(logN), we haver ∼ 1.

Achievability; Scheduling based on both specular and scattered components: Consider the following

algorithm:

Algorithm 3:

• Select the thresholdst = logN − 2.5 log logN andγ = 2
log N

.

• Construct the following set:

S0 , {k | ℜ(vk,bk) ≥ 1 − γ}, (45)

whereℜ(x) denotes the real part ofx, andvk ,
Gk

‖Gk‖ , k = 1, · · · , N .

• Among the users in the following set:

S , {k ∈ S0| ‖Gk‖2 > t}, (46)

select one user at random. Call this users1, and defineS1 , S − {s1}.

• For m = 2 to M , repeat the following:

– Denote the set of selected users up to the(m − 1)th step asAm , {s1, · · · , sm−1}. Define

Sm , S −Am.

– DefinePm as the sub-space spanned by the scattered channel components of the users selected

in the previous steps, i.e.,{vsj
}m−1

j=1 .

– Let {Φj}m−1
j=1 bem− 1 orthonormal bases forPm. Then,

sm = arg min
k∈Sm

m−1
∑

j=1

∣

∣vkΦ
H
j

∣

∣ . (47)

– After selecting the users, the BS performs zero-forcing beam-forming on the (whole) channel

vectors of the selected users, i.e.,

x = H
−1u. (48)



As can be observed, the above algorithm is very similar to Algorithm 1, with the difference in putting

an extra constraint for the user selection, which is, the scattered and specular components of the selected

users must be almost in the same direction.

Defining the eventsB, C, andD as in the proof of the achievability part of Theorem 1, similar to (15),

we have

R ≥ MEH|B,C,D

{

log

(

1 +
P

Tr
{

[HHH}]−1}

)∣

∣

∣

∣

∣

B,C,D

}

×

Pr{B}Pr{C|B}Pr{D|B,C}. (49)

Pr{C|B} and Pr{D|B,C} can be computed from Appendix V as1 + o
(

1
log N

)

and 1 + O
(

1
log N

)

,

respectively. For computing Pr{B}, we first computeξ , Pr{k ∈ S} as follows:

ξ = Pr{ℜ(vk,bk) > 1 − γ, ‖Gk‖2 > t}
(a)
= Pr{ℜ(vk,bk) > 1 − γ}Pr{‖Gk‖2 > t}
(b)

≥ Pr{z(vk,bk) > 1 − 0.5γ}Pr
{

cos
[

Θ(vkb
H
k )
]

> 1 − 0.5γ
}

Pr{‖Gk‖2 > t}
(c)
= (0.5γ)M−1

√
γ

π

tM−1e−t

(M − 1)!
[1 +O (1/t)] (50)

(d)
=

√
2 log2N

π(M − 1)!N

[

1 +O

(

log logN

logN

)]

, (51)

whereΘ(x) denotes the phase of a complex numberx, and for any1 ×M vectorsu andv, z(u,v) is

defined as |uvH |2
‖u‖2‖v‖2 . In the above equation,(a) follows from the facts that i)z(vk,bk) is a function of

only the direction ofGk and for Gaussian vectors, norm and direction are independent, and ii) bk andvk

are independent of each other.(b) comes from the fact that sinceℜ(vk,bk) = z(vk,bk) cos
[

Θ(vkb
H
k )
]

,

having the eventsz(vk,bk) > 1 − 0.5γ and cos
[

Θ(vkb
H
k )
]

> 1 − 0.5γ yields ℜ(vk,bk) > 1 − γ, and

also the fact that the norm and phase ofvkb
H
k are independent of each other.(c) results from i) asbk

andvk are two independent isotropic unit vectors, the pdf ofZ , z(vk,bk) is computed in Lemma 3 of

[12], as

pZ(z) = (M − 1)(1 − z)M−2 =⇒ Pr{Z > 1 − γ} = γM−1, (52)

ii) for small enoughx, cos(x) ≈ 1 − x2

2
, and hence, the eventcos

[

Θ(vkb
H
k )
]

> 1 − 0.5γ is equiv-

alent to |Θ(vk,bk)| < √
γ, and sinceΘ(vk,bk) is uniformly distributed between0 and 2π, we have

Pr
{

cos
[

Θ(Gkb
H
k )
]

> 1 − 0.5γ
}

≈
√

γ

π
, and iii) Since‖Gk‖2 has Chi-square distribution with2M degrees

of freedom [21], it can be shown that

Pr{‖Gk‖2 > t} =
tM−1e−t

(M − 1)!
[1 +O (1/t)] . (53)

Finally, (d) follows from substitution oft = logN − 2.5 log logN andγ = 2
log N

in (50).



Similar to (16), Tr
{

[

HHH
]−1
}

can be written as

Tr
{

[

H
H

H
]−1
}

= Tr







[

1

K + 1
G

H
G +

√
MK

K + 1

(

G
H

B + B
H

G
)

+
MK
K + 1

B
H

B

]−1






.

(54)

In Appendix V, it has been shown thatz(Gsi
,Gsj

) ≤ ǫ, for i 6= j, whereǫ = 1 − 1

1+2M(log N)
−

1
2(M−1)

≈

2M(logN)−
1

2(M−1) . As a result, conditioned onB, C, andD, we have
∣

∣

∣
Gsi

GH
sj

∣

∣

∣

2

≤ t+
2
ǫ. (55)

Moreover, since conditioned onB, ‖Gsi
‖2 > t, we have

G
H

G � D, (56)

whereD is anM ×M matrix with Dii = t andDij = Gsi
GH

sj
. Since t+

t
= 1 +O

(

log log N
log N

)

, from (55) it

follows that D

t
= I + ǫO(I), whereO(I) denotes a matrix whose eigenvalues areO(1). Moreover, since

logN ∼ ηK and t = logN − 2.5 log logN , we have

1

K + 1
G

H
G � ηI + o(I). (57)

For computing
√

MK
K+1

F, whereF , GHB+BHG, we need to findFij = Gsi
bH

sj
+bsi

GH
sj

= 2ℜ
(

Gsi
bH

sj

)

=

2‖Gsi
‖ℜ
(

vsi
bH

sj

)

, ∀i, j. For i = j, due to the algorithm, we haveFii ≥ 2
√
t(1− γ). Also, for i 6= j, Fij

can be upper-bounded as2
∣

∣

∣
Gsi

bH
sj

∣

∣

∣
. Writing bsj

asα‖
jvsj

+ α⊥
j v⊥

sj
, wherev⊥

sj
is perpendicular tovsj

,

α
‖
j = bsj

vH
sj

, and‖v⊥
sj
‖ = 1. Hence,

Fij ≤ 2
∣

∣

∣
Gsi

bH
sj

∣

∣

∣

= 2

∣

∣

∣

∣

Gsi

(

α
‖
jvsj

+ α⊥
j v⊥

sj

)H
∣

∣

∣

∣

(a)

≤ 2
∣

∣

∣
Gsi

vH
sj

∣

∣

∣
+
∣

∣α⊥
j

∣

∣ ‖Gsi
‖

(b)

≤ 2
[√

t+ǫ+
√

2γt+
]

=
√
t+O(

√
ǫ). (58)

where(a) follows from i) |a + b| ≤ |a| + |b|, ii) |α‖
j | ≤ 1, and iii)

∣

∣

∣
Gsi

v⊥
sj

H
∣

∣

∣
≤ ‖Gsi

‖, and (b) results

from i)
∣

∣

∣
Gsi

vH
sj

∣

∣

∣
= ‖Gsi

‖
√

z(Gsi
,Gsj

), which is conditioned onC andD upper-bounded by
√
t+ǫ, and

ii)
∣

∣α⊥
j

∣

∣ =
√

1 −
∣

∣α
‖
j

∣

∣

2
=
√

1 −
∣

∣bsj
vH

sj

∣

∣

2 ≤
√

1 −
[

ℜ
(

bsj
vH

sj

)]2 ≤
√

1 − (1 − γ)2 ≤ √
2γ. This implies

that F = 2
√
t [I +

√
ǫO(I)]. Consequently, noting thatlogN ∼ ηK and t = logN − 2.5 log logN , we

have √
MK

K + 1
F = 2

√

ηM [I + o(I)] . (59)



Finally, having the facts that
[

BHB
]

ii
= ‖bi‖2 = 1, and fori 6= j,

∣

∣

∣

[

B
H

B
]

ij

∣

∣

∣
=

∣

∣

∣
bsi

bH
sj

∣

∣

∣

=

∣

∣

∣

∣

(

α
‖
i vsi

+ α⊥
i v⊥

si

)(

α
‖
jvsj

+ α⊥
j v⊥

sj

)H
∣

∣

∣

∣

(a)

≤
∣

∣

∣
vsi

vH
sj

∣

∣

∣
+ |α⊥

i | + |α⊥
j | + |α⊥

i ||α⊥
j |

(b)

≤ √
ǫ+ 2

√

2γ + 4γ,

= O(
√
ǫ), (60)

in which (a) follows from the facts that i)|α‖
i | ≤ 1, |α‖

j | ≤ 1, |α⊥
i | ≤ 1, |α⊥

j | ≤ 1, and ii)
∣

∣vsi
vH

sj

∣

∣ ≤
1,
∣

∣v⊥
si
vH

sj

∣

∣ ≤ 1,
∣

∣v⊥
si
v⊥

sj

H∣
∣ ≤ 1, and (b) results from the facts that i)|α⊥

i | ≤
√

2γ and conditioned onC,
∣

∣

∣
vsi

vH
sj

∣

∣

∣
≤ √

ǫ, we haveBHB = I +
√
ǫO(I), and consequently,

MK
K + 1

B
H

B = MI +
√
ǫO(I). (61)

Combining (54), (57), (59), and (61) yields

Tr
{

[

H
H

H
]−1
}

= Tr

{

[

ηI + o(I) + 2
√

ηMI + o(I) +MI +
√
ǫO(I)

]−1
}

= Tr

{

[

(
√
η +

√
M)2I + o(I)

]−1
}

((a)
=

M

(
√
η +

√
M)2

+ o(1), (62)

where(a) follows from the fact that[I + o(I)]−1 = I + o(I). Substituting in (49) yields

R ≥ M log

(

1 + P

[

1 +

√

η

M

]2

+ o(1)

)

Pr{B}Pr{C|B}Pr{D|B,C}

=

[

M log

(

1 + P

[

1 +

√

η

M

]2
)

+ o(1)

]

[

1 +O

(

1

logN

)]

= M log

(

1 + P

[

1 +

√

η

M

]2
)

+ o(1). (63)

This completes the proof of Theorem 4.

�

IV. SIMULATION RESULTS

In this section, we examine the analytical results in the previous section by simulation. Figures 1-3

present the plots of the sum-rate capacity versus the numberof users, for different values of Rician factor

K = 1, K = 10, andK = 100, respectively. The SNR (P ) is assumed to be10 dB in these figures and

the number of transmit antennasM is set to2. Also, the plots of the achievable sum-rate for ZFBF and
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Fig. 1. Sum-rate capacity versus the number of users;K = 1.

TDMA are given for comparison. The user selection algorithmused for ZFBF is the same as Algorithm 1

in [12]. As can be observed in th figures the following observations can be made: i) The sum-rate capacity

of the system in the case of isotropic specular components islarger than the sum-rate capacity in the case

of co-located transmit antennas. ii) In the case of isotropic specular components, ZFBF performs well for

all values ofK, while in the case of co-located transmit antennas the performance of ZFBF is degraded

significantly by increasingK. iii) in the case of co-located transmit antennas andK = 100, the sum-rate

of TDMA is almost close to the sum-rate capacity, which is compatible with the result of Theorem 2.

Figure 4 presents the plots of sum-rate capacity versus SNR for different values of Rician factor and

two cases of isotropic specular components and co-located transmit antennas. It is assumed thatN = 100

andM = 2 in this figure. As can be observed, by increasing the value of the Rician factor, the difference

between the sum-rate capacity of the system in the two cases of isotropic specular components and co-

located transmit antennas increases. Moreover, the slope of the curves in the case of isotropic specular

components is equal to2, regardless of the value ofK, while the slope of the curves in the case of co-

located transmit antennas decreases withK, but increases with SNR. However, for high values of SNR,

the slope of all curves approaches2, implying that the multiplexing gain of the system is2, regardless

of the distribution of the specular components and the valueof the Rician factor.

V. CONCLUSION

In this paper, we have derived the asymptotic sum-rate capacity of MIMO-BC with large number of

users in a Rician fading environment. It is observed that in the regionK = o(logN), the capacity achieving

strategy is exactly the same as the Rayleigh fading case. In the regionK = ω(logN), the sum-rate capacity

depends on the distribution of the specular component; in the case of co-located transmit antennas, it is
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demonstrated that TDMA achieves the sum-rate capacity and the capacity grows logarithmically with the

number of transmit antennas. In the case of isotropically distributed specular components, ZFBF along

with a user selection strategy which selectsM users with semi-orthogonal specular components is shown

to be optimum. Moreover, the sum-rate capacity grows linearly with the number of transmit antennas.

APPENDIX A

We have

Pr{A} = Pr{‖G‖2
max ≤ t}

=
(

Pr{‖G‖2
k ≤ t}

)N
. (64)

Using the fact that‖Gk‖2 has Chi-square distribution with2M degrees of freedom [21], we have

Pr{‖G‖2
k ≤ t} = 1 −

M−1
∑

m=0

tm

m!
e−t. (65)

Substitutingt = logN + (M − 3) log logN , the above equation can be rewritten as

Pr{‖G‖2
k ≤ t} = 1 − log2N

N

[

1 +O

(

log logN

logN

)]

. (66)

Substituting in (64), it is concluded that

Pr{A} =

(

1 − log2N

N

[

1 +O

(

log logN

logN

)])N

= o

(

1

N

)

. (67)

APPENDIX B

Calculation of Pr{B}:

Consider a randomly selected userk. Using (65) and (66), we have

Pr{k ∈ S} =
log2N

N

[

1 +O

(

log logN

logN

)]

. (68)



Therefore,L = |S| is a Binomial random variable with parameters(N, p), wherep , Pr{k ∈ S}. Using

the Gaussian approximation for Binomial distribution, we have

Pr{B} =
N
∑

l=⌊log N⌋+1

(

N

l

)

pl(1 − p)N−l

≈ Q

(

logN −Np
√

Np(1 − p)

)

= 1 −Q

(

Np− logN
√

Np(1 − p)

)

(a)

≥ 1 − e−
(Np−log N)2

2Np(1−p)

≥ 1 −Ne−
Np

2

(b)
= 1 − o (1/N) , (69)

where(a) results from the fact thatQ(x) ≤ e−x2/2 and(b) follows from the fact thatNp ∼ log2 N
(M−1)!

, which

incurs thate−Np/2 = o(N−2).

Calculation of Pr{C|B}:

Using equation (144) in Appendix E of [12], we have

δ(GH) = δ(Ψ) =
1

∏M−1
i=1 βi

, (70)

whereΨ ,
[

vH
s1
| · · · |vH

sM

]

, andβi denotes the projection ofvsi+1
overP⊥

i+1, which denotes the null space

of P i+1, the subspace spanned by{vsj
}i

j=1. Defining ǫ , 1 − 1

1+2M(log N)
−

1
2(M−1)

, from (70), Pr{CC |B}
can be written as

Pr{C|B} = Pr

{

M−1
∏

i=1

βi < 1 − ǫ

∣

∣

∣

∣

∣

B

}

(a)

≤
M−1
∑

i=1

Pr
{

βi < 1 − ǫ

M

∣

∣

∣
B
}

(b)

≤
M−1
∑

i=1

Pr
{

βi < 1 − (logN)−
1

2(M−1)

∣

∣

∣
B
}

, (71)

where (a) follows from the fact that the event
∏M−1

i=1 βi < 1 − ǫ is a subset of the event
⋃M−1

i=1

{

βi <

1 − ǫ
M

}

. To show this, we observe that if none of the events
{

βi < 1 − ǫ
M

}M−1

i=1
occur, it means that

∏M−1
i=1 βi >

(

1 − ǫ
M

)M
> 1 − ǫ. Also, (b) results from the fact that asN → ∞, 2M(logN)−

1
2(M−1) < 1.



