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Delay-Throughput Analysis in Decentralized

Single-Hop Wireless Networks

Jamshid Abouei, Alireza Bayesteh and Amir K. Khandani

Abstract

In this paper, an asymptotic analysis for the delay-throughput of a single-hop wireless

network with n pairs of nodes is presented. The analysis relies on the decentralized on-off

power allocation strategy, in which the on-off transmission policy for each link is based

on comparing its direct channel gain with optimum threshold τn. We first provide a new

definition of the transmission delay in a homogenous network. It is proved that the delay

threshold level that results the dropping probability for each link tends to zero, while

achieving the maximum average sum-rate scales as ω(n/ logn). Also, the minimum delay

in order to make the dropping probability for the whole network approach zero scales as

ω(n/ logn) + n. Furthermore, we drive lower and upper bounds for the link activation

probability, q, such that the order of the average sum-rate is preserved. Based on the

upper bound on q, an asymptotic analysis shows that the delay in each link and in the

network improves without any significant impact on the the average sum-rate. Finally,

we present a new definition of the throughput for the link in the cases of one and infinite

buffer size. It is demonstrated that the maximum average throughput of the network

with the decentralized on-off power allocation strategy is independent of the buffer size.
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Index Terms
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I. Introduction

As the demand for higher data rates increases, effective resource allocation

emerges as the main issue in wireless networks to satisfy quality of service (QoS)

requirements. Among various resource allocation schemes, the decentralized power

control algorithms for maximizing the throughput have attracted significant attention

[1]–[3]. Also, lower transmission delay is an important QoS requirement in buffer-

limited networks. Particularly, for backlogged users1 with real-time services (e.g.,

interactive games, live sports videos, etc), too much delay results in dropping some

packets. Therefore, the main challenge in real-time services is to utilize an efficient

power allocation scheme such that the delay is minimized while achieving a high

throughput.

The throughput maximization of the cellular and multihop wireless networks has

been extensively studied in [4]–[8]. In these works, no delay analysis is performed.

However, it is shown that the high throughput in the network is achieved at the

cost of a high amount of delay. This problem has motivated the researchers to study

the relation between the delay characteristics and the throughput. Particularly, in

most recent literature [9]–[15], the tradeoffs between delay and throughput have

been investigated as a key measure of the network performance. For instance, Sharif

and Hassibi [9] analyze the delay characteristics and the throughput in broadcast

channel networks. They propose an algorithm to reduce the delay without too much

degradation in the throughput. The first studies on achieving a high throughput

and low delay in ad-hoc wireless networks are framed in [10] and [11]. This line

of work is further expanded in [12]–[14] by using different mobility models such as

the random walk and the Brownian mobility models. El Gamal et al. [12] analyze

1For each user, there is always a packet available to be transmitted.
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the optimal delay-throughput scaling for different of wireless network topologies.

In the static random network with n nodes, they prove that the optimal tradeoff

between throughput Tn and delay Dn is given by Dn = Θ(nTn). They also show that

the same result is achieved in random mobile networks, when Tn = O(1/
√

n log n).

Neely and Modiano [14] consider the delay-throughput tradeoff only for mobile ad-hoc

networks. They have investigated the delay characteristics by using the redundant

packets transmission through multiple paths.

In this paper, we present the delay-throughput analysis in a single-hop wireless

network with n links. Also, we use the decentralized on-off power allocation strategy

proposed in [3], in which the transmission policy for link i is to compare the direct

channel gain hii with optimum threshold τn. Our analysis is different from the delay

analysis with the ON/OFF Bernoulli scheme in [16]. Primarily, we utilize a decentral-

ized approach with local information, while [16] considers a central controller to study

the channel conditions of all the links in the system. Unlike [8], in our algorithm, we

do not use relay nodes. The channel model that we use in the network is quasi-static

Rayleigh fading. This is different from the geometric models in [12]–[14] that is based

on the distance between the sources and the destinations.

Assuming user i knows only its direct channel gain, hii, the optimum threshold τn

is chosen such that the average sum-rate is maximized. It is shown that increasing the

number of links gives rise to increasing the average sum-rate, at the cost of increasing

the delay. This results in higher packet droppings in the real-time applications with

limited buffer sizes. To study the delay-throughput tradeoff, we first provide a new

definition of the delay. Also, we present the delay characteristics from the link and

for the network points of view. It is proved that the minimum delay in order to make

the dropping probability for each link and the whole network tend to zero scale as

ω(n/ logn) and ω(n/ logn)+n, respectively. Also, we address the question: How can

we achieve a better delay performance without sacrificing too much the throughput?

It is demonstrated that the tradeoff between the delay and the average sum-rate is

strongly influenced by the threshold level τn that depends on the channel model. We
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show that by relaxing the value of τn, the delay is improved without changing the

order of the average sum-rate. We further present a new definition of the throughput

for one buffer size and infinite backlogged user.

The rest of the paper is organized as follows. In Section II, the network model

is introduced. The on-off power allocation strategy is presented in Section III. The

delay characteristics in terms of the dropping probability are analyzed in Section IV.

In Section V, we establish the delay-throughput tradeoff for the network. Finally, in

Section VI, an overview of the results and conclusions is presented, and directions

for ongoing and future research are mentioned.

Knuth’s notation [17]: For any functions f(n) and g(n):

• f(n) = O(g(n)) means that limn→∞ |f(n)/g(n)| < ∞.

• f(n) = Ω(g(n)) means that limn→∞ |f(n)/g(n)| > 0.

• f(n) = o(g(n)) means that limn→∞ |f(n)/g(n)| = 0.

• f(n) = ω(g(n)) means that limn→∞ |f(n)/g(n)| = ∞.

• f(n) = Θ(g(n)) means that limn→∞ |f(n)/g(n)| = c, where 0 < c < ∞.

Throughout the paper, we use Nn for representing the set {1, 2, ..., n} and log(.)

as the natural logarithm function.

II. Network Model

Consider a single-hop wireless network, in which n pairs of nodes2, indexed by

1, ..., n, are located within the network area (Fig. 1). We assume the number of links,

n, is a common information between the nodes. All the nodes in the network are

assumed to have a single antenna. Also, it is assumed that all the transmissions

occur over the same bandwidth. The time axis is divided into slots with the duration

of one block. The slot duration is assumed to be equal for all the links. Here, we

assume a buffer limited network, where each link has the buffer size equal to one

packet. Also, we consider a homogeneous network, in which all the links have the

2In this work, the term “pair” is used for the transmitter and the related receiver, and “user” only for the

transmitter.
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Fig. 1. A single-hop wireless network with n = 4.

same configurations and use the same protocols. Thus, the transmission strategy for

all nodes are agreed in advance.

The channel is supposed to be quasi-static Rayleigh fading. In this model, the

channel gains remain constant while transmitting one block and change independently

from block to block. The link between transmitter j and receiver i has the channel

gain hji = |gji|2, where the complex variables gji’s are the channel coefficients. Under

a Rayleigh fading channel condition, hji’s are exponentially distributed with unit

mean. Here, we assume that each receiver knows only its own direct channel gain at

the beginning of each block. This Channel-State Information (CSI) is fed back to the

transmitter in a dedicated zero-delay and error-free channel.

We denote the average transmit power of user i by pi ∈ [0, 1]. Also, the non-

negative vector P = (p1, ..., pn) represents the vector of all the users’ powers in the

network. The power of Additive White Gaussian Noise (AWGN) in each receiver is

assumed to be N0. The interference from the other users on receiver i is equal to

Ii(P−i) =
n
∑

j 6=i
j=1

hjipj, (1)

where P−i = (p1, ..., pi−1, pi+1, ..., pn). Assuming Gaussian signal transmission from all
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Fig. 2. Queueing model for the on-off power allocation strategy.

the transmitters, the distribution of the interference will be Gaussian as well. Thus,

the signal-to-interference-plus-noise ratio (SINR) of link i is defined as

γi(P) ,
hiipi

Ii(P−i) + N0
. (2)

The SINR determines the achievable data rate of each link as follows:

Ri(P) = log (1 + γi(P)) . (3)

We assume the packet arrival rate is the same for all the links, and is equal

to 1/λ packets per block length. Also, we define the random variable Di for link

i as the latency between two successive transmissions, expressed as the number of

blocks (see Fig. 2). In this work, we consider the packet dropping probability as a

performance criterion in the delay sensitive applications. Dropping occurs when the

latency between two successive transmissions in each link exceeds a prespecified level.

In fact, since the buffer size is one and the packets are arrived with a constant rate

1/λ, it follows that the dropping occurs when Di > λ, i ∈ Nn. In order to analyze

the dropping probability, we define λ` and λn as the delay threshold levels for the

link and for the network, respectively. In this case, we have the following definition.

