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Abstract

In this paper, a multiple-relay network in considered, inichhK single-antenna relays assist a
single-antenna transmitter to communicate with a singkerana receiver in a half-duplex mode. A new
Amplify and Forward (AF) scheme is proposed for this netwankl is shown to achieve the optimum

diversity-multiplexing trade-off curve.

. SYSTEM MODEL

The system , as in [1], [2], and [3], consists Af relays assisting the transmitter and the
receiver in the half-duplex mode, i.e. in each time, they®laan either transmit or receive.
The channels between each two node is assumed to be quasiiateRayleigh-fading, i.e. the
channel gains remain constant during a block of transmmsaia changes independently from
one block to another. However, we assume that there is notdirk between the transmitter
and the receiver. This assumption is reasonable when thentitter and the receiver are far
from each other or when the receiver is supposed to have cbanavith just the relay nodes to
avoid the complexity of the network. As in [2] and [4], eachdeds assumed to know the state
of its backward channel and, moreover, the receiver is ssgrpto know the equivalent channel

gain from the transmitter to the receiver. No feedback to tthesmitting node is permitted.
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All nodes have the same power constraint. Also, we assunteatbapacity achieving gaussian
random codebook can be generated at each node of the netdearke, the code design problem

is not considered in this paper.

[I. PROPOSEDK-SLOT SWITCHING N-SUB-BLOCK MARKOVIAN SCHEME (SM)

In the proposed scheme, the entire block of transmissioivided! into N sub-blocks. Each
sub-block consists of< slots. Each slot ha%” symbols. Hence, the entire block consists of
T = NKT' symbols. In order to transmit a messagethe transmitter selects the corresponding
codeword of a gaussian random codebook consistingéf"" codewords of IengtH%T
and transmits the codeword during the filsi — 1 slots. In each sub-block, each relay receives
the signal in one of the slots and transmits the receivedasignthe next slot. So, each relay
is off in % of time. More precisely, in thé&’ slot of the n'the sub-block { < n < N,1 <
k < K,nk # NK), the k'th relay receives the signals the transmitter is sending, amplifies
and forwards it to the receiver in the next slot. The recestarts receiving the signal from the
second slot. After receiving the last slat {{'th slot) signal, the receiver decodes the transmitted
message by using the signal 8fK — 1 slot received fromK relays. It will be shown in the
next section that the equivalent point-to-point channenfithe transmitter to the receiver would

act as a lower-triangular MIMO channel.

[1I. DIVERSITY-MULTIPLEXING TRADEOFF

In this section, we show that the proposed method achieeesgtimum achievable diversity-
multiplexing curve. First, according to the cut-set bouinelarem [5], the point-to-point capacity
of the uplink channel (the channel from the transmitter ® riblays) is an upper-bound for the
capacity of this system. Accordingly, the diversity-mpiiéixing curve of al x K SIMO system
which is a straight line from multiplexing gaihto the diversity gaink is an upper-bound for
the diversity-multiplexing curve of our system. In this sex, we prove that the tradeoff curve
of the proposed method achieves the upper-bound and thigspfttimum. First, we prove the
statement for the case that there is no link between thegeldgxt, we prove the statement for

the general case.
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A. No Interfering Relays

Assume, the link gain between tiéh relay and the transmitter and tleth relay and the
receiver arey, andg;, respectively. Furthermore, assume that there is no libkden the relays.

Accordingly, at thekt’'th relay we have
Ty = th + Ny, (1)

wherer;, is the received signal vector of theth relay, x is the transmitter signal vector and

n; ~ N (0,1I7) is the noise vector of the channel. At the receiver side, we ha

K
y = ngtk + 2, 2)
k=1

wheret,, is the transmitted signal vector of tléh relay, y is the received signal vector at the
receiver side ana ~ N (0,17/) is the noise vector of the downlink channel. The output power
constraintE {||x|*} ,E {|[ts|*} < T'P holds at the transmitter and relays side. To obtain the
DM tradeoff curve of the proposed scheme, we are looking lier énd-to-end probability of

outage from the ratelog (P), as P goes to infinity.
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Fig. 1. DM Tradeoff for the proposed Switching Markovian 8ete and various values of (K,N), No interfering relays case
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Theorem 1 Assume a half-duplex parallel relay scenario with K no interfering relays. The

proposed SM scheme achieves the diversity gain

dsani(r) = max {0, K(—r) = K (-7 - NK_Tl } , 3)

which achieves the optimum achievable DM tradeoff curve d,,.(r) = K(1 —r) as N — oo.

Proof: Let us definex,, ., n, k., Tk, tnk, Znk, Yor @S the signal/noise transmitted/received
by the transmitter/relay/receiver to tké&h relay/receiver in thé'th slot of then’th sub-block.
Also, let us defingk) =k —2 mod K +1 and(n) =n— [%]. Thus, we have

Yok = Gkbak+ Znk
= gk (P Xm0 + D)) + Znks 4)

where oy, = is the amplification coefficient performed in tiéh relay. Defining the

P
[hil?P+1
eventé, as the event of outage from the rateg(P) in the £’th sub-channel consisting of the

transmitter, thet’'th relay, and the receiver, we have
P{&} = P {108; [1 + P|gi|*|oe)* e |* (1 + |gk|2|ak|2)_l} < rlog(P)}

= min {sign(r), P {|gu sl (1 + g Planl?) ™ < P}
min { sign(r), P 4 g PlaePhg2min 4 & — L < pra1
7 27 2|grPlewl? | —

min {sgrtr) P {1l < 2771} + PPl < 271}
. 1 }L 2})
min {S'gr‘(T)7P_(1_T) +P{|gk\2min{ | k2| } < QPT‘l}}
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min {sign(r), P~ + P {|g|> < 4P} + P {|gi|*|hi|* < 4P} }
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= min {Sigr‘(r), P_(l_r)} , (5)

where sigiir) is the sign function, i.e. sign) = 1,r > 0,sign(r) = 0,r < 0. Here, (a) follows

from the fact thatm = min {%, m} (b) and (d) follow from the union bound

inequality, (c) follows from the fact thdtv.|?|h.]? = min {%, "““2‘2’3} and the pdf distribution

of the rayleigh-fading parameter near zero, and (e) folloeen the fact that the product of

two independent rayleigh-fading parameters behave as laighyfading parameter near zero.
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(®) shows that each sub-channel’s tradeoff curve perforsna aingle-antenna point-to-point
channel.

Defining R, (P) as the random variable showing the rate of it sub-channel consisting
of the transmitter, thé’th relay, and the receiver in terms @&f, the outage event of the entire

channel from the-log(P), the event, is equal to

K-1
P{E}=P {N Z Ri(P)+ (N —1)Rg(P) < NKr log(P)} (6)
k=1
AssumingRy(P) = r log(P), we have
K-1
Pw}ﬁP{NE:m+%N—1VK§NK%} (7)
k=1
P{Ry(P) < rrlog(P)} is known by [5). Defining the regio® as
K-1
R = {(7“1,7’2,--- )0 <71 < 1,NZ7’k+ (N —=1)rg < NK?“} (8)
k=1
it is easy to check that all the vectofs,,r, - ,rx) that result in the outage event almost

surely lie in R. In fact, according to[{5), for alk we know r, > 0. Also, for r, > 1,
P {Ry(P) > r,log(P)} < e P which is exponential in terms of. Hence,r, > 1 can
be disregarded for the outage region. As a re®{t€} =P {r € R}.

On the other hand, by](5) and the fact thas are independent, we have

Pir <rfra <o i < g} = PR ©

Now, we show thal? {£} = P~ miner K-17 First of all, by taking derivative of{9) with respect
tor;,re, -+, Tk, it iS easy to see that the probability density functionrddfehaves the same as

the probability function in[{9), i.ef.(r) = P~(X~17) Hence, the outage probability is equal to

/re +(r)dr

[
R
’UOZ(R)P_ minyer K—1-r

P{&}

—_
JORAN

P~ minger K—1-r (10)

