
0

Channel Code Design with Causal Side

Information at the Encoder

Hamid Farmanbar, Shahab Oveis Gharan, and Amir K. Khandani

Department of Electrical and Computer Engineering

University of Waterloo

Waterloo, Ontario, N2L 3G1

Technical Report UW-ECE #2007-30

September 27, 2007



1

Channel Code Design with Causal Side

Information at the Encoder

Hamid Farmanbar, Shahab Oveis Gharan, and Amir K. Khandani

Coding and Signal Transmission Laboratory
Department of Electrical and Computer Engineering

University of Waterloo
Waterloo, Ontario, N2L 3G1

Email: {hamid,shahab,khandani}@cst.uwaterloo.ca

Abstract

The problem of channel code design for the M -ary input AWGN channel with additive

Q-ary interference where the sequence of i.i.d. interference symbols is known causally at the

encoder is considered. The code design criterion at high SNR is derived by defining a new

distance measure between the input symbols of the Shannon’s associated channel. For the case

of binary-input channel, i.e., M = 2, it is shown that it is sufficient to use only two (out of

2
Q) input symbols of the associated channel in the encoding as long as the distance spectrum

of the code is concerned. This reduces the problem of channel code design for the binary-input

AWGN channel with known interference at the encoder to the design of binary codes for the

binary symmetric channel where the Hamming distance among codewords is the major factor

in the performance of the code.

Index Terms

Causal side information, Shannon’s associated channel, channel coding, pairwise error

probability.
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I. INTRODUCTION

Information transmission over channels with known interference at the transmit-

ter has recently found applications in various communication problems such as digital

watermarking [1] and broadcast schemes [2]. A remarkable result on such channels

was obtained by Costa who showed that the capacity of the additive white Gaussian

noise (AWGN) channel with additive Gaussian i.i.d. interference, where the sequence

of interference symbols is known non-causally at the transmitter, is the same as the

capacity of the AWGN channel [3]. Therefore, the interference does not incur any loss in

the capacity. This result was extended to arbitrary (random or deterministic) interference

in [4] by using a precoding scheme based on multi-dimensional lattice quantization. The

result obtained by Costa does not hold for the case that the sequence of interference

symbols is known causally at the transmitter.

Following Costa’s “Writing on Dirty Paper” famous title [3], when the interference is

known non-causally at the transmitter, the channel is referred to as “dirty paper” channel.

Recently, dirty paper coding (DPC) has emerged as a building block in multiuser

communication. In particular, there has been considerable research studying the appli-

cation of dirty paper coding to broadcast over multiple-input multiple-output (MIMO)

channels. In such systems, for a given user, the signals sent to other users are considered

as interference. Since all signals are known to the transmitter, successive “dirty paper”

cancelation can be used in transmission after some linear preprocessing [2]. It was shown

that DPC in fact achieves the sum capacity of the MIMO broadcast channel [5], [6], [7].

Most recently, it has been shