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Abstract

A network of n wireless communication links is considered in a Rayleigh fading environment. It is

assumed that each link can be active and transmit with a constant power P or remain silent. The objective

is to maximize the number of active links such that each active link can transmit with a constant rate λ.

An upper bound is derived that shows the number of active links scales at most like 1
λ log n. To obtain

a lower bound, a decentralized link activation strategy is described and analyzed. It is shown that for

small values of λ, the number of supported links by this strategy meets the upper bound; however, as

λ grows, this number becomes far below the upper bound. To shrink the gap between the upper bound

and the achievability result, a modified link activation strategy is proposed and analyzed based on some

results from random graph theory. It is shown that this modified strategy performs very close to the

optimum. Specifically, this strategy is asymptotically almost surely optimum when λ approaches ∞ or

0. It turns out the optimality results are obtained in an interference-limited regime. It is demonstrated

that, by proper selection of the algorithm parameters, the proposed scheme also allows the network to

operate in a noise-limited regime in which the transmission rates can be adjusted by the transmission

powers. The price for this flexibility is a decrease in the throughput scaling law by a multiplicative

factor of log log n.
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I. INTRODUCTION

Wireless networks consist of a number of nodes communicating over a shared wireless channel.

The design and analysis of such configurations, even in their simplest forms, are among the

most difficult problems in information theory. However, as the number of nodes becomes large,

wireless networks become more tractable, where scaling laws for network parameters, such as

throughput, can be derived.

Most of the works dealing with the throughput of large wireless networks consider a channel

model in which the signal power decays according to a distance-based attenuation law [1]–

[8]. However, in a wireless environment, the presence of obstacles and scatterers adds some

randomness to the received signal. This random behavior of the channel, known as fading,

can drastically change the scaling laws of a network in both multihop [9]–[12] and single-hop

scenarios [13, Chapter 8], [14]–[18]. In this paper, we follow the model of [9], [13], [19], where

fading is assumed to be the dominant factor affecting the strength of the channels between nodes.

In this work, we consider a single-hop network, i.e., a network in which data is transmitted

directly from sources to their corresponding receivers without utilizing any other nodes as routers.

Each communication link can be active and transmit with a constant power P or remain silent.

Throughput and rate-per-link are the network parameters which are of concern to us. Despite

the randomness of the channel, we are only interested in events that occur with high probability,

i.e., with probability tending to one as n→ ∞. This deterministic approach to random wireless

networks has been also deployed in [2], [8], [19].

In a previous work by the authors [19], the throughput maximization of a single-hop wireless

network in a Rayleigh fading environment has been investigated without any rate constraints. It

is shown that the maximum throughput scales like logn. Also, a decentralized link activation

strategy, called the threshold-based link activation strategy (TBLAS), is proposed that achieves

this scaling law. The throughput maximization using TBLAS yields an average rate per active

link that approaches zero as n→ ∞. The same phenomenon has been observed in [1], [2], [9],

[11]. Since most of the existing efficient channel codes are designed for moderate rates, it is a
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drawback for a system to have zero-approaching rates. Thus, from a practical point of view, it

is appealing to assign constant rates to active communication links. In [7], it is shown that a

nondecreasing rate-per-node is achievable when nodes are mobile.

In this paper, we consider the problem of rate-constrained throughput maximization in a

Rayleigh fading environment. More specifically, the objective is to maximize the number of

active links such that each active link can transmit with a constant rate λ. We derive an upper

bound that shows the number of active links scales at most like 1
λ

log n. To obtain a lower bound,

first, we examine the simple TBLAS of [19] and show that it is capable of guaranteeing rate-

per-links equal to λ. The number of active links provided by this method scales like Θ(logn).

The scaling factor is close to the optimum when λ is small. However, as λ grows large, the

scaling factor decays exponentially with λ, making it far below the upper bound 1
λ
. This inspires

developing an improved link activation strategy that works well for large values of desired rates,

as well. To this end, we propose a double-threshold-based link activation strategy (DTBLAS).

DTBLAS is attained by adding an interference management phase to TBLAS. This is done

by choosing from good enough links only those with small enough mutual interference. The

analysis of DTBLAS is more complicated than that of TBLAS. However, it can be carried out

using some results from the random graph theory. It is shown that DTBLAS performs very

close to the optimum. Indeed, its performance reaches the upper bound when the demanded rate

approaches ∞ or 0. This shows the asymptotic optimality of DTBLAS for the rate-constrained

throughput maximization problem.

In all scenarios described above, the interference power is much larger than the noise power

and the rates become independent of signal-to-noise ratio (SNR). In other words, the network

performs in an interference-limited regime. A natural question is whether it is possible to have

rate-per-links which depend on the SNR. The importance of this scenario, which is called the

noise-limited regime, is that the transmission rate λ can be adjusted by adjusting the transmission

power P . We show that the answer to the above question is affirmative and the noise-limited

regime can be realized by using DTBLAS. However, the throughput achieved by this method

scales like log n
log log n

, which is by a multiplicative factor of log log n less than what is achievable

in an interference-limited regime.

It is worth mentioning that link activation strategies studied in this paper can be considered as

special power allocation schemes. The problem of throughput maximization via power allocation
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is a challenging problem for which only suboptimum solutions have been reported [20]–[22].

However, variations of this problem have been extensively studied in the literature, where the

on-off scheme has frequently appeared. Recently, for a decentralized utility-based network1, it is

shown that the optimum power allocation follows an on-off paradigm when the number of links

is large [23]. The on-off power allocation has been also used in [16], [17] for a cellular network

in which the number of cell (links) are limited, but in each cell there are infinite number of

users to choose from. For cellular systems, a distributed joint power allocation and scheduling

has been proposed in [24], in which again an on-off strategy is followed.

The rest of the paper is organized as follows: In Section II, network model and problem

formulation are presented. An upper bound on the throughput is derived in Section III. In

Sections IV and V, achievability results via decentralized and centralized schemes are presented.

Some optimality results are provided in Section VI. The operation of the network in a noise-

limited regime is investigated in Section VII. Finally, the paper is concluded in Section VIII.

Notation: Nn represents the set of natural numbers less than or equal to n; log(·) is the

natural logarithm function; �x� denotes the largest integer less than or equal to x; χ2(M)

represents the chi-squared distribution with M degrees of freedom; P(A) denotes the prob-

ability of event A; E(x) and Var(x) represent the expected value and the variance of the

random variable x, respectively; ≈ means approximate equality; for any functions f(n) and

h(n), h(n) = O(f(n)) is equivalent to limn→∞ |h(n)/f(n)| < ∞, h(n) = o(f(n)) is equiva-

lent to limn→∞ |h(n)/f(n)| = 0, h(n) = ω(f(n)) is equivalent to limn→∞ |h(n)/f(n)| = ∞,

h(n) = Θ(f(n)) is equivalent to limn→∞ |h(n)/f(n)| = c, where 0 < c <∞, and h(n) ∼ f(n)

is equivalent to limn→∞ h(n)/f(n) = 1; an event An holds asymptotically almost surely (a.a.s)

if P(An) → 1 as n→ ∞.

II. NETWORK MODEL AND PROBLEM FORMULATION

The network model is the same as in [19]; however, we repeat it here for completeness. We

consider a wireless communication network with n pairs of transmitters and receivers. These

n communication links are indexed by the elements of Nn. Each transmitter aims to send data

to its corresponding receiver in a single-hop fashion. The transmit power of link i is denoted

1Each node maximizes a locally computed network average throughput conditioned on its own channel gain.
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by pi. It is assumed that the links follow an on-off paradigm, i.e., pi ∈ {0, P}, where P is a

constant. Hence, any power allocation scheme translates to a link activation strategy (LAS). Any

LAS yields a set of active links A, which describes the transmission powers as

pi =

⎧⎨
⎩ P if i ∈ A

0 if i /∈ A
. (1)

The channel between transmitter j and receiver i is characterized by the coefficient gji. This

means the received power from transmitter j at the receiver i equals gjipj . We assume that the

channel coefficients are independent identically distributed (i.i.d.) random variables drawn from

an exponential pdf, i.e., f(x) = e−x, with mean μ = 1 and variance σ2 = 1. This channel model

corresponds to a Rayleigh fading environment. We refer to the coefficients gii and gji (j 
= i) as

direct channel coefficients and cross channel coefficients, respectively.

We consider an additive white Gaussian noise (AWGN) with limited variance η at the receivers.

The transmit SNR of the network is defined as

ρ =
P

η
. (2)

The receivers are conventional linear receivers, i.e., without multiuser detection. Since the

transmissions occur simultaneously within the same environment, the signal from each transmitter

acts as interference for other links. Assuming Gaussian signal transmission from all links, the

distribution of the interference will be Gaussian as well. Thus, according to the Shannon capacity

formula [25], the maximum supportable rate of link i ∈ A is obtained as

ri(A) = log (1 + γi(A)) nats/channel use, (3)

where

γi(A) =
gii

1/ρ+
∑

j∈A
j �=i

gji
(4)

is the signal-to-interference-plus-noise ratio (SINR) of link i.

As a measure of performance, in this paper we consider the throughput of the network, which

is defined as

T (A) =
∑
i∈A

ri(A). (5)

Also, the average rate per active link is defined as

r̄(A) =
T (A)

|A| . (6)
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In this paper, wherever there is no ambiguity, we drop the functionality of A from the network

parameters and simply refer to them as ri, γi, T , or r̄.

Throughout the paper, we assume all active links transmit with a same constant rate λ. In

this case, the throughput becomes proportional to the number of active links, i.e., T (A) = |A|λ.

Hence, the problem of throughput maximization becomes equivalent to maximizing the number

of active links subject to a constraint on the rate of active links, i.e.,

max
A⊆Nn

|A|
s.t. ri(A) ≥ λ, ∀i ∈ A

. (7)

This problem is referred to as the rate-constrained throughput maximization. We denote the

throughput corresponding to the maximum value of this problem by T ∗
c .

Due to the nonconvex and integral nature of the throughput maximization problem, its solution

is computationally intensive. However, in this paper we propose and analyze LASs which lead

to efficient solutions for the above problem. Indeed, we first show that the decentralized method

of [19] is a.a.s. optimum when λ is vanishingly small. Then, we propose a new LAS which is

asymptotically optimum for large values as well as small values of λ. Also, for moderate values

of λ, there is a small gap between the performance of the proposed LAS and a derived upper

bound. This shows the closeness of its performance to the optimum.

For simplicity of notation, we denote the number of active links by k instead of |A|. Motivated

by the result of [19] that shows the maximum throughput scales like log n, we introduce the

following definitions. The scaling factor of the throughput is defined as

τ = lim
n→∞

T

logn
, (8)

Similarly, the scaling factor of the number of active links is defined as

κ = lim
n→∞

k

log n
. (9)

III. UPPER BOUND

In this section, we obtain an upper bound on the optimum solution of (7). This upper bound

can be either presented as an upper bound on the throughput or as an upper bound on the number

of active links.
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Theorem 1: Assume A∗
c is the solution to the rate-constrained throughput maximization (7)

and k∗c = |A∗
c |. Then, the associated throughput and the scaling factor of k∗

c a.a.s. satisfy

T ∗
c < log n− log log n+ c, (10)

κ∗c <
1

λ
, (11)

for some constant c.

Proof: For a randomly selected set of active links A with |A| = k, the interference term

Ii =
∑

j∈A
j �=i

gji in the denominator of (4) has χ2(2k − 2) distribution. Hence, we have

P(γi > x) =

∫ ∞

0

P (γi > x|Ii = z) fIi
(z)dz

=

∫ ∞

0

e−x(1/ρ+z) z
k−2e−z

(k − 2)!
dz

=
e−x/ρ

(1 + x)k−1
. (12)

Assume L1 is the event that there exists at least one set A ⊆ Nn with |A| = k such that the

constraints in (7) are satisfied. Also, assume γ0 is a quantity that satisfies λ = log(1 + γ0). We

have

P(L1)
(a)

≤
(
n

k

)
(P(ri ≥ λ))k (13)

=

(
n

k

)
(P(γi ≥ γ0))

k (14)

(12)
=

(
n

k

)
e−γ0k/ρ

(1 + γ0)k(k−1)
(15)

(b)

≤
(ne
k

)k e−γ0k/ρ

(1 + γ0)k(k−1)
(16)

= ek(log n−log k−λk+λ+1−γ0/ρ), (17)

where (a) is due to the union bound and (b) is the result of applying the Stirling’s approximation

for the factorial. It can be verified that there exists a constant c such that if kλ = log n −
log logn+ c, then, the above upper bound approaches zero for n→ ∞. Hence, for the event L1

to have non-zero probability, we should a.a.s. have

kλ < log n− log logn + c. (18)

This inequality holds for any feasible number of active links. By choosing k = k∗
c , the upper

bounds in the lemma are proved.
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IV. LOWER BOUND: A DECENTRALIZED APPROACH

To derive a lower bound, in this section, we consider the threshold-based link activation

strategy (TBLAS) originally proposed in [19].

TBLAS: For a threshold Δ, choose the set of active links according to the following rule

i ∈ A iff gii > Δ. (19)

As it is seen, in TBLAS each link only needs to know its own direct channel gain. If a direct

channel gain is above the threshold Δ, the corresponding link is active; otherwise, it remains

silent. The value of Δ determines the achievable throughput. We show that by proper choose

of the threshold, TBLAS provides a solution for the rate-constrained throughput maximization.

The importance of TBLAS is that it can be implemented in a decentralized fashion.

Let us denote the achieved throughput of TBLAS by T
TBLAS

. The following results are proven

for TBLAS in [19]:

T
TBLAS

∼ ne−Δ log

(
1 +

Δ

ne−Δ

)
, (20)

k
TBLAS

∼ ne−Δ, (21)

|k
TBLAS

− ne−Δ| < ξ
√
ne−Δ, a.a.s. (22)

where the last inequality holds for any ξ = ω(1).

A necessary condition for the rate of active links being equal to λ is r̄
TBLAS

= λ, where r̄
TBLAS

is the average rate per active link achieved by TBLAS. Hence, we should choose Δ such that

the throughput and the number of active links both become proportional to logn. The following

lemma shows how to realize such a scenario.

Lemma 2: Assume the activation threshold for TBLAS is chosen to be Δ = logn−log logn−
logα for some α > 0. Then, a.a.s. we have

τ
TBLAS

= α log

(
1 +

1

α

)
(23)

κ
TBLAS

= α (24)

r̄
TBLAS

= log

(
1 +

1

α

)
+ o(1). (25)

Proof: With the specified value of Δ, we have ne−Δ = α logn. The values of τ
TBLAS

and

κ
TBLAS

are readily obtained by substituting this value in (20) and (21) and using the definitions

(8) and (9), respectively. The value of r̄
TBLAS

is obtained by using the definition (6).
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Lemma 2 indicates that by a proper choose of α, an average rate per active link equal to λ

is achievable; however, it does not guarantee that all active links can support this rate. In other

words, one may ask whether TBLAS is capable of satisfying the constraints in problem (7). The

following lemma addresses this issue and shows that a.a.s. the rate of all active links are highly

concentrated around the average rate per active link.

Lemma 3: Assume the activation threshold for TBLAS is chosen to be Δ = logn−log logn−
logα for some α > 0. Then, a.a.s. we have

|ri − r̄| < 2

√
log log n

α3 log n
(1 + o(1)), ∀i ∈ A, (26)

where r̄ = log

(
1 +

1

α

)
.

To prove the lemma, we need the following result about the central limit theorem (CLT) for

large deviations.

Theorem 4 ( [26]): Let {Ym} be a sequence of i.i.d. random variables. Suppose that Y1

has zero mean and finite positive variance ν and satisfies Cramér’s condition2. For Zm =

1√
mν

∑m
j=1 Yj, define Fm(y) = P(Zm < y). If y ≥ 0, y = O(m1/6), then

1 − Fm(y) = [1 − Φ(y)] exp

(
θ3y

3

6
√
mν3

)
+O

(
e−y2/2

√
m

)
, (27)

where Φ(y) is the cdf of normal distribution and θ3 = E(Y 3
1 ).

Proof of Lemma 3: From the definition of ri and the concavity of the log(·) function, we

have

|ri − r̄| =

∣∣∣∣log(1 + γi) − log

(
1 +

1

α

)∣∣∣∣ (28)

≤
∣∣∣∣γi − 1

α

∣∣∣∣ . (29)

Thus, to prove the lemma, it is sufficient to prove that a.a.s.∣∣∣∣γi − 1

α

∣∣∣∣ < 2

√
log log n

α3 log n
(1 + o(1)), ∀i ∈ A, (30)

or equivalently

x− < γi < x+, (31)

2A random variable Y satisfies the Cramér’s condition if its moment-generating function exists in some interval with the

center at the origin.



10

where

x± =
1

α

(
1 ± 2

√
log logn

α log n
(1 + o(1))

)
. (32)

Here, we just prove the left-side inequality in (31). The other side can be proved in a similar

manner.

Let L2 denote the event that

γi > x−, ∀i ∈ A. (33)

In the following, we show that P(L2) → 1 as n→ ∞.

Denoting the cdf of γi conditioned on |A| = k by Fγ(x, k), the probability of the event L2 is

obtained as

P(L2) =
n∑

k=0

P(|A| = k)P(L2||A| = k) (34)

(a)
=

n∑
k=0

P(|A| = k) (1 − Fγ(x−, k))
k (35)

(b)

≥
k+∑

k=k−

P(|A| = k) (1 − Fγ(x−, k))
k (36)

(c)
> (1 − Fγ(x−, k+))k+

k+∑
k=k−

P(|A| = k) (37)

= (1 − Fγ(x−, k+))k+ P(k− ≤ |A| ≤ k+), (38)

where (a) is because the channel gains are independent, (b) is valid for any 0 ≤ k− ≤ k+ ≤ n

and (c) is due to the fact that (1 − Fγ(x, k))
k is a decreasing function of k. According to (22),

by choosing

k± = ne−Δ ± ξ
√
ne−Δ (39)

= α log n± ξ
√
α log n, (40)

for some ξ → ∞, we have P(k− ≤ |A| ≤ k+) → 1. Hence, to prove P(L2) → 1, it is enough to

show that (1 − Fγ(x−, k+))k+ → 1. However, due to the inequality

(1 − Fγ(x−, k+))k+ ≥ 1 − k+Fγ(x−, k+), (41)

it is enough to show that

k+Fγ(x−, k+) → 0. (42)
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To prove (42), we provide an upper bound on k+Fγ(x−, k+) and show that it approaches zero

as n→ ∞. We have

Fγ(x−, k+) = P(γi ≤ x−||A| = k+)

(a)
= P

⎛
⎜⎝ gii

1/ρ+
∑k+

j=1
j �=i

gji

≤ x−

⎞
⎟⎠

= P

⎛
⎜⎜⎝

k+∑
j=1
j �=i

gji ≥ gii

x−
− 1

ρ

⎞
⎟⎟⎠

(b)
< P

⎛
⎜⎜⎝

k+∑
j=1
j �=i

gji ≥ Δ

x−
− 1

ρ

⎞
⎟⎟⎠ , (43)

where (a) is based on A = {1, · · · , k+}, which has been assumed for simplicity of notation, and

(b) is due to the fact that, in TBLAS, gii > Δ for any i ∈ A. Let us define Yj = gji − 1, which

has the variance ν = 1. Thus, the right-hand-side (RHS) of (43) translates to the complementary

cdf of Z =
1√

k+ − 1

∑k+

j=1
j �=i

Yj, i.e. (43) can be rewritten as

Fγ(x−, k+) < 1 − P(Z ≤ y), (44)

where

y =

Δ
x− − 1

ρ
− (k+ − 1)√
k+ − 1

. (45)

By substituting Δ = log n− log log n− log α and the value of x− from (32) into (45), we obtain

y = 2
√

log logn(1 + o(1)). (46)

Since Yj is a shifted exponential random variable, its moment-generating function exists around

zero and the Cramér’s condition is satisfied. Also, by choosing m = k+ − 1 we have y =

O(m1/6). Hence, the result of Theorem 4 can be applied to calculate the complementary cdf of

Z. Consequently, by using (27) with θ3 = E(Y 3
j ) = 2, (44) can be rewritten as

Fγ(x−, k+) < [1 − Φ(y)] exp

(
y3

3
√
k+ − 1

)
+O

(
e−y2/2√
k+ − 1

)
. (47)
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Noting that y3 = o(
√
k+) and using the inequality 1 − Φ(y) < e−y2/2

y
, from (47) and (46), we

conclude that

k+Fγ(x−, k+) < k+
e−y2/2

y
(48)

= exp (− log log n(1 + o(1))) . (49)

It is clear that the above upper bound approaches zero as n → ∞. Hence, P(L2) → 1 and the

proof is complete.

Lemma 3 shows that with the specified threshold for TBLAS, all active links can transmit with

rate λ = log(1+ 1
α
). Hence, TBLAS provides a solution, albeit suboptimum, for the problem (7).

Lemmas 2 and 3 reveal the following relation between the demanded rate λ and κ
TBLAS

as well

as τ
TBLAS

κ
TBLAS

=
1

eλ − 1
, (50)

τ
TBLAS

=
λ

eλ − 1
. (51)

Noting that for small values of λ, the RHS of (50) can be approximated as 1
λ

and using the

upper bound in Theorem 1, it turns out that TBLAS is close to the optimum for small values

of λ.

V. LOWER BOUND: A CENTRALIZED APPROACH

Although TBLAS enjoys the simplicity of decentralized implementation, its performance is

far from the optimum. This can be seen by comparing the upper bound in Theorem 1 and the

achievability result in (50). A reason for this suboptimality is that the mutual interference of the

active links is not considered in choosing A. In this section, we provide an LAS that performs

close to the upper bound in Theorem 1 and turns out to be asymptotically optimum when λ is

very large or very small. We name this method double-threshold-based LAS (DTBLAS).

DTBLAS: For the thresholds Δ and δ

i. Choose the largest set A1 ⊆ Nn such that gii > Δ for all i ∈ A1.

ii. Choose the largest set A2 ⊆ A1 such that gij ≤ δ and gji ≤ δ for all i, j ∈ A2.

The set of active links is A = A2.

This strategy chooses the links to be active in a two-phase selection process; in the first phase,

which is basically similar to TBLAS, a subset A1 of the links with good enough direct channel
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coefficients is chosen. In the second phase, which is the interference management phase, a subset

of links in A1 is chosen such that their mutual interferences are small enough. Note that the

second phase of the strategy requires full knowledge of the channel coefficients. Hence, this

scheme should be implemented in a centralized fashion.

We aim to find Δ and δ such that the throughput is maximized subject to the rate constraints

of the active links.

For simplicity, we use the notation ki = |Ai| for i = 1, 2. Without loss of generality, assume

Ai = {1, · · · , ki}. By using (3), (4), and (5), and applying the Jensen’s inequality, the throughput

is lower bounded as

T ≥ k2 log

(
1 +

Δ

1/ρ+ 1
k2

∑k2

i=1 Ii

)
, (52)

where Ii =
∑k2

j=1
j �=i

gji. Since gji ≤ δ, the mean and variance of Ii depend on δ. More precisely,

we have

E(Ii) = (k2 − 1)μ̂, (53)

Var(Ii) = (k2 − 1)σ̂2, (54)

where

μ̂ = E {gji|gji ≤ δ} = 1 − δe−δ

1 − e−δ
, (55)

σ̂2 = Var {gji|gji ≤ δ} = 1 − δ2e−δ

(1 − e−δ)2
. (56)

Assume δ is a constant and k2 → ∞ as n→ ∞. To simplify the RHS of (52), we apply the

Chebyshev inequality to obtain the upper bound

1

k2

k2∑
i=1

Ii < (k2 − 1)μ̂+ ψ, (57)

which holds a.a.s. for any ψ = ω(1). Consequently, the lower bound (52) becomes

T ≥ k2 log

(
1 +

Δ

μ̂k2 + ψ

)
a.a.s. (58)

Note that the constant 1/ρ− μ̂ is absorbed in the function ψ. Since ψ can be chosen arbitrarily

small, say with an order smaller than μ̂k2, we can rewrite (58) as

T ≥ T
DTBLAS

, (59)
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where

T
DTBLAS

= k2

(
log

(
1 +

Δ

μ̂k2

)
+ o(1)

)
a.a.s. (60)

denotes the throughput achievable by DTBLAS.

Since k2 is a random variable, the right hand side of (60) is a random variable as well.

However, the following discussion shows that k2 is highly concentrated around a certain value.

Hence, it can be treated as a deterministic value.

Construct an undirected graph G(A1, E) with vertex set A1 and the adjacency matrix E = [eij ]

defined as

eij =

⎧⎨
⎩ 1 ; gij ≤ δ and gji ≤ δ

0 ; otherwise
.

The probability of having an edge between vertices i and j, when gji and gij have exponential

distribution, equals

p =
(
1 − e−δ

)2
. (61)

The definition of G implies that G ∈ G(k1, p), where G(k1, p), which is a well-studied object in

the literature [27], is the family of k1-vertex random graphs with edge probability p.

In the second phase of DTBLAS, we are interested to choose the maximum number of links

whose cross channel coefficients are smaller than δ. This is equivalent to choosing the largest

complete subgraph3 of G. The size of the largest complete subgraph of G is called its clique

number and denoted by cl(G). The above discussion yields

k2 = cl(G), for some G ∈ G(k1, p). (62)

Although the clique number of a random graph G is a random variable, the following result

from random graph theory states that it is concentrated in a certain interval.

Theorem 5: Let 0 < p < 1 and ε > 0 be fixed. The clique number cl(G) of G ∈ G(m, p), for

large values of m, a.a.s. satisfies s1 ≤ cl(G) ≤ s2 where

si = �2 logbm− 2 logb logbm(1 − p) + 2 logb(e/2) + 1 + (−1)iε/p�, i = 1, 2, (63)

b = 1/p.

3A complete graph is a graph in which every pair of vertices are connected by an edge.
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Proof: The theorem is a direct result of Theorem 7.1 in [28], which states a similar result

for the stability number of random graphs. Using the fact that the stability number of a random

graph G(m, p) is the same as the clique number of a random graph G(m, 1 − p), the theorem

is proved.

Corollary 6: Consider DTBLAS with parameters Δ and δ. The number of active links,

k
DTBLAS

= k2, a.a.s. satisfies k′− ≤ k
DTBLAS

≤ k′+, where

k′± = �2 logb ne
−Δ − 2 logb logb ne

−Δ(1 − 1

b
) + 2 logb(e/2) + 1 ± ε/p+ o(1)� (64)

and b = (1 − e−δ)−2.

Proof: According to (22), a.a.s. we have k1 = ne−Δ + O(ξ
√
ne−Δ). Assuming ξ =

o(
√
ne−Δ), and by substituting this value of k1 into (62) and using Theorem 5, the corollary is

proved.

The next lemma indicates how to choose the thresholds Δ and δ such that the throughput and

the number of active links both become proportional to logn. As a result, a constant average

rate per active link is achieved.

Lemma 7: Assume the threshold Δ for DTBLAS is chosen to be

Δ = (1 − α′) logn(1 + o(1)), (65)

for some α′ > 0 and δ is a constant. Then, a.a.s. we have

κ
DTBLAS

=
−α′

log (1 − e−δ)
, (66)

τ
DTBLAS

=
−α′

log (1 − e−δ)
log

⎛
⎜⎜⎝1 − (1 − α′) log

(
1 − e−δ

)
α′
(

1 − δe−δ

1 − e−δ

)
⎞
⎟⎟⎠ , (67)

r̄
DTBLAS

= log

(
1 − (1 − α′) log(1 − e−δ)

α′μ̂

)
+ o(1). (68)

Proof: For the number of active links, we have

k
DTBLAS

(a)∼ 2 logb ne
−Δ (69)

(b)
=

−α′(1 + o(1))

log (1 − e−δ)
log n, (70)

where (a) is based on Corollary 6 and (b) is obtained by using (65). From (70), and by using

the definition (9), κ
DTBLAS

is obtained as given in (66).
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The number of active links in (70) can be used along with the value of Δ in (65) to rewrite

(60) as

T
DTBLAS

=

[
−α′

log (1 − e−δ)
log

(
1 − (1 − α′) log

(
1 − e−δ

)
α′μ̂

)
+ o(1)

]
log n. (71)

The scaling factor τ
DTBLAS

, as given in the Lemma, is obtained by using the value of μ̂ from

(55) and applying the definition (8). The value of r̄
DTBLAS

is obtained by using the definition

(6). This completes the proof.

According to this lemma, by proper choose of the constants α ′ and δ, the average rate per

active link r̄
DTBLAS

can be adjusted to be equal to the required rate λ. A natural question is

whether, under the specified conditions in DTBLAS, all active links can support the rate λ. The

following lemma addresses this issue and shows that a.a.s. the rate of all active links are highly

concentrated around the average value r̄
DTBLAS

.

Lemma 8: Consider DTBLAS with thresholds δ and Δ = (1 − α′) logn for some α′ > 0.

Then, a.a.s. we have

|ri − r̄| < c

√
log log n

logn
(1 + o(1)), ∀i ∈ A, (72)

for some constant c > 0, where

r̄ = log

(
1 − (1 − α′) log(1 − e−δ)

α′μ̂

)
.

Proof: See Appendix A.

According to Lemmas 7 and 8, when maximizing the throughput of DTBLAS, δ should be

a constant and Δ is obtained from another constant α′. Hence, the rate-constrained throughput

maximization simplifies to an optimization problem with constant parameters α ′ and δ. Assume

γ0 is a quantity that satisfies λ = log(1 + γ0), i.e., γ0 is the required SINR by the active links.

Instead of the number of active links, we can maximize the scaling factor of the number of

active links given in Lemma 7. Hence, the rate-constrained throughput maximization problem

(7) is converted for DTBLAS to the following optimization problem

max
α′, δ

−α′

log (1 − e−δ)
(73)

s.t. −(1 − α′) log
(
1 − e−δ

)
α′
(

1 − δe−δ

1 − e−δ

) = γ0. (74)
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Fig. 1. Optimum of the threshold δ and the parameter α′ vs. the demanded rate λ.

Note that in contrast to problem (7), there is only one constraint in this problem. However,

according to Lemma 8, this single constraint guarantees the required rate for all active links.

From the equality constraint (74), parameter α′ can be found in terms of δ as

α′ =
− log

(
1 − e−δ

)
γ0

(
1 − δe−δ

1 − e−δ

)
− log (1 − e−δ)

. (75)

By substituting this value in the objective function (73), we obtain the following equivalent

unconstrained optimization problem

min
δ
γ0

(
1 − δe−δ

1 − e−δ

)
− log

(
1 − e−δ

)
. (76)

Consequently, (α′∗, δ∗), the solution of (73), can be obtained by first finding δ∗ from (76) and

then substituting it into (75) to obtain α ′∗. Due to the complicated form of (76), it is not possible

to find δ∗ analytically and it should be found numerically.

Fig. 1 shows δ∗ and α′∗ versus λ. The values of δ∗ and α′∗ can be replaced in (67) and (66) to

obtain the maximum throughput scaling factor (τ ∗
DTBLAS

) as well as the maximum scaling factor

for the number of active links (κ∗
DTBLAS

). The value τ ∗
DTBLAS

is shown in Fig. 2. Depicted in the

figure is also the throughput scaling factor of TBLAS obtained from (51). As it is observed, for
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small values of λ, the performance of TBLAS and DTBLAS are almost the same. However, as

λ grows larger, the scaling factor of TBLAS approaches zero, but the scaling factor of DTBLAS

approaches 1. This shows some kind of optimality for DTBLAS which will be later proven

formally. Figure 3 demonstrates the tradeoff between the number of supported links and the

demanded rate-per-link for TBLAS and DTBLAS. The tradeoff curve for TBLAS is obtained

from (50). The upper bound from Theorem 1 is also plotted for comparison. As observed, for

a ceratin value of λ, DTBLAS can support larger number of users, especially for larger values

of λ. Indeed, the tradeoff curve of DTBLAS is very close to the upper bound. Specifically, for

large values of λ, these two curves coincide. This will be later proven formally.

VI. OPTIMALITY RESULTS

Although the behaviour of DTBLAS is numerically described in Figs. 1, 2, and 3, it is possible

and also insightful to obtain closed form expressions for δ∗ and α′∗ as well as κ∗
DTBLAS

and

τ ∗
DTBLAS

when λ is very small or very large. An important result of these extreme-case analyses

is the asymptotic optimality of DTBLAS.

Setting the derivative of the objective function (76) equal to zero reveals that, at the optimum

point, δ, satisfies

eλ(1 − e−δ − δ) + δ = 0. (77)

Two extreme cases of large λ and small λ are discussed separately in the following.

a) Large λ: In this case, solving (77) yields

δ∗ = 2e−λ +O
(
e−2λ

)
. (78)

Consequently, α′∗, τ ∗, and κ∗
DTBLAS

are obtained as

α′∗ = 1 − 1

λ
+O

(
1

λ2

)
(79)

τ ∗
DTBLAS

= 1 − log(e/2)

λ
+O

(
1

λ2

)
(80)

κ∗
DTBLAS

=
1

λ
+O

(
1

λ2

)
. (81)

As it is seen from the above equations, for large values of λ, δ∗ becomes very small and α′∗

approaches one. This means, when large rate-per-links are demanded, it is more crucial to manage

the interference than to choose links with high direct gain.
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b) Small λ: In this case, solving (77) yields

δ∗ =
1

λ
+

1

2
+O(λ). (82)

Consequently, α′∗, τ ∗
DTBLAS

, and κ∗
DTBLAS

are obtained as

α′∗ = e−
1
λ
− 1

2

(
1

λ
+

1

2
+O(λ)

)
(83)

τ ∗
DTBLAS

= 1 − λ

2
+O

(
λ2
)

(84)

κ∗
DTBLAS

=
1

λ
− 1

2
+O (λ) . (85)

The above equations show that for small values of λ, δ∗ is very large and α′∗ is very small. In

other words, DTBLAS is converted to its special case, TBLAS.

The above discussion yields the following optimality result on DTBLAS.

Theorem 9: Consider the rate-constrained throughput maximization problem (7). Assume τ ∗
c

and κ∗c are the maximum achievable scaling factors of the throughput and the number of supported

links, respectively. Also, assume τ ∗
DTBLAS

and κ∗
DTBLAS

are the maximum scaling factor of the

throughput and the number of active links when DTBLAS is deployed. Then, a.a.s. we have

lim
λ→∞

(τ ∗
DTBLAS

− τ ∗c ) = 0, (86)

lim
λ→∞

(κ∗
DTBLAS

− κ∗c) = 0, (87)

lim
λ→0

(τ ∗
DTBLAS

− τ ∗c ) = 0, (88)

lim
λ→0

κ∗
DTBLAS

κ∗c
= 1. (89)

Proof: The proof of the theorem is straightforward by using the upper bounds provided in

Theorem 1 and the asymptotic achievability results provided in this section.

VII. NOISE-LIMITED REGIME

In the previous sections, we considered an interference-limited regime in which the noise power

is negligible in comparison with the interference power. In this case, the achievable throughput

is not a function of the network SNR. In other words, changing the transmission powers does

not affect the supportable rate of each link. However, in a practical scenario, it is appealing to

have rates which scale by increasing ρ. This way, the transmission rates can be easily adjusted
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by changing the transmission powers. Specifically, it is desirable that the rate of active links

a.a.s. scale as

ri = log

(
1 +

gii

1/ρ+ βi

)
, ∀i ∈ A, (90)

for some βi = O(1), which are the design parameters. At the same time, we require the conditions

of problem (7), i.e. ri ≥ λ, be satisfied. In this section, we show how to realize such a situation

by using DTBLAS.

According to (90), we should a.a.s. have Ii = βi, where Ii is the interference observed by active

link i and is defined in (52). However, this requires that E(Ii) = βi. Noting that E(Ii) = (k2−1)μ̂

(see (53)), we conclude that all βis should take a same value, say β. Hence, a necessary condition

for being in the noise-limited regime is

(k2 − 1)μ̂ = β, (91)

where β = O(1) is a design parameters. Later, we show that (91) is also a sufficient condition

for operating in a noise-limited regime.

Based on the above discussion, we propose the following scheme for choosing the parameters

of DTBLAS for a noise-limited regime: For a given required rate λ = log(1 + γ0) and the

interference β,

i. choose Δ as

Δ = Δ0 = γ0(1/ρ+ β). (92)

ii. choose δ such that (91) is satisfied.

Note that the selection of Δ is such that the rate constraints ri ≥ λ are satisfied. Also, as will be

shown later, the selection of δ is such that operation in the noise-limited regime is guaranteed.

The next step is to solve (91) to obtain the value of δ and the corresponding number of active

links k2. By using (55), which gives the value of μ̂ in terms of δ, it is clear that (91) holds only

if δ → 0 as k2 → ∞. In this case, (55) converts to μ̂ =
δ

2
+O(δ2) and (91) simplifies to

k2δ = 2β a.a.s (93)

To solve (93) and obtain δ, we should first obtain the value of k2 in terms of n and δ. From

(22) and condition (92), the number of links chosen by phase (i) of DTBLAS is obtained as

k1 = ne−Δ0 +O
(
ξ
√
ne−Δ0

)
. (94)
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Also, recall from (62) that k2 is the clique number of a random graph G(k1, p), where p is

obtained from (61). Since δ → 0, (61) can be rewritten as

p = δ2 +O(δ3), (95)

which approaches zero as well. Note that Theorem 5, which was adopted from [28], and a similar

result that appears in [29], are valid only for a fixed value of p. A natural question is whether

a similar concentration result on the clique number of random graphs holds when p approaches

zero. In the following lemma, we address this issue and obtain a concentration result on the

clique number for zero-approaching values of p.