Definition 1: Let Bi be the event that the dropping occurs in link i. Then, the

packet dropping probability in the link is defined as

P (Bi) , Pr(Di > λ`), ∀i ∈ Nn. (4)
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Also, if BN represents the event of the packet dropping, then

P (BN ) , Pr

(

n
⋃

i=1

(Di > λn)

)

, (5)

where P (BN ) is the packet dropping probability in the network.

III. On-Off Power Scheme

In this paper, we assume that all the links perform the on-off power allocation

strategy proposed in [3]. In this scheme, the transmission rule for each link is to

compare its direct channel gain with a prespecified threshold level τn, i.e.,

pi = F(hii) =







1, if hii > τn,

0, Otherwise,
(6)

for all i ∈ Nn. In this strategy, each user transmits with full power or remains silent,

independent of the other links and without using the central node. Thus, the power

distribution of each user is a Bernoulli random variable with parameter q, i.e.,

f(pi) =







q, pi = 1,

1 − q, pi = 0.
(7)

Also, the number of active links is a binomial random variable with parameters

n and q. Here, we denote q as the probability of the link activation that is defined

as q , Pr {hii > τn}. It should be noted that τn is a function of the network size,

n, and also depends on the channel model. As we see later, the performance of the

network is strongly influenced by the choice of τn.

In this work, we use the average sum-rate as a key measure in the network

performance, where the average is computed with respect to hii’s and Ii’s, i ∈ Nn.

Letting R̄sum denote the average sum-rate of the network, we have

R̄sum , E

[

n
∑

i=1

Ri

]

=

n
∑

i=1

E [Ri] . (8)

Next, we summarize some of our earlier results on the on-off power allocation

strategy in single-hop wireless networks reported in [3].
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Lemma 1: In a network with the on-off power allocation strategy and large n,

the optimum τn that maximizes the average sum-rate scales as

τ ∗
n ≈ log n − log log n + Θ(1). (9)

Noting that under a Rayleigh fading channel condition, the probability of the

link activation is q = Pr {hii > τn} = e−τn , we have the following corollary.

Corollary 1: For the proposed strategy with the optimum threshold τ ∗
n, the

probability of the link activation scales as Θ

(

log n

n

)

.

Corollary 2: In the network with n pairs of nodes, if m is the number of active

links, then E[m] = ne−τn ∼ Θ (log n).

Lemma 2: In the network with the on-off power allocation strategy and the

optimum τ ∗
n, the average sum-rate is asymptotically

R̄sum = nE[Ri] ≈ 1 − log q (10)

= log n − log log n + Θ(1). (11)

Interestingly, Lemma 2 implies that the average sum-rate scales as Θ(log n),

without using the relay and coordination between links. Also, from (10) and using

q = e−τn , it is concluded that the average sum-rate is a function of threshold level

τn. We use this result to analyze the packet dropping probability in the next section.

IV. Delay Analysis

In this section, we analyze the delay characteristics in terms of the dropping

probabilities for the link and for the whole network. Under the on-off power allocation

policy, the transmission traffic for each user is modeled as a two-state discrete-time

Markov model shown in Fig. 3. According to this model, the latency Di is a geometric

random variable with the probability mass function Pr{Di = d} = q(1 − q)d−1.

Lemma 3: In the network with the on-off power scheme, the dropping probabil-

ities of the packets in the link and the network can be obtained as

P (B) = (1 − q)1+λ` (12)
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Fig. 3. Discrete-time Markov model for the on-off power allocation strategy.

and

P (BN ) = 1 − (1 − P (B))n, (13)

respectively.

Proof: Using (4) and by taking account of the geometric distribution of Di, the

packet dropping probability in link i is obtained as

P (Bi) = 1 − Pr(Di ≤ λ`) (14)

= 1 −
λ`
∑

y=0

q(1 − q)y. (15)

It should be noted that (15) is valid only for q < 1. In the case of q = 1, i.e.,

all the links transmit with full power, no delay exists in each link and consequently

P (Bi) = 0. Considering the following expression

M
∑

k=0

xk =
1 − xM+1

1 − x
, |x| < 1,

the dropping probability of link i is obtained as

P (Bi) = (1 − q)1+λ`, i = 1, ..., n. (16)

Since (16) is the same for all the links, we drop the index i and this completes

the proof of the first part of the lemma.
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To drive P (BN ), let E denote the occurrence of no dropping event in the

network. Thus,

P (E ) = Pr{Bc
1 ∩ B

c
2 ∩ .... ∩ B

c
n}. (17)

Noting that the events B
c
i and B

c
j are independent of each other for all i, j ∈ Nn,

we have

P (E ) =

n
∏

k=1

Pr{Bc
k}

=
n
∏

k=1

(1 − P (Bk))

= (1 − P (B))n.

