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Abstract

A distributed single-hop wireless network with K links is considered, where the links are

partitioned into M clusters each operating in an orthogonal subchannel with bandwidth W

M
. We

consider a general shadow-fading model, described with parameters (α, $), where α denotes the

probability of shadowing and $ represents the average power of the cross-link channels. The

main goal of this paper is to maximize the network throughput. This is achieved by: i) proposing a

distributed and non-iterative power allocation strategy, where the objective function for each user

is to maximize its best estimate (based on its local information, i.e., direct channel gain) of the

average network throughput, and ii) choosing the optimum value for 1 ≤ M ≤ K. We analyze

the throughput of the network in terms of M and (α, $) in the asymptotic case of K → ∞. It is

proved that when the number of links is large, the optimum power allocation strategy for each user

is the threshold-based on-off power scheme (i.e., links with a direct channel gain above certain

threshold transmit at full power and the rest remain silent). Under the on-off power scheme, it is

demonstrated that the maximum achievable network throughput for every value of 1 ≤ M ≤ K,

0 ≤ α < 1 and $ ≤ 1 is achieved at M = 1.
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and Engineering Research Council of Canada (NSERC), and Ontario Centers of Excellence (OCE).
∗ The material in this paper was presented in part at the IEEE International Symposium on Information Theory (ISIT),

Nice, France, June 24-29, 2007 [1] and the 41th Conference on IEEE Information Sciences and Systems (CISS), Johns

Hopkins University, Baltimore, MD, March 14-16, 2007 [2].
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Throughput maximization, distributed power allocation, shadow-fading, wireless network.

I. INTRODUCTION

A. History

The main challenge in wireless networks originates from using resources efficiently

such that the network throughput is maximized. Throughput maximization in multi-user

wireless networks has been addressed from various perspectives; resource allocation (e.g.,

power and bandwidth assignments [3]–[5]), scheduling (e.g., user selection [6]), routing by

using relay nodes [7], mobility of the nodes [8] and exploiting channel characteristics (e.g.,

power decay-versus-distance law [9]–[11], geometric pathloss as well as fading [12], [13]

and random connections [14]). Central to the study of the network throughput maximization

is the problem of resource allocation.

Among different resource allocation schemes, power and spectrum assignments have

long been regarded as efficient tools in order to mitigate the interference and improve the

network throughput. In recent years, various power and spectrum allocation schemes have

been extensively studied in cellular and multihop wireless networks [3], [4], [15]–[20]. In

[19], the authors provide a comprehensive survey in the area of resource allocation, in

particular in the context of spectrum assignment for different kinds of wireless networks.

Much of these works rely on centralized and cooperative algorithms. Clearly, centralized

resource allocation schemes provide a significant improvement in the network throughput

over distributed (or decentralized) approaches. However, they require extensive knowledge

of the network configuration. In particular, when the number of nodes is large, deploying

centralized schemes becomes computationally intractable. In addition, in a cooperative wire-

less network, when the number of nodes becomes large, the network is overwhelmed by the

amount of exchanged information. This is critical for time-varying networks, as the resource

assignments can not perfectly trace the speed of channel variations. Thus, due to significant

challenges in using centralized approaches, the attention of the researchers has drawn to the

distributed resource allocation schemes [21]–[26].
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The main goal of applying a decentralized mechanism is that operational decisions for

network parameters (e.g., the transmission rate) are made solely by the individual users based

on decision parameters locally available to each node. The local decision parameters that can

be used for adjusting the rate are the Signal-to-Interference-plus-Noise Ratio (SINR) and the

direct channel gains. Most of the works dealing with the throughput maximization target the

SINR parameter by using iterative algorithms [23]–[25]. This leads to use of game theory

concepts such as repeated game [27], in which the main challenge is the convergence issue.

For instance, Etkin et al. [25] develop power and spectrum allocation strategies in multiple

wireless systems by using game theory. Under the assumptions of the omniscient nodes and

strong interference, they show that Frequency-Division Multiplexing (FDM) is the optimal

scheme in the sense of the throughput maximization. They use an iterative algorithm that

converges to the optimum powers. A more realistic approach in time-varying networks is

to adjust the transmission rate based on the channel gains non-cooperatively and without

utilizing iterative schemes.

Motivated by the above considerations, we study the throughput maximization of a

distributed wireless network with K links, where all the links operating in bandwidth

W are partitioned into M clusters. Each cluster operates in an orthogonal subchannel

with bandwidth W
M

. The throughput maximization of the underlying network is achieved

by proposing a distributed and non-iterative power allocation strategy based on the direct

channel gains, and then choosing the optimum value for 1 ≤M ≤ K.

B. Contributions and Relations to Previous Works

In this paper, we study the throughput maximization of a spatially distributed wireless

network with K links, where the sources and their corresponding destinations communicate

directly with each other without using other nodes. Wireless networks with unlicensed

spectrum (e.g. Wi-Fi systems based on IEEE 802.11 standard) are among typical distributed

networks. We develop a general model of the shadowing effect that is caused by obstacles.

In this model, it is considered a Rayleigh fading model for the direct-link channels. Also,

it is assumed a Rayleigh shadow-fading model for the cross-link channels, described with
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parameters (α,$), where α denotes the probability of shadowing and $ represents the

average power of the cross-link channels. It is assumed K links operating in bandwidth

W are partitioned into M clusters. Each cluster operates in an orthogonal subchannel with

bandwidth W
M

in order to mitigate the interference.

The above configuration differs from the geometric models proposed in [8]–[11], in

which the signal power decays based on the distance between nodes. Contrary to [22]–[25],

in which the proposed iterative algorithms rely on the SINR, we focus on a more practical

case, where each transmitter adjusts its power based on the direct channel gain with its

corresponding receiver. Clearly, if each user maximizes its rate selfishly, the optimum power

allocation strategy for each user is to transmit with full power. This results in the network

throughput degradation. To prevent the users from selfishly increasing their powers, it is

desired to consider the negative impact of each user’s power increment on the other links

performance. While designing such an algorithm, a reasonable objective is to choose an

optimum non-iterative power allocation strategy in order to maximize its best local estimate

of the average network throughput. In this setup, the optimization problem is subject to the

individual power constraint for each link, instead of a total power constraint. This assumption

is more practical for decentralized wireless networks. Under the aforementioned objective

function, it is demonstrated that when the number of links is large, the optimum power

allocation strategy for each user is the threshold-based on-off power scheme (i.e., links with

a direct channel gain above certain threshold transmit at full power and the rest remain

silent). This result is different from the link activation strategy studied in [28], where they

use the on-off power scheme for M = 1 and without mentioning about the optimality of this

power allocation in the sense of the throughput maximization. Also, our work differs from

the analysis developed in [14] and [29]; primarily we use a distributed power allocation

scheme for a single-hop wireless network with M disjoint subchannels, while [14] and [29]

present an ad-hoc network model with random connections for M = 1 and using relay

nodes.