Lemma 10: Let p = p(m) be such that p = o(1) and p = ω(m−a) for all a > 0. For fixed

ε > 0, the clique number cl(G) of G ∈ G(m, p) a.a.s. satisfies �s� ≤ cl(G) ≤ �s� + 1, where

s = 2 logbm− 2 logb logbm+ 1 − 4 logb 2 − ε

log b
,

b = 1/p.

Proof: See the Appendix.

By using this lemma, (94), (95), and assuming ξ = o(
√
n), the number of active links a.a.s.

becomes

k2 =

⌊
logn− log log n

− log δ

⌋
. (96)

Thus, (93) can be rewritten as

logn− log log n

− log δ
· δ = 2β. (97)

Assuming | log β| = o(log logn), it can be verified that the solution of (97) is

δ =
2β log log n

log n
(1 + o(1)). (98)

With this value of δ, the number of active links is obtained from (96) as

k2 =

⌊
log n

log logn
(1 + o(1))

⌋
. (99)

As mentioned before, we should show that the selected values of δ and Δ for DTBLAS, yields

the network to operate in the noise-limited regime. The following theorem addresses this issue.

Theorem 11: For the values of Δ and δ given in (92) and (98), respectively, the interference

of active links a.a.s. satisfy

|Ii − β| → 0, ∀i ∈ A. (100)
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Proof: By using the central limit theorem it can be shown that

|Ii − β| < β log log n√
log n

, ∀i ∈ A, (101)

which readily yields the desired result. Since the calculations are similar to those in the proof

of Lemmas 3 and 8, we omit them for brevity.

Lemma 12: Let T
NL

denote the throughput achieved by DTBLAS in the noise-limited regime

described above. Then, almost surely we have

log

(
1 +

Δ0

1/ρ+ β

)
≤ lim

n→∞
log logn

log n
T

NL
≤ log

(
1 +

Δ0 + 1

1/ρ+ β

)
. (102)

Proof: According to Theorem 11, the throughput is obtained as

T
NL

=

k2∑
i=1

log

(
1 +

gii

1/ρ+ β

)
. (103)

Due to the fact that gii > Δ0, we have

T
NL

≥ k2 log

(
1 +

Δ0

1/ρ+ β

)
. (104)

The left-hand-side inequality in the lemma is readily obtained by using this inequality and the

value of k2 from (99). For the right-hand-side inequality, by utilizing the Jensen’s inequality in

(103), we obtain

T
NL

≤ k2 log

(
1 +

1
k2

∑k2

i=1 gii

1/ρ+ β

)
. (105)

According to the law of large numbers and due to the fact that gii > Δ0, we have

1

k2

k2∑
i=1

gii → E(gii|gii > Δ0) = 1 + Δ0. (106)

The result is obtained by using (105), (106), and the value of k2 from (99).

It is observed that the price for operating in the noise-limited regime is a decrease in the

throughput by a multiplicative factor of log logn.

VIII. CONCLUSION

In this paper, wireless networks in Rayleigh fading environments are studied in terms of

their achievable throughput. It is assumed that each link is either active and transmits with

power P and rate λ, or remains silent. The objective is to maximize the network throughput

or equivalently the number of active links. First, an upper bound is derived that shows the
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throughput and the number of active links scale at most like log n and 1
λ

log n, respectively. To

obtain lower bounds, we propose two LASs (TBLAS and DTBLAS) and prove that both of

them a.a.s. yield feasible solutions for the throughput maximization problem. In TBLAS, the

activeness of each link is solely determined by the quality of its direct channel. TBLAS, which

can be implemented in a decentralized fashion, performs very close to the upper bound for

small values of λ. However, its performance falls below the upper bound when λ grows large.

In DTBLAS, the mutual interference of the links are also taken into account when choosing the

active links. It is demonstrated that DTBLAS not only performs close to the upper bound for

λ → 0, but its performance meets the upper bound when λ → ∞. The above discussions take

place in an interference-limited regime in which the transmission power P does not affect the

transmission rate λ. However, we show that by a proper choose of the DTBLAS parameters, the

rate-constrained network can also operate in a noise-limited regime; this feature of the DTBLAS

comes at the price of decreasing the network throughput by a multiplicative factor of log log n.

APPENDIX A

PROOF OF LEMMA 8

The proof is based on the same arguments as in the proof of Lemma 3. Thus, here we just

highlight the differences.

Let us define γ̄ as

γ̄ = −(1 − α′) log(1 − e−δ)

α′μ̂
. (107)

Similar to the proof of Lemma 3, it is enough to show that a.a.s.

x′− < γi < x′+, (108)

where

x′± = γ̄

(
1 ± c′

√
log logn

log n
(1 + o(1))

)
, (109)

with c′ = c/γ̄. We only prove the left side inequality in (108); the other inequality can be proved

in a similar manner.

Let L3 denote the event that

γi > x′−, ∀i ∈ A, (110)

In the following, we show that P(L3) → 1 for some c′ > 0.
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Note that with Δ = (1 − α′) log n, the parameter k′+ in Corollary 6 is obtained as

k′+ = κ
DTBLAS

log n− a log log n (111)

< κ
DTBLAS

log n, (112)

where κ
DTBLAS

is given in (66) and a > 0 is a constant. Denoting the cdf of γi conditioned on

|A| = k by Fγ(x, k), we have

P(L3)
(a)
>

(
1 − Fγ(x

′
−, k

′
+)
)k′

+ P
(
k′− ≤ |A| ≤ k′+

)
(113)

(b)≈ (
1 − Fγ(x

′
−, k

′
+)
)k′

+ (114)
(c)
>

(
1 − Fγ(x

′
−, κDTBLAS

log n)
)κ

DTBLAS
log n

, (115)

where (a) is obtained in the same manner as (38), (b) results from Corollary 6, and (c) is due

to (112) and the fact that (1 − Fγ(x, k))
k is a decreasing function of k. To show that the RHS

of (115) tends to one, we upper bound κ
DTBLAS

lognFγ(x
′
−, κDTBLAS

log n) and show that it

approaches zero.

Similar to the derivation of (43), it can be shown that

Fγ(x
′
−, κDTBLAS

logn) < P

⎛
⎜⎜⎝

κ
DTBLAS

log n∑
j=1
j �=i

gji ≥ Δ

x′−
− 1

ρ

⎞
⎟⎟⎠ . (116)

Let us define Yj = gji − μ̂, where μ̂ is obtained from (55). Random variable Yj has the variance

ν = σ̂2, where σ̂2 is given in (56). By defining Z =
1√

ν(κ
DTBLAS

logn− 1)

∑κ
DTBLAS

log n

j=1
j �=i

Yj,

(116) can be reformulated as

Fγ(x
′
−, κDTBLAS

log n) < 1 − P(Z ≤ y), (117)

where

y =

Δ
x′
−
− 1

ρ
− (κ

DTBLAS
log n− 1)μ̂√

(κ
DTBLAS

logn− 1)σ̂2
. (118)

By substituting Δ = (1 − α′) logn and the value of x′− from (109) into (118), we obtain

y = c′
√
κ

DTBLAS
μ̂2

σ̂2

√
log log n

(
1 +O

(
1√

log n log log n

))
. (119)

It is straightforward to show that the moment-generating function of Yj exists around zero.

Hence, the Cramér’s condition is satisfied. Also, by choosing m = κ
DTBLAS

logn − 1, the
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condition y = O(m1/6) is satisfied, as well. As a result, Theorem 4 can be utilized to calculate

the RHS(117) as

1 − P(Z ≤ y) = [1 − Φ(y)] exp

(
θ3y

3

6
√
ν3κ

DTBLAS
log n

)
+O

(
e−

y2

2√
κ

DTBLAS
logn

)
(120)

By combining (117), (120), and (119), and noting that θ3 is a constant, y3 =

o(
√
κ

DTBLAS
log n), and 1 − Φ(y) < e−y2/2

y
, we conclude that

κ
DTBLAS

lognFγ(x, κDTBLAS
log n) < κ

DTBLAS
log n

e−
y2

2

y
(121)

= exp

(
(1 − c′2κ

DTBLAS
μ̂2

2σ̂2
) log log n+O(log log logn)

)
It is clear that if c′ is chosen large enough, the above upper bound approaches zero as n→ ∞.

This completes the proof.

APPENDIX B

PROOF OF LEMMA 10

The proof is based on the standard second moment method.

A. Preliminary Calculations

Assume Ys is the number of cliques of size s in G. Let us denote its mean and variance by

μs and σ2
s , respectively. According to [29], we have

μs =

(
m

s

)
p(

s
2), (122)

σ2
s

μ2
s

=
s∑

	=2

(
s
	

)(
m−s
s−	

)
(

m
s

) (b(
�
2) − 1), (123)

where b = 1/p. By applying the Stirling’s approximation to (122), we obtain

μs =
mm+ 1

2√
2πss+ 1

2 (m− s)m−s+ 1
2

p
s(s−1)

2 (124)

≤ 1(
s
m

)s (
1 − s

m

)mp s(s−1)
2 (125)

For any ε > 0, the inequality 1−x ≥ e−(1+ε)x holds for sufficiently small values of x. Since we

are interested in small values of s/m, from this inequality and (124), we obtain

μs ≤ es(log m−log s+(1+ε)− s−1
2

log b) (126)
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Equation (123) is readily converted to the following inequality

σ2
s

μ2
s

≤
s∑

	=2

F	, (127)

where

F	 =

(
s
	

)(
m−s
s−	

)
(

m
s

) b(
�
2). (128)

By using the definition of the binomial coefficients, we obtain

F	 ≤ 2s · (m− s)!

m!
· (m− s)!

(m− 2s+ �)!
· s!

(s− �)!
· b �(�−1)

2 (129)

≤ 2s · (m− s)s−	 · s	

(m− s)s
· b �(�−1)

2 (130)

= 2s ·
(m
s
− 1
)−	

· b �(�−1)
2 (131)

Noting that m
s
� 1, the above inequality can be approximately written as

F	 ≤ 2s ·
( s
m

)	

· b �(�−1)
2 . (132)

Using (127) and (132), we obtain
σ2

s

μ2
s

≤
s∑

	=2

eg(	), (133)

where

g(�) = s log 2 + �(log s− logm+
�

2
log b− 1

2
log b) (134)

is a quadratic convex function with a minimum at �0 = log m
log b

− log s
log b

+ 1
2
. Define

s0 = 2 logbm− 2 logb logbm− 2 logb 2. (135)

It is easy to show that if s > s0, then g(s) > g(2). Hence, (133) can be simplified as

σ2
s

μ2
s

≤ elog s+g(s). (136)



28

B. Proof

According to the Markov’s inequality, we have

P {Ys ≥ 1} ≤ μs. (137)

For a fixed ε > 0, define

s1 = 2 logbm− 2 logb logbm+ 1 + 2 logb(e/2) +
ε

log b
. (138)

Using (126), it is easy to verify that for s ≥ s1, we have μs → 0 as m → ∞. Hence, from

(137), we conclude that

P {Ys ≥ 1} → 0, for s ≥ s1 (139)

as m→ ∞. This means a.a.s. the clique number of G is less than s1, i.e., we have the following

upper bound on cl(G)

cl(G) < s1 a.a.s. (140)

According to the Chebyshev’s inequality, we have

P {Ys = 0} ≤ σ2
s

μ2
s

. (141)

For a fixed ε > 0, define

s2 = 2 logbm− 2 logb logbm+ 1 − 4 logb 2 − ε

log b
. (142)

Using (136), it is easy to verify that for s ≤ s2, we have σ2
s/μ

2
s → 0 as m → ∞. Hence, from

(141), we conclude that

P {Ys = 0} → 0, for s ≤ s2 (143)

as m → ∞. This means a.a.s. the clique number of G is not less than �s2�, i.e., we have the

following lower bound on cl(G)

cl(G) ≥ �s2� a.a.s. (144)

For sufficiently small ε, the difference between the upper bound s1 and the lower bound s2 is

less than one. Hence, from (140) and (144) we can conclude that

�s2� ≤ cl(G) ≤ �s2� + 1 a.a.s. (145)
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