Consequently, the dropping probability of the packet in the network is computed

as

P (BN ) = 1 − (1 − P (B))n. (18)

We are now ready to prove the main result of this section. In the next theorem,

we drive the optimum threshold λ` and λn such that the dropping probabilities in

the link and the network tend to zero.

Theorem 1: For the network with the on-off power allocation strategy and the

optimum q that maximizes the average sum-rate,

i) limn→∞ P (B) = 0, if λ` ∼ ω(n/ logn).

ii) limn→∞ P (BN ) = 0, if λn ∼ ω(n/ logn) + n.

Proof: i) From (12) and using the Taylor series expansion

log(1 − z) = −
∞
∑

k=1

zk/k, |z| < 1,

we have

P (B) = e(1+λ`) log(1−q)

= e−(1+λ`)
P

∞

k=1
qk/k, (19)
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where q < 1. Since for sufficiently large n, q � 1, we can approximate (19) as

P (B) ≈ e−q(1+λ`). (20)

Setting qλ` = ω(1) makes e−qλ` → 0. By using the optimum q in Corollary 1, if

λ` ∼ ω(n/ logn), then P (B) = o(1), i.e.,

lim
n→∞

P (B) = 0.

ii) From (18) and considering the following binomial series

(1 − x)k = 1 − kx +
k(k − 1)

2!
x2 − ...,

the dropping probability in the network will be

P (BN ) = nP (B) − n(n − 1)

2!
P 2(B) + .... (21)

If λn is the optimum threshold such that limn→∞ P (BN ) = 0, it guarantees a

sufficiently small value for P (B) as well. Hence, (21) can be approximated by

P (BN ) ≈ nP (B).

Similar to the proof of part (i), the dropping probability of the network can be

written as

P (BN ) ≈ n(1 − q)1+λn

≈ e−q(1+λn)+log n.

Setting qλn− log n = ω(1) makes e−q(1+λn)+log n → 0. Thus, for the network with

the optimum q, choosing λn ∼ ω(n/ logn) + n yields limn→∞ P (BN ) = 0.

V. A Study of Delay-Throughput Tradeoffs

Previously, we investigated the delay based on achieving a minimum drop-

ping probability, while achieving the maximum average sum-rate. In this section,

we present some results on improving the delay without any significant impact on

the throughput of the network. First, we study the scaling law of the average sum-rate
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with the on-off power scheme. Recall that the optimum value for q that achieves the

maximum average sum-rate scales as log n/n. Clearly, increasing the number of the

links has the advantage of increasing R̄sum. However, due to decreasing the value of

q, delay increases. The problem is crucial in the static networks with immobile nodes.

Particularly, the links in the bad channels experience too much delay. To decrease

the delay, one solution is to assign other frequency bands for the links experiencing

bad channel conditions. This could be accomplished by using a central controller to

provide fairness between the links. Also, we can use relay hops to reduce the delay.

Deploying multiple antennas [18] can improve the delay as well. The other solution

that we investigate in this work is to relax the optimum value of threshold τ ∗
n.

A. Delay Improvement

By using Corollary 2 and noting that τn = − log q, reducing τn will increase q

and the number of the active links. Clearly, this reduces the delay in the network,

however according to (10), the average sum-rate decreases as well. Therefore, the

threshold τn is interpreted as a compromise between delay and average sum-rate. In

the following, we drive lower and upper bounds on τn such that the order of the

average sum-rate is preserved, i.e.,

lim
n→∞

R̄sum

log n
= 1. (22)

Theorem 2: For the network with the on-off power allocation strategy, the av-

erage sum-rate is asymptotically of order log n, if

Θ

(

log n

n

)

≤ q ≤ Λ(n)

n
, (23)

where Λ(n) ∼ Ω(log n) and satisfies Λ(n) = eo(log n) .

Proof: For the lower bound, the theorem is easily proved by using the Corollary

1. Substituting q =
Λ(n)

n
in (10) yields

R̄sum = 1 + log n − log Λ(n). (24)
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To achieve R̄sum of order log n, the function Λ(n) must satisfy

log Λ(n) = o(log n),

and this completes the proof of the theorem.

Corollary 3: The lower and upper bounds on τn that result in Rsum of order

Θ(log n) are

log n − log Λ(n) . τn . log n − log log n + Θ (1) . (25)

An interesting insight provided by the upper bound in (23) is the improvement

of the threshold levels λ` and λn, without changing the order of the average sum-rate.

Corollary 4: The optimum values of λ` and λn that result in P (B) and P (BN )

tend to zero, while achieving R̄sum of order log n decrease as λ` = ω

(

n

Λ(n)

)

and

λn = ω

(

n

Λ(n)

)

+
n log n

Λ(n)
, respectively.

Fig. 4-a illustrates λ` versus the number of links for Λ(n) = log n and Λ(n) =

e
√

log n. Also, Fig. 4-b shows the corresponding average sum-rate (24) versus the

number of links. From these figures, it is observed that the delay decreases without

any significant impact on the average sum-rate.

B. Throughput Maximization

In this section, we present a new definition of the average throughput for the

backlogged users. Also, we derive the maximum average throughput in two extreme

cases of one and infinite buffer size. For the network with the on-off power allocation

strategy, the average throughput of link i is defined on a per-block basis as

Ti = lim
L→∞

1

L

L
∑

t=1

R
(t)
i I(t)

i , (26)

where I(t)
i is an indicator variable which is equal 1, if the user i transmits with full

power at block t, and 0 otherwise, and R
(t)
i is the transmission rate at block t.

Theorem 3: For the backlogged users with a buffer size of one, the maximum

average throughput asymptotically scales as 1/n.
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Proof: Let ε` denote the blocking probability of the link with a buffer size of

one. Noting that the arrival rate of the packets is constant and equal to 1/λ`, where

λ` is obtained as (20), it follows that one packet is transmitted with the probability

1 − ε` during λ` blocks. Thus, from (26), it is concluded that

I(t)
i =







1, w. p. 1−ε`

λ`

,

0, Otherwise.
(27)

Consequently, the average throughput of the link with a buffer size of one is

simplified as

Ti =
E [Ri]

λ`
(1 − ε`). (28)

According to Lemma 2, we have

E[Ri] =
R̄sum

n
=

1 − log q

n
. (29)

Also, using (20), it yields

λ` =
1

q
log

1

ε`
− 1. (30)

Thus,

Ti =
1 − log q

n

(

1

q
log

1

ε`
− 1

)(1 − ε`). (31)

It is easy to verify that (31) is a positive monotically increasing function of q.

Thus, the average throughput (31) attains its maximum value at q = 1. As mentioned

in Lemma 3, for q = 1, there is no packet dropping and as a result the blocking

probability is zero, i.e., ε` = 0. Thus, λ` = 1 and consequently from (28), we have

Ti =
1

n
. (32)

In the next theorem, we obtain the maximum average throughput of the infinite

backlogged user.
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Theorem 4: For the backlogged user with infinite buffer size, the optimum so-

lution for the optimization problem

q∗ = arg max
q

Ti, (33)

is 1. Furthermore,

Ti,max =
1

n
. (34)

Proof: For infinite buffer size and from (26), it is concluded

I(t)
i =







1, q,

0, 1 − q.
(35)

Since, I(t)
i is a Bernoulli random variable with parameter q, we have E{I (t)

i } = q.

Thus, the average throughput defined in (26) is obtained as

Ti = E [Ri] E[I(t)
i ]

=
q(1 − log q)

n
. (36)

It can be shown that (36) attains its maximum value at q = 1. Thus, by using

(36), the maximum average throughput in the case of infinite buffer size is

Ti,max =
1

n
. (37)

Interestingly, Theorem 4 indicates the maximum average throughput of the

network with the decentralized on-off power allocation strategy is independent of

the buffer size. Therefore, we can reduce the hardware complexity while achieving

the maximum average throughput.

VI. Conclusion

In this paper, we have studied the delay-throughput analysis in a single-hop

wireless network with the decentralized on-off power power allocation strategy. We

have proved that the delay threshold level that results the dropping probability for

each link tends to zero, while achieving the maximum average sum-rate scales as



17

ω(n/ logn). Also, the minimum delay in order to make the dropping probability for

the whole network approach zero scales as ω(n/ logn) + n. We have also shown that

by relaxing the value of threshold τn, the delay is significantly improved without

changing the order of the average sum-rate. We have presented a new definition for

the throughput and derived the maximum throughput in the cases of one and infinite

buffer size. It has been shown that the maximum average throughput of the network

with the decentralized on-off power allocation strategy is independent of the buffer

size.

Throughout this work, it is assumed that all the links use a single antenna and

also all the transmissions occur over the same bandwidth. A possible future exten-

sion of this work would be to analyze the delay-throughput, when other frequency

bands are assigned for the links experiencing bad channel conditions. Also, deploying

multiple antennas [18] is another extension.
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