We optimize the maximum achievable throughput of the network in terms of the number

of the clusters, M . It is proved that the maximum throughput of the network for every value
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of 1 ≤ M ≤ K, 0 ≤ α < 1 and $ ≤ 1 is achieved at M = 1. In other words, splitting

the bandwidth W into M orthogonal subchannels has no gain in terms of enhancing the

throughput. The interesting point is that under the on-off power allocation strategy, the total

network energy for M = 1 can be minimized in comparison with M = K case, where all

the users transmit with full power all the time.

The rest of the paper is organized as follows. In Section II, the network model and

objectives are described. The distributed on-off power allocation strategy is presented in

Section III. We analyze the network throughput in Section IV. Finally, in Section V, an

overview of the results and conclusions is presented.

C. Notations

Knuth’s order notation [30]: For any functions f(n) and g(n):

• f(n) = O(g(n)) means that limn→∞ |f(n)/g(n)| <∞.

• f(n) = o(g(n)) means that limn→∞ |f(n)/g(n)| = 0.

• f(n) = ω(g(n)) means that limn→∞ |f(n)/g(n)| = ∞.

• f(n) = Ω(g(n)) means that limn→∞ |f(n)/g(n)| > 0.

• f(n) = Θ(g(n)) means that limn→∞ |f(n)/g(n)| = c, where 0 < c <∞.

• f(n) ∼ g(n) means that limn→∞ f(n)/g(n) = 1.

Also, throughout the paper, we use log(.) as the natural logarithm function; boldface

letters denote vectors and R̄ means E[R], where E[ . ] represents the expectation operator.

II. NETWORK MODEL AND OBJECTIVES

A. Network Model

In this work, we consider a single-hop wireless network consisting of K pairs of

nodes1, operating in bandwidth W . The links are assumed to be randomly distributed among

M clusters denoted by Cj , j = 1, ...,M , such that the number of links in all clusters

are the same. Without loss of generality, we assume that Cj , {(j − 1)n + 1, ..., jn},

1The term “pair” is used to describe the transmitter and the related receiver, and “user” only for the transmitter.
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where n , K
M

denotes the cardinality of the set Cj and is assumed to be known to

all users2. In order to eliminate the mutual interference among clusters, we assume an

M -dimensional orthogonal coordinate system3. Without loss of generality, we consider an

orthogonal frequency coordinates system, in which the bandwidth W is split into M disjoint

subchannels each with bandwidth W
M

. It is supposed that the links in Cj operate in subchannel

j. In this work, we assume that the quantity M is in the range of 1 to K. Also, all the

nodes in the network are assumed to have a single antenna. In addition, we assume that

each receiver knows its direct channel gain with the corresponding transmitter, as well

as the interference power imposed by other users. These information are fed back to the

corresponding transmitter without any error. The power of additive white Gaussian noise

(AWGN) at each receiver is assumed to be N0W
M

, where N0 is defined as the noise power

spectral density over bandwidth W .

The channel model considered in this paper is assumed to be flat Rayleigh fading with

the shadowing effect. The channel gain4 between transmitter k and receiver i is represented

by the random variable Lki, where Lki = hii (for k = i) is referred as the direct-link channel

gain, and for k 6= i, the cross-link channel gains are defined based on a general shadowing

model as follows

Lki =







βkihki, with probability α

0, with probability 1 − α,
(1)

where hki’s are exponentially distributed with unit mean and unit variance, 0 ≤ α ≤ 1 is a

fixed parameter, and βki is a random variable with the following conditions:

• E
[

βki

]

, $ ≤ 1,

• E
[

β2
ki

]

, κ, where κ is a finite positive number,

• The probability density function of βki is bounded at zero and is continuous within the

neighborhood of zero.

2It is assumed that K is divisible by M , and hence, n = K
M

is an integer number.
3There are several ways of generating M orthogonal subspaces. For example, we can allocate M different frequency

bands, or M different time slots, or we could carefully design M orthogonal codes such as Walsh-Hadamard codes and

allocate each code to each cluster.
4In this paper, channel gain is defined as the square magnitude of the channel coefficient.
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Note that the second and third conditions on βki are not restrictive and most of the known

density functions satisfy these conditions. All the channels in the network are supposed to

be quasi-static block fading, where the channel gains remain constant during transmitting

one block and change independently from block to block.

We assume a homogeneous network in the sense that all the links have the same

configurations and use the same protocols. Thus, the transmission strategy for all the users are

agreed in advance. We denote the transmit power of user i by pi ∈ P, where P , [0, Pmax].

Also, the non-negative vector P(j) = (p(j−1)n+1, ..., pjn) represents the vector of all the

users’ power in Cj . The power vector P(j)
−i describes the vector P(j) except pi. To simplify

the notations, we assume the noise power N0W
M

is normalized by Pmax. Without loss of

generality, in the sequel, we assume Pmax = 1. Assuming the transmitted signal from each

transmitter to be Gaussian-distributed, the interference term seen by a link i ∈ Cj will be

Gaussian with power

Ii =
∑

k∈Cj

k 6=i

Lkipk.

Due to the orthogonality of the allocated subchannels, no interference is imposed from

links in Ck on links in Cj , k 6= j. Under these assumptions, the achievable data rate of each

link i ∈ Cj is expressed as

Ri(P(j),L(j)) =
W

M
log

(

1 +
hiipi

Ii + N0W
M

)

, (2)

where L
(j) = (L((j−1)n+1)i, ...,L(jn)i). In order to analyze the performance of the underlying

network, we define the network throughput as the average sum-rate of all the links, i.e.,

R̄sum ,

M
∑

j=1

∑

i∈Cj

E

[

Ri(P(j),L(j))
]

, (3)

where the expectation is computed with respect to L
(j).

B. Objectives

The main goal of this paper is to maximize the network throughput. This is achieved

by:
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1- Proposing a distributed and non-iterative power allocation strategy, where the objective

function for each user is to maximize its best estimate (based on its local information,

i.e., direct channel gain) of the average network throughput.

2- Choosing the optimum value for 1 ≤ M ≤ K.

We propose a simple distributed power allocation strategy through defining a utility

function, where only the direct channel gains are used. Clearly, if each user maximizes its

rate selfishly, the optimum power allocation strategy for each user is to transmit with full

power. This leads to the network throughput degradation. To prevent the users from selfishly

increasing their powers, the negative impact that each user imposes on the other users should

be considered. In addition, this should aim to maximize each user’s utility function while

improving the network throughput. Since the transmission power pi depends on the channel

gain hii, in the sequel, we use pi = g(hii). To this end, the utility function of link i ∈ Cj

is a function of its direct channel gain and the power pi, and is defined as

ui(pi, hii) , E





∑

i∈Cj

Ri(P(j),L(j))



 , i ∈ Cj, j = 1, ...,M, (4)

where the expectation is computed with respect to P(j)
−i and L

(j)
−i . It should be noted that hii

and pi are considered as the local information of link i. However, the local information of

the other links (their powers and direct channel gains), and also the channel gains L
(j)
−i , are

unknown to user i. Thus, user i considers these parameters as random variables and selects

its power such that its utility function is maximized, i.e.,

p̂i = arg max
pi∈P

ui(pi, hii), i ∈ Cj, j = 1, ...,M. (5)

It will be shown that when the number of links is large, the optimum power allocation

strategy for the optimization problem in (5) is the on-off power scheme. Since the channel

gains change independently from block to block, each user updates its power based on the

direct channel gain in each block.
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Given the optimum power vector P̂
(j)

= (p̂(j−1)n+1, ..., p̂jn) obtained from (5), we then

choose the optimum value of M such that the network throughput is maximized, i.e.,

M̂ = arg max
1≤M≤K

M
∑

j=1

∑

i∈Cj

E

[

Ri(P̂
(j)
,L(j))

]

. (6)

III. OPTIMUM DISTRIBUTED POWER ALLOCATION

In this section, we introduce a simple distributed power allocation scheme, in which

each user selects the optimum power pi = g(hii) ∈ P in order to maximize its utility. Using

(4), we can express the utility function of each user as

ui(pi, hii) = R̄i(pi, hii) +
∑

l∈Cj

l 6=i

R̄l(pi), i ∈ Cj, j = 1, ...,M, (7)

where

R̄i(pi, hii) = E

[

W

M
log

(

1 +
hiipi

Ii + N0W
M

)]

, (8)

and the expectation is computed with respect to Ii, and

R̄l(pi) = E

[

W

M
log

(

1 +
hllpl

Il + N0W
M

)]

(9)

= E

[

W

M
log

(

1 +
hllpl

Lilpi +
∑

k 6=l,i Lklpk + N0W
M

)]

, l 6= i ∈ Cj, (10)

where the expectation is computed with respect to P(j)
−i , hll and {Lkl}k 6=l

. Using the fact

that all users follow the same power allocation policy, and since the channel gains Lkl are

random variables with the same distributions, R̄l(pi) becomes independent of l. Thus, by

dropping index l from R̄l(pi), the utility function of link i can be simplified as

ui(pi, hii) = R̄i(pi, hii) + (n− 1)R̄(pi). (11)

Lemma 1 Let assume 0 < α ≤ 1 is fixed and E[pk] , qn and Var[pk] , σ2
n. Then, with

probability one (w. p. 1), we have

Ii ∼ α̂(n− 1)qn, i ∈ Cj,
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as n→ ∞, where α̂ = α$.

Proof: See Appendix I.

Theorem 1 For sufficiently large n, the optimum power for (5) is p̂i = g(hii) = U(hii−τn),

where τn > 0 is a threshold level that is a function of n, and U(.) is a step function.

Proof: The steps of the proof are as follows: we first derive an upper bound for the

utility function defined in (11). Then, we prove that the optimum power allocation strategy

that maximizes this upper bound is p̂i = g(hii) = U(hii−τn). Based on this optimum power

allocation policy, in Lemma 2, we derive the optimum threshold level τn that maximizes

the average utility function. Finally, the theorem is proved by showing that the maximum

value of the utility function in (11) is achievable and this value is the same as the maximum

value of the upper bound obtained in the first step.

Step 1: Upper Bound on the Utility Function

Let us assume E [pk] = qn and Var[pk] = σ2
n. Using (8) and Lemma 1, R̄i(pi, hii) in

(11) can be expressed as

R̄i(pi, hii) ≈
W

M
E

[

log

(

1 +
hiipi

α̂(n− 1)qn + N0W
M

)]

(12)

(a)
=

W

M
log

(

1 +
hiipi

α̂(n− 1)qn + N0W
M

)

(13)

≈
W

M
log

(

1 +
hiipi

λ

)

, (14)

as n→ ∞, where λ , α̂nqn + N0W
M

. In the above equations, (a) follows from the fact that

hii is a known parameter for user i and pi is the optimization parameter. With a similar
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argument, (10) can be simplified as

R̄(pi) ≈ E

[

W

M
log

(

1 +
hllpl

Lilpi + α̂(n− 2)qn + N0W
M

)]

, i 6= l

= αE

[

W

M
log

(

1 +
hllpl

βilhilpi + α̂(n− 2)qn + N0W
M

)]

+ (1 − α)E

[

W

M
log

(

1 +
hllpl

α̂(n− 2)qn + N0W
M

)]

(15)

≈
αW

M
E

[

log

(

1 +
hllpl

βilhilpi + λ

)]

+ (1 − α)
W

M
E

[

log

(

1 +
hllpl

λ

)]

, (16)

as n → ∞, where the expectation is computed with respect to hll, hil, pl and βil. Using

(14) and (16), and the inequality log(1 + x) ≤ x, an upper bound for the utility function in

(11) is obtained as

ui(pi, hii) ≤
W

M

hii

λ
pi + n

αW

M
E

[

hllpl

βilhilpi + λ

]

+ n(1 − α)
W

Mλ
E [hllpl] . (17)

Using the fact that hll is independent of hil, i 6= l, we have

E

[

hllpl

βilhilpi + λ

∣

∣

∣
βil = t

]

=

∫ ∞

0

∫ ∞

0

xg(x)

ytpi + λ
e−xe−ydxdy

=

∫ ∞

0

xg(x)e−xdx

∫ ∞

0

e−y

ytpi + λ
dy

= −
µ

tpi
e

λ
tpi Ei

(

−
λ

tpi

)

, (18)

where µ , E [hllpl] =
∫∞

0
xg(x)e−xdx is a constant value, and Ei(x) , −

∫∞

−x
e−s

s
ds, x < 0

is the exponential-integral function [31]. To this end, the right hand side of (17) is simplified

as

ui(pi, hii) ≤
W

M

hii

λ
pi − n

αµW

M
E

[

1

tpi
e

λ
tpi Ei

(

−
λ

tpi

)]

+ n(1 − α)
W

M

µ

λ
, (19)

where the expectation is computed with respect to βil = t. An asymptotic expansion of

Ei(x) is as [31]

Ei(x) =
ex

x

[

L−1
∑

k=0

k!

xk
+O(|x|−L)

]

; L = 1, 2, ..., (20)
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as x→ −∞. Setting L = 3, we can rewrite (19) as

ui(pi, hii) ≤
W

M

hii

λ
pi + n

αWµ

Mλ
E

[(

1 −
tpi

λ
+ 2

(

tpi

λ

)2
)

+O

(

∣

∣

∣

tpi

λ

∣

∣

∣

3
)

]

+ n(1 − α)
Wµ

Mλ
(a)
≈

W

M

hii

λ
pi + n

αWµ

Mλ

(

1 −
$pi

λ
+ 2κ

(pi

λ

)2
)

+ n(1 − α)
Wµ

Mλ
(21)

, Ξi(pi, hi),

as λ→ ∞, where (a) follows from the fact that for large values of n, the term E

[

O

(

∣

∣

∣

tpi

λ

∣

∣

∣

3
)]

can be ignored. It will be shown that the condition λ → ∞ is valid automatically for the

optimum value of qn.

Step 2: Optimum Power Allocation Policy for Ξi(pi, hii)

Taking the first-order derivative of (21) in terms of pi yields,

∂Ξi(pi, hii)

∂pi
=
W

M

{

1

λ

(

hii −
α̂nµ

λ

)

+

(

2

λ

)2
αnµκ

λ
pi

}

.

Also, the second-order derivative of (21),
∂2Ξi(pi, hii)

∂p2
i

=
W

M

(

2

λ

)2
αnµκ

λ
, is a positive

value. Thus, (21) is a convex function of pi. It is a known fact that a convex function attains

its maximum at one of the extreme points5 of its domain [32]. In the following, we show

that g(hii) is a monotonically increasing function of hii. Suppose the optimum power that

maximizes Ξi(pi, hii) is pi = 1. Also, let us define h
′

ii , hii + δ, where δ > 0. From (21),

we have

Ξi(pi, h
′

ii) =
W

M

hii

λ
pi +

W

M

δ

λ
pi + n

αWµ

Mλ

(

1 −
$pi

λ
+ 2κ

(pi

λ

)2
)

+ n(1 − α)
Wµ

Mλ
. (22)

It is observed that

Ξi(pi = 1, h
′

ii) > Ξi(pi = 1, hii), (23)

i.e., the optimum power that maximize Ξi(pi, h
′

ii) is consistently equal to 1. On the other

hand, from the convexity of Ξi(pi, hii), and since the optimum power is pi = 1, it is

5In the power domain P = [0, 1], the extreme points are 0 and 1.
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concluded that

Ξi(pi = 1, hii) > Ξi(pi = 0, hii). (24)

Using the fact that Ξi(pi = 0, hii) = Ξi(pi = 0, h
′

ii), we arrive at the following inequality

Ξi(pi = 1, h
′

ii) > Ξi(pi = 0, h
′

ii). (25)

From (23)-(25), it is concluded that g(hii) is a monotonically increasing function of

hii. Consequently, the optimum power allocation strategy that maximizes Ξi(pi, hii) is a unit

step function as follows:

p̂i =







1, if hii > τn

0, Otherwise,
(26)

where τn is a prespecified threshold level. We called this power allocation scheme as the

threshold-based on-off power scheme.

Step 3: Optimum Threshold Level τn

From the results in Step 2, it is concluded that the optimum power p̂i is a Bernoulli

random variable with parameter qn, i.e.,

f(pi) =







qn, pi = 1,

1 − qn, pi = 0,
(27)

where f(.) is the probability density function (pdf) of pi. We define the probability of the

link activation in each cluster as qn , Pr {hii > τn} which is a function of n. In the next

lemma, we obtain the optimum τn that maximizes the average utility function denoted by

ūi , E [ui(pi, hii)] , (28)

where the expectation is computed with respect to hii. Noting that pi = g(hii), ūi is

independent of pi.

Lemma 2 For large values of n and 0 < α ≤ 1 is fixed, the optimum threshold level that

maximizes ūi is obtained as

τ̂n = log α̂n− 2 log log α̂n+O(1). (29)



14

Also, the probability of the link activation in each cluster is given by

qn = δ
log2 α̂n

α̂n
, (30)

where δ is a constant.

Proof: See Appendix II.

Step 4: Optimum Power Allocation Strategy that Maximize ui(pi, hii)

Defining the event E , {hii > hth}, where hth , 2 logn, we have

Pr {E } ≤ Pr {hmax > hth} , (31)

where hmax , max {hii}i∈Cj
. Note that

Pr {hmax > hth} = 1 −
(

1 − e−hth
)n

= 1 −

(

1 −
1

n2

)n

≈
1

n
, (32)

when n is large. Since limn→∞ Pr {hmax > hth} = 0, it is concluded that with probability

one, hii < hth. Also, from (30), we have

λ , α̂nqn +
N0W

M
= δ log2 α̂n+

N0W

M
. (33)

Hence, λ ∼ log2 α̂n goes to infinity as n → ∞. Also, using the fact that hiipi

λ
� 1, when

n is large, we can use the approximation log(1 + x) ≈ x in order to simplify (14) and (16)

as follows:

R̄i(pi, hii) ≈
W

M

hii

λ
pi, (34)

R̄(pi) ≈
αW

M
E

[

hllpl

βilhilpi + λ

]

+ (1 − α)
W

Mλ
E [hllpl] . (35)

Consequently, the utility function ui(pi, hii) is the same as the upper bound Ξi(pi, hii)

obtained in (21). Thus, the optimum power allocation strategy that maximizes Ξi(pi, hii)

is the same as the optimum power allocation policy for (5) and this completes the proof of

the theorem.
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Motivated by Theorem 1, we describe the threshold-based on-off power allocation

strategy or simply on-off power scheme for single-hop wireless networks. Based on this

scheme, all users perform the following steps during each block:

1- Based on the direct channel gain, the transmission policy is

pi =







1, if hii > τn

0, Otherwise,

where τn is a prespecified threshold level that is a function of n and also depends on

the channel model.

2- After adjusting the powers, each active user in Cj transmits a pilot signal with full

power. The corresponding receivers measure their direct channel gains and the inter-

ference powers, and compute the rate using (2). Then, each receiver feedbacks its

computed rate to the corresponding transmitter.

3- All the active users transmit data with the computed rate and with full power.

Corollary 1 In the proposed model, if mj is the number of active links in Cj, then E[mj] =

nqn ∼ Θ
(

log2 n
)

.

The on-off power scheme has the advantage of not requiring a central controller and

is simple for implementation in practical time-varying networks.

IV. OPTIMUM SPECTRUM ALLOCATION

Let us consider a network with a large number of links in the system. We are interested

in how the throughput of the network model of interest scales with K. In this section, we

derive the network throughput in terms of M and K, in the two cases of M ∼ o(K) and

M ∼ Θ(K). Note that these two cases cover the range of 1 ≤ M ≤ K. We prove that the

maximum throughput of the network for every value of M and 0 ≤ α < 1 is obtained at

M = 1.
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Theorem 2 Assuming M ∼ o(K) and 0 < α ≤ 1 is fixed, the maximum achievable

throughput of the network is given by

R̄sum ≈
W

α̂
(− log qn +O(1)) (36)

=
W

α̂

(

log
K

M
+ o

(

log
K

M

)

+O(1)

)

. (37)

Proof: See Appendix III.

Theorem 2 states that the throughput of the network for M ∼ o(K) depends on the

value of α̂ and scales as W
α̂

log K
M

. Also for values of M such that logM ∼ o(logK), the

throughput of the network scales as W
α̂

logK.

Theorem 3 Assuming 0 ≤ α < 1 is fixed, the maximum achievable throughput of the

network is obtained at M = 1.

Proof: We prove the theorem in the following cases:

Case 1: M ∼ o(K) and 0 < α < 1 is fixed:

Using (30) and noting that n = K
M

, the probability of the link activation is obtained in

terms of M as follows:

qn =
δM

α̂K
×

(

log
α̂K

M

)2

. (38)

Considering qn is a continuous function of M and taking the first-order derivative of (36)

with respect to M yields,
∂R̄sum

∂M
= −

W

α̂

∂qn
∂M

1

qn
.

Since,
∂qn
∂M

=
δ

α̂K
log

α̂K

M
×

(

log
α̂K

M
− 2

)

> 0,

we can conclude that ∂R̄sum

∂M
< 0, i.e., (36) is a monotonically decreasing function of M .

Thus, the maximum throughput of the network for M ∼ o(K) and 0 < α < 1 is obtained

at M = 1.

Case 2: M ∼ Θ(K) and 0 < α < 1 is fixed:
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Let us define Aj as the set of active links in cluster j. Thus, the random variable mj

is the cardinality of the set Aj . Noting that for M ∼ Θ(K), limK→∞
M
K

is constant, it is

concluded that n and mj ∈ [1, n] do not grow with K. To obtain the network throughput,

we assume that among M clusters, Γ clusters have mj = 1 and the rest have mj > 1. We

first obtain an upper bound of the throughput in each cluster when mj = 1, 1 ≤ j ≤ M .

Clearly, since only one user in each cluster activates its transmitter, Ii = 0. Thus, by using

(B-1), the maximum achievable throughput of cluster Cj is obtained as

R̄(j)
sum =

W

M
E

[

log

(

1 +
M

N0W
hmax

)]

, (39)

where hmax = max {hii}i∈Cj
is a random variable. Since log x is a concave function of

x, an upper bound of (39) is obtained through Jensen’s inequality, E [log x] ≤ log(E [x]),

x > 0. Thus,

R̄(j)
sum ≤

W

M
log

(

1 +
M

N0W
E [Y ]

)

, (40)

where Y , hmax. Under a Rayleigh fading channel model and noting that {hii} is a set of

i.i.d. random variables over i ∈ Cj, we have

FY (y) = Pr{Y ≤ y}, y > 0

=
∏

i∈Cj

Pr{hii ≤ y}

=
(

1 − e−y
)n
,

where FY (.) is the cumulative distribution function (CDF) of Y . Hence,

E [Y ] =

∫ ∞

0

nye−y
(

1 − e−y
)n−1

dy.

Since (1 − e−y)
n−1

≤ 1, we arrive at the following inequality

E [Y ] ≤

∫ ∞

0

nye−ydy = n. (41)

Consequently, the upper bound of (40) can be simplified as

R̄(j)
sum ≤

W

M
log

(

1 +
K

N0W

)

. (42)
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For mj > 1 and due to the shadowing effect with parameters (α,$), the average

sum-rate of cluster Cj can be written as

R̄(j)
sum =

∑

i∈Aj

W

M
E

[

log

(

1 +
hii

∑

k 6=i υkβkihki + N0W
M

)]

, k ∈ Aj, (43)

where υk’s are Bernoulli random variables with parameter α. Thus,

R̄(j)
sum =

W

M

∑

i∈Aj

mj
∑

l=0

(

mj

l

)

αl(1 − α)mj−l
E

[

log

(

1 +
hii

Σl + N0W
M

)]

=
W

M

∑

i∈Aj

(1 − α)mj E

[

log

(

1 +
hii

N0W
M

)]

+

W

M

∑

i∈Aj

mj
∑

l=1

(

mj

l

)

αl(1 − α)mj−l
E

[

log

(

1 +
hii

Σl + N0W
M

)]

, (44)

where Σl is the sum of l i.i.d random variables {Zi}
l
i=1, where Zi , βkihki, k 6= i. For

mj > 1, Σl is greater than the interference term caused by one interfering link. Thus, an

upper bound for the throughput of cluster j is given by

R̄(j)
sum ≤

W

M
mj(1 − α)mj E

[

log

(

1 +
Y

N0W
M

)]

+
W

M

∑

i∈Aj

mj
∑

l=1

(

mj

l

)

αl(1 − α)mj−l
E

[

log

(

1 +
Y

Zi + N0W
M

)]

, (45)

where Y , hmax = max {hii}i∈Cj
. According to binomial formula, we have

mj
∑

l=1

(

mj

l

)

αl(1 − α)mj−l = 1 − (1 − α)mj .

Thus,

R̄(j)
sum ≤

W

M
mj(1 − α)mj E

[

log

(

1 +
Y

N0W
M

)]

+
W

M
mj (1 − (1 − α)mj ) E

[

log

(

1 +
Y

βkihki + N0W
M

)]

. (46)
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Defining the event C , {βki < βth}, we have

E

[

log

(

1 +
Y

βkihki + N0W
M

)]

= E

[

log

(

1 +
Y

βkihki + N0W
M

)
∣

∣

∣

∣

∣

C

]

Pr{C } +

E

[

log

(

1 +
Y

βkihki + N0W
M

)
∣

∣

∣

∣

∣

C
C

]

Pr{C C}

(a)

≤ E

[

log

(

1 +
Y

N0W
M

)
∣

∣

∣

∣

∣

C

]

Pr{C } +

E

[

log

(

1 +
Y

βthhki + N0W
M

)
∣

∣

∣

∣

∣

C
C

]

Pr{C C}

(b)
= E

[

log

(

1 +
Y

N0W
M

)]

Pr{C } +

E

[

log

(

1 +
Y

βthhki + N0W
M

)]

Pr{C C}

≤ E

[

log

(

1 +
Y

N0W
M

)]

Pr{C } +

E

[

log

(

1 +
Y

βthhki

)]

Pr{C C}, (47)

where C C denotes the complement of C . In the above equation, (a) follows from the fact

that conditioned on C C , i.e., βki ≥ βth, βkihki ≥ βthhki, and (b) results from the fact that

Y and hki are both independent of C . Defining Z , βthhki and X , Y
Z

, the CDF of X can

be evaluated as

FX(x) = Pr{X ≤ x}, x > 0

= Pr{Y ≤ Zx}

=

∫ ∞

0

Pr{Y ≤ Zx|Z = z}fZ(z)dz

=

∫ ∞

0

(

1 − e−zx
)n 1

βth
e
− z

βth dz

=

∫ ∞

0

(

1 − e−tβthx
)n
e−tdt. (48)
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Thus, the probability density function of X can be written as

fX(x) =
dFX(x)

dx

= βth

∫ ∞

0

nte−t(1+βthx)
(

1 − e−tβthx
)n−1

dt

≤ βth

∫ ∞

0

nte−t(1+βthx)dt

=
nβth

(1 + βthx)2
. (49)

Using the above equation, the second expectation in the last line of (47) can be upper-

bounded as

E

[

log

(

1 +
Y

βthhki

)]

=

∫ ∞

0

fX(x) log(1 + x)dx

≤ nβth

∫ ∞

0

log(1 + x)

(1 + βthx)2
dx

=
−n log βth

1 − βth
. (50)

Also, using (39)-(42), the first expectation in the last line of (47) is upper-bounded as

E

[

log

(

1 +
Y

N0W
M

)]

≤ log

(

1 +
K

N0W

)

. (51)

Selecting βth = 1
log K

, noting that as βth → 0, fβ(β) is upper-bounded by a constant ∆, the

right hand side of (47) is upper-bounded as follows:

E

[

log

(

1 +
Y

βkihki + N0W
M

)]

≤ ∆βth log

(

1 +
K

N0W

)

+
−n log βth

1 − βth

=

∆ log

(

1 +
K

N0W

)

logK
+

n log logK

1 − [logK]−1

(a)
∼ O(log logK), (52)
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where (a) results from the fact that as M ∼ Θ(K), n does not grow with K. Substituting

the above equation in (46), we have

R̄(j)
sum ≤

W

M
mj(1 − α)mj E

[

log

(

1 +
Y

N0W
M

)]

+

W

M
mj (1 − (1 − α)mj )O(log logK)

(a)

≤
W

M
mj(1 − α)mj log

(

1 +
K

N0W

)

+O

(

W

M
log logK

)

=
W

M
mj(1 − α)mj log

(

1 +
K

N0W

)

[1 + o(1)] , (53)

where (a) follows from (51) and the fact that mj ∈ [1, n] does not scale with K.

Let us assume that among M clusters, Γ clusters have mj = 1 and for the M − Γ of

the rest, the number of active links in each cluster is greater than one. Hence by using (42)

and (53), an upper bound for the network throughput is obtained as

R̄sum ≤
ΓW

M
log

(

1 +
K

N0W

)

+ (M − Γ)
W

M
mj(1 − α)mj log

(

1 +
K

N0W

)

[1 + o(1)] .(54)

To compare this upper-bounded with the computed network throughput in the case of M = 1,

we note that as $ ≤ 1 and α < 1, we have α̂ < 1 and consequently,

ΓW

M
log

(

1 +
K

N0W

)

<
ΓW

Mα̂
log

(

1 +
K

N0W

)

.

Hence, in order to prove that the maximum achievable throughput obtained in (54) is less

than that of M = 1 in (37), it is sufficient to prove

(M − Γ)
W

M
mj(1 − α)mj log

(

1 +
K

N0W

)

< (M − Γ)
W

Mα̂
log

(

1 +
K

N0W

)

, (55)

or

mj(1 − α)mj <
1

α̂
.

Since α̂ ≤ α, it is sufficient to show that mj(1−α)mj < 1
α

. Defining Λ(α) = αmj(1−α)mj ,

we have
∂Λ(α)

∂α
= mj(1 − α)mj−1(1 − α− αmj).
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Thus, the extremum points of Λ(α) are located at α = 1 and α = 1
mj+1

. It is observed that

Λ(1) = 0 < 1,

and

Λ

(

1

mj + 1

)

=

(

mj

mj + 1

)mj+1

< 1.

Since Λ(α) < 1, we conclude (55), which implies that the maximum achievable network

throughput for M ∼ Θ(K) is less than that of M = 1.

Case 3: 1 ≤ M ≤ K and α = 0:

According to the shadow-fading model proposed in (1), it is seen that for α = 0, with

probability one, Lki = 0, k 6= i. This implies that no interference exists in each cluster.

In the absence of interference, the maximum network throughput is clearly achieved by

transmitting at full power for all users in the network. Thus, from (2) and (B-1) and for

every value of 1 ≤M ≤ K, the average sum-rate of cluster j for α = 0 is simplified as

R̄(j)
sum =

W

M

∑

i∈Cj

E

[

log

(

1 +
hii

N0W
M

)]

. (56)

where the expectation is computed with respect to hii. Under a Rayleigh fading channel

model, we have

R̄(j)
sum =

W

M

∑

i∈Cj

∫ ∞

0

e−x log(1 + Υx)dx

=
W

M
n

∫ ∞

0

e−x log(1 + Υx)dx

=
W

M
ne

1

Υ

∫ ∞

1/Υ

e−x

x
dx

=
W

M
ne

1

Υ E1

(

1

Υ

)

, (57)

where Υ , M
N0W

and E1(x) = −Ei(−x) =
∫∞

1
e−tx

t
dt, x > 0. Hence, the network throughput

is obtained as

R̄sum =

M
∑

j=1

R̄(j)
sum =

KW

M
e

1

Υ E1

(

1

Υ

)

=
KW

M
e

N0W

M

∫ ∞

1

e−t
N0W

M

t
dt. (58)
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Taking the first-order derivative of (58) with respect to M yields,

∂R̄sum

∂M
= −

KW

M2
e

N0W

M

(

1 +
N0W

M

)

E1

(

N0W

M

)

+
KW

M2
.

Since for every value of N0W ,
∂R̄sum

∂M
is negative, it is concluded that the network through-

put is a monotonically decreasing function of M . Consequently, for α = 0, the maximum

network throughput for every value of 1 ≤M ≤ K is achieved at M = 1.

Note that for M ∼ Θ(K), which includes M = K, we obtained an upper bound for

R̄sum. In the next corollary, we derive an explicit expression for the network throughput

when M = K.

Corollary 2 Assuming M = K, the throughput of the network for every value of 0 ≤ α ≤ 1

is obtained by

R̄sum ≈ W (logK − logN0W − γ), (59)

where γ is Euler’s constant.

Proof: See Appendix IV.

Corollary 3 Note that for M = 1, the average number of active links scales as Θ(log2K),

we have total energy saving in the network in comparison with M = K situation, in which

all the users transmit with full power.

So far, we have analyzed the network throughput in terms of M and α, in the asymptotic

case of K → ∞. For finite number of users, we evaluate the network throughput versus

the number of clusters through simulation results. Fig. 1 illustrates the network throughput

versus M for K = 20, K = 40, α = 0.1 and $ = 1. From the figure, we can see that the

network throughput is a monotonically decreasing function of M and the maximum value

of R̄sum is achieved at M = 1.
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Fig. 1. Network throughput vs. M for K = 20, K = 40, α = 0.1 and $ = 1.

V. CONCLUSION AND FUTURE WORKS

In this paper, we considered a distributed single-hop wireless network with K links,

where the links are partitioned into M clusters each operating in a subchannel with band-

width W
M

. We proved that when the number of links is large, the optimum power allocation

strategy for each user is the threshold-based on-off power scheme. We also analyzed asymp-

totically the network throughput in terms of M and under the shadowing Rayleigh fading

model described with parameters (α,$). Under the on-off power scheme, it is demonstrated

that for M ∼ o(K) and 0 < α ≤ 1, where α is fixed, the network throughput scales as
W
α̂

log K
M

, where α̂ = α$. For M ∼ Θ(K), we have presented an upper bound for the

network throughput. It is proved that the maximum network throughput for every value of

1 ≤ M ≤ K, 0 ≤ α < 1 and $ ≤ 1 is achieved at M = 1. In other words, partitioning

the bandwidth W into M subchannels has no gain in terms of enhancing the throughput.

The results are valid for every M -dimensional orthogonal coordinates system such as time,

code, etc.

Throughout this work, it is assumed that all the links use a single antenna. A possible
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future extension of this work would be to analyze the performance of the network with

multiple antenna transmitters/receivers [6]. Also, we considered a quasi-static block fading

channel model, in which the channel changes independently from block to block. It would be

quite interesting to generalize the results by considering correlation between two consecutive

blocks of the channel.

APPENDIX I

PROOF OF LEMMA 1

Let us define χk , Lkipk, where Lki is independent of pk, for k 6= i. Under a quasi-

static Rayleigh fading channel model, it is concluded that χk’s are the i.i.d. random variables

with

E [χk] = E [Lkipk] = α̂qn,

V ar [χk] = E
[

χ2
k

]

− E
2 [χk] = 2ακ(σ2

n + q2
n) − (α̂qn)2,

where E [h2
ki] = 2, E [pk] = qn and α̂ = α$. Also, the interference Ii is a random variable

with mean µn and variance ϑ2
n, where

µn = E









∑

k∈Cj

k 6=i

χk









= α̂(n− 1)qn,

ϑ2
n = V ar









∑

k∈Cj

k 6=i

χk









= (n− 1)(2ακ(σ2
n + q2

n) − (α̂qn)2).

Using the Chebyshev inequality [33], we obtain

Pr{|Ii − µn| < ψn} ≥ 1 −
ϑ2

n

ψ2
n

,

for all ψn > 0. Thus,

Pr{|Ii − α̂(n− 1)qn| < ψn} ≥ 1 −
(n− 1)(2ακ(σ2

n + q2
n) − (α̂qn)2)

ψ2
n

.
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It is observed that for all

ψn = ω
(

√

(n− 1)(2ακ(σ2
n + q2

n) − (α̂qn)2)
)

,

we have

lim
n→∞

1 −
(n− 1)(2ακ(σ2

n + q2
n) − (α̂qn)2)

ψ2
n

= 1.

Thus,

α̂(n− 1)qn − ψn < Ii < α̂(n− 1)qn + ψn, w. p. 1.

By choosing ψn = o(α̂(n− 1)qn), we can obtain Ii ∼ α̂(n− 1)qn, w. p. 1.

APPENDIX II

PROOF OF LEMMA 2

Let us denote the average sum-rate of the links in cluster Cj as R̄(j)
sum, where

R̄(j)
sum ,

∑

i∈Cj

E

[

Ri(P(j),L(j))
]

. (B-1)

It is observed that ūi, i ∈ Cj , is the same as R̄(j)
sum. Under the on-off power allocation

strategy and using qn = Pr {hii > τn}, we have

E

[

Ri(P(j),L(j))
]

= E

[

Ri(P(j),L(j))
∣

∣

∣
hii > τn

]

Pr {hii > τn}

+ E

[

Ri(P(j),L(j))
∣

∣

∣
hii ≤ τn

]

Pr {hii ≤ τn}

= qnE

[

Ri(P(j),L(j))
∣

∣

∣
hii > τn

]

+ (1 − qn)E
[

Ri(P(j),L(j))
∣

∣

∣
hii ≤ τn

]

.

Since for hii ≤ τn, pi = 0, it is concluded

E

[

Ri(P(j),L(j))
]

=
qnW

M
E

[

log

(

1 +
hii

Ii + N0W
M

)
∣

∣

∣

∣

∣

hii > τn

]

. (B-2)

Since, the number of links in each cluster is large, we can apply Lemma 1 to obtain

E

[

Ri(P(j),L(j))
]

≈
qnW

M
E

[

log

(

1 +
hii

α̂(n− 1)qn + N0W
M

)
∣

∣

∣

∣

∣

hii > τn

]

, (B-3)
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where the expectation is computed with respect to hii. For large values of n, we can ignore

the noise power N0W
M

. Assuming we can use the approximation log(1 + z) ≈ z −
z2

2
for

|z| � 1, we have6

E

[

Ri(P(j),L(j))
]

≈
qnW

M

{

1

α̂nqn
E [hii|hii > τn] −

1

2

1

(α̂nqn)2
E
[

h2
ii

∣

∣ hii > τn
]

}

. (B-4)

Under a Rayleigh fading channel model,

E [hii|hii > τn] = 1 + τn,

E
[

h2
ii

∣

∣ hii > τn
]

= τ 2
n + 2τn + 2.

Using qn = Pr {hii > τn} = e−τn , (B-4) can be simplified as

R̄(j)
sum ≈

W

α̂M

[

1 + τn −
τ 2
n + 2τn + 2

2α̂ne−τn

]

. (B-5)

Thus, the optimization problem is

τ ∗n = arg max
τn

R̄(j)
sum.

Taking the first-order derivative of (B-5) in terms of τn yields

∂R̄
(j)
sum

∂τn
=

W

α̂M

[

1 −
τ 2
n + 4τn + 4

2α̂ne−τn

]

. (B-6)

Since, the second-order derivative of (B-5) is negative, the maximum value of R̄(j)
sum is

obtained by setting (B-6) equal to zero. So, we have

2α̂ne−τn = τ 2
n + 4τn + 4,

or

τn = log 2α̂n− 2 log τn − log

(

1 +
4τn + 4

τ 2
n

)

. (B-7)

It can be verified that the solution for (B-7) is

τ ∗n = log α̂n− 2 log log α̂n+O(1). (B-8)

Also, under the Rayleigh fading channel model, we have qn = Pr {hii > τn} = e−τn .

Using (B-8), it is concluded

qn =
log2 α̂n

α̂n
× e−O(1).

Setting δ = e−O(1) completes the proof of the lemma.

6It will be shown that this assumption is valid automatically for the optimum value of qn.
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APPENDIX III

PROOF OF THEOREM 2

Using (B-5), the network throughput is obtained as

R̄sum =
M
∑

j=1

R̄(j)
sum

=
W

α̂

[

1 + τn −
τ 2
n + 2τn + 2

2α̂ne−τn

]

. (C-1)

Considering the optimum threshold level obtained in (B-7) and α̂ne−τn = α̂nqn = δ log2 α̂n,

it can be easily shown that for M ∼ o(K)

1 −
τ 2
n + 2τn + 2

2α̂ne−τn
∼ O(1).

Hence by using τn = − log qn, we arrive at the following equation

R̄sum ≈
W

α̂
[− log qn +O(1)] . (C-2)

Through substituting (30) in (C-2) and using n =
K

M
, we finally obtain

R̄sum =
W

α̂

(

log
K

M
+ o

(

log
K

M

)

+O(1)

)

.

APPENDIX IV

PROOF OF COROLLARY 3

Noting that for M = K, only one user exists in each cluster, all the users can

communicate with an interference free channel. In this regime, they can transmit with full

power over the orthogonal subchannels to achieve large data rates. Hence, since Ii = 0, for

i = 1, ..., K, the throughput of the network is given by

R̄sum = E

[

K
∑

i=1

Ri(P(j),L(j))

]

=
W

K

K
∑

i=1

E

[

log

(

1 +
hii

N0W
K

)]

,
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where the expectation is computed with respect to hii. Under a Rayleigh fading channel

model, we have

R̄sum =
W

K

K
∑

i=1

∫ ∞

0

e−x log(1 + Υ̃x)dx,

where Υ̃ , K
N0W

. Thus,

R̄sum = W

∫ ∞

0

e−x log(1 + Υ̃x)dx

= We
1

Υ̃

∫ ∞

1/Υ̃

e−x

x
dx

= We
1

Υ̃ E1

(

1

Υ̃

)

. (D-1)

To simplify (D-1), we use the following series representation for E1(x),

E1(x) = −γ − log x +

∞
∑

s=1

(−1)s+1xs

s.s!
, (D-2)

where γ is Euler’s constant and is defined by the limit [31]

γ = lim
s→∞

(

s
∑

k=1

1

k
− log s

)

= 0.577215665...

Thus, the network throughput is obtained as

R̄sum = We
1

Υ̃

(

−γ + log Υ̃ +
∞
∑

s=1

(−1)s+1

s.s!

(

1

Υ̃

)s
)

.

For sufficiently large values of K, we have Υ̃ = K
N0W

� 1, which results in e
1

Υ̃ ≈ 1 and

∞
∑

s=1

(−1)s+1

s.s!

(

1

Υ̃

)s

≈ 0.

Consequently for M = K, the network throughput is asymptotically obtained by

R̄sum ≈ W (logK − logN0W − γ).
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