From the algorithm,βi can be written as1 − mink∈Si+1
zk,i, wherezk,i denotes the projection ofvk

over P i+1. The probability density function (pdf) ofzk,i is given in the equation (146) in [12] as5

pzk,i
(z) =

Γ(M)

Γ(M − i)Γ(i)
zi−1(1 − z)M−i−1. (72)

SinceVk’s are i.i.d. random variables (since the channel vector of users are independent of each other),

it follows that zk,i’s are also i.i.d.. Hence, definingθ , 1 − (logN)−
1

2(M−1) , we have

Pr {βi < θ|B} (a)
= (Pr{zk,i > 1 − θ})L−i

= (1 − Ii,M−i(1 − θ))L−i

(b)

≤
(

1 − (1 − θ)M−1
)L−i

=

(

1 − 1√
logN

)L−i

(c)

≤
(

1 − 1√
logN

)log N−i

∼ e−
√

log N

= o

(

1

logN

)

. (73)

In the above equation,(a) results from the fact that|Si+1| = L− i, and(b) follows from the the fact that

Ii,M−i(θ) ≥ IM−1,1(θ) = θM−1. (c) comes from the fact that conditioned onB, L > logN . Combining

the avove equation with (71) yields Pr{CC |B} = o
(

1
log N

)

, which implies that Pr{C|B} = 1 + o
(

1
log N

)

.

Computation of Pr{D|B,C}

To compute Pr{D|B,C}, we first note that since the norm and direction of circularlysymmetric complex

Gaussian vectors are independent of each other and having the facts thatB andD depend solely on the

norm of {Gk}N
k=1 and C depends only on the direction of these vectors, it follows that B and D are

independent ofC. Therefore, we can ignoreC in the condition and write

Pr{D|B,C} = Pr{D|B}

=
Pr{D,B}

Pr{B}
(a)

≥ Pr{D} − Pr{BC}
Pr{B} . (74)

5Note that since the norm and direction of circularly symmetric complex Gaussian vectors are independent of each other, the distribution

of zk,i is independent of the conditionB.



Since we have already computed Pr{B} in this appendix, it suffices to compute Pr{D}. Pr{DC} is

computed in Lemma 3 of [12], and shown to scale asO
(

1
log N

)

. Hence,

Pr{D|B,C} =
1 +O

(

1
log N

)

+ o
(

1
N

)

1 + o
(

1
N

)

= 1 +O

(

1

logN

)

. (75)

APPENDIX C

Conditioned onC, we have
∏M−1

i=1 βi >
1

1+2M(log N)
−

1
2(M−1)

= 1 − ǫ. Sinceβi ≤ 1, this incurs that

βi ≥ 1− ǫ, ∀i. In other words,γi ≤ ǫ, whereγi denotes the projection ofvsi+1
overP i+1. Now, consider

{Φj}i
j=1 as j orthonormal bases forP i+1. Sincevsj

∈ P i+1, ∀j ≤ i, we can write

vsj
=

i
∑

l=1

alΦl, (76)

where
∑i

l=1 |al|2 = 1. Therefore, for alli, j, j ≤ i, we have

z(Gsi+1
,Gsj

) = z(vsi+1
,vsj

)

=
∣

∣

∣
vsi+1

vH
sj

∣

∣

∣

2

=

∣

∣

∣

∣

∣

i
∑

l=1

aH
l

(

vsi+1
ΦH

l

)

∣

∣

∣

∣

∣

2

(a)

≤
i
∑

l=1

∣

∣vsi+1
ΦH

l

∣

∣

2

= γi

≤ ǫ, (77)

where(a) follows from the fact that
∣

∣

∣

∑i
l=1 albl

∣

∣

∣

2

≤
(

∑i
l=1 |al|2

)(

∑i
l=1 |bl|2

)

, noting that
∑i

l=1 |al|2 = 1.
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