Here, (a) follows from the fact thaR is a fixed bounded region whose volume is independent
of P. On the other hand, by continuity d?~(*—**) overr, we haveP {£} > P~ minrer K17
which combining with[(ZD), results intB {£} = P~ minrer K=1T Definingl(r) = K — 1 -1, we
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have to solve the following linear programming optimizatiproblemmin,. {(r). Notice that

the regionR is defined by a set of linear inequality constraints. To sohesproblem, we have

NKr +rg % NKr —Zf:_llrk}

—

a

I(r) > maX{O,K—

=

N N-1
®) 1 K
> max{O,K(l—r)—N,K(l—r)—N_Tl}. (11)

Here, (a) follows from the inequality constraint inl (8) gavieag R, and (b) follows from the
fact thatry < 1 andVk < K : r, > 0. Now, we partition the rangé < r < 1 into three

intervals. First, in the case that> 1 — -, the feasible point = 1 achieves the lower bound

W’
0. Second, in the case that< + — .-, the feasible point = (0,0, ---,0, £2), achieves the
lower boundK (1 —r) — <. Finally, in the case that — = < r < 1— =, The lower bound

K(1 —r)— y is achievable by the feasible pointvk < K : r, = g5, rx = 1. Hence,

we havemin,er [(r) = max {0, K(1 —r) — &, K(1 —r) — == }. This completes the proof

Remark - It is worth noting that as long as the graghV, E') whose vertices are the relay nodes
and edges are the non interfering relay node pairs includesraltonian cycl&l, the result of

this subsection remains valid.

B. General Case

In the general case, an interference term due to the neigigooglay adds at the receiver
antenna of each relay.
r, = hpX +igytey + g, (12)

wherei ;) is the interference link gain between thith and (k)'th relays. Hence, the amplification

P
Péhk2+|i(k)|22l+1
the noisen, at the receiving side of thg’th relay can be boosted at the receiving side of the
next relay. Hence, we bound the amplification coefficienbvas= min {1, A0 ‘2+’|’_ |2)+1}.

ki)
In this way, it is guaranteed that the noise of relays are pnosted up through the system. This

coefficient is bounded as;, < . Here, we observe that in the case that> 1,

is at the expense working with the output power less thai©n the other hand, we know that

almost sureIH |h,€|2 , ’i(k)‘Q <1. Hence, almost surely we hawg = 1. Another change we make

1By hamiltonian cycle, we mean a simple cyalevs - - - vk v1 that goes exactly one time through each vertex of the graph.

2By almost surely, we mean its probability is greater than P~?, for all values ofé.
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in this part is that we assume that the entire time of transiomsconsists ofVK + 1 slots, and
the transmitter sends the data during the fi¥sk™ slots while the relays send in the laSti
slots (from the second slot up to tiRéK + 1'th slot). Hence, we havé” = (NK + 1)T". This
assumption makes our analysis easier and the lower bounkeodiversity curve tighter. Now,

we prove the main theorem of this section.

Theorem 2 Consider a half-duplex multiple relays scenario with K interfering relays whose
gains are independent rayleigh fading variables. The proposed SV scheme achieves the diversity
gain
dsri1(r) > {OK(I—)—T} (13)
SM,I\T") = Max ) r N )

which achieves the optimum achievable DM tradeoff curve d,,.(r) = K(1 —r) as N — oo.

Proof: First, we show that the entire channel matrix acts as a lovengular matrix. At

the receiver side, we have
Ynre = gktn,k+zn,k

= GO Z Pr—ny ks (P Xng by + Doy gey) | + Znge (14)
O<n1,k’1,nl(K+1)+k1<n(K+1)+k

Here, p, i, has the following recursive formulgy ;.. = 1, Dn ik = k) Q) Pn), (k)6 - DEFINING
the squaréV K x N K matrices a$s = Iy®diag{gi1, 92, - - ,9x }, H = Iy®diag{hy, ho,--- , hx },
Q= IN & diag{a17a27 e ,CYK}, and

1 0 0 0
Po,2,1 1 0 0
F= D0,3,1 D0,3,2 1 0 e (15)
PN-1,K,1 PN-1,K2 --- DoikkK—-1 1

where® is the Kronecker product [6] of matrices albg is the N x N identity matrix, and the

NEK x1vectorsx (s) = [x11(s), 21.2(5), - -, 2n.1(5)]7,n (s) = [n11 (s) ,n1a(s), - nyx(s)],
z(s) = [212(5), 213(5), -+, 2nvaa(8)]T, andy (s) = [y12(5), y13(s), - yvs1a(s)]", we have
y(s) = GQF (Hx(s) +n(s)) +z(s). (16)

DRAFT



Here, we observe that the matrix of the entire channel acis lasver triangular matrix of a
NK x NK MIMO channel whose noise is colored. The probability of getaf such a channel

for the multiplexing gain- is defined as
P{&} =P {log [Ixy + PH;HIP'| < (NK + 1)rlog(P)}, (17)

wherePy = Iyx + GQFFIQYGH, andHy = GQFH. Assume|h(k)|? = P~#0), |g(k)|? =
P=v®_i(k)|>? = P~®, and R as the region inR*% that defines the outage eveétin
terms of the vectofu, v,w], where = [u(D)p(2) - w(K)" v = p(L)v(2)---v(K)]" ,w =
[w(1)w(2) - --w(K)]". The probability distribution function (and also the inserof cumulative
distribution function) decays exponentially &~ for positive values of. Hence, the outage

regionR is almost surely equal t® . = R () R3*. Now, we have

a

P{g} S P{|HT|2 |Pn|_l S P—NK(I—T)-FT}

—
=

Yy {—Nzu(k) 4 u(k) = min {0, (k) (1)} +
k=1
NK log(3) — log |Py]|
log () < —NK(l—r)+r}
Y G LG Il G S BN R S Niu(/f) +v(k),
log(P) k=1
p(k),v(k), w(k) = 0} (18)

Here, (a) follows from the fact that for a positive semide&mnatrix A we have|ll + A| > |A

(b) follows from the fact that

P 1
— mj Zmi (k) pw((k))
a(k) = min {1, 7S N (o 1} > 5 min {1,P,Pr® p }

and assuming is large enough such thd > 1, and (c) follows from the fact thai(k) < 1
and accordinglyp, »x, < 1, and knowing that the sum of the entries of each rowFif? is
less thanN?K?, we havd FF? < N2K?Iy, andP{R} =P {R.}, and conditioned orR,,
we havemin {0, u(k),w((k))} = 0 andv(k) > 0 and consecutivel y < (N?K? + 1)Ixy.

3This can be verified by the fact that every symmetric real imair which has the property that for everya; ; > Z#,‘ |ai, ;|

is positive semidefinite.
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On the other hand, we know for vectord v, w° > 0, we haveP {u > p° v > 1% w > W} =
P () Similarly to the proof of Theorem 1, by taking derivativetiwvrespect tq., v we
havef, , (i, v) = P~1(++") Defining the lower bound asl, = 1°g(3)_}2§$)2[{2+1)+(1 — )=
the new regiorR asR = {y,v >0, =1 (u+v) > Iy}, the cubeZ asZ = [0, K1p*", and for
1<i<2K,Z¢ = [0,00)" ! x [Kly, 00) x [0,00)*) 7, we observe

P{E} (<) P{R}

IN

2K
/mlfu,y <u,u>dudv+;P{[u,v] eRNI7)

UOZ(T:’, N I)P_ ming,0 ,0]eR N T 1'(“0+”0) + 9 p—Klo

2 A

P—Klo

prlKa=-%], (19)

Here, (a) follows from[{T18) and (b) follows from the fact tHa{)Z is a bounded region whose

volume is independent aP. (19) completes the proof. [ |
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Fig. 2. DM Tradeoff for the proposed Switching Markovian 8ete and various values of (K,N), Interfering relays case
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Remark - The statement in the above theorem holds for the generalicagkich any arbitrary
set of relay pairs are non-interfering. Hence, the propasd@me achieves the upper-bound of
the tradeoff curve in the asymptotic case/df— oo for any graph topology on the interfering
relay pairs.

Figure [2) shows the D-M tradeoff curve of the scheme for thgecof interfering relays and

varying number ofK’ and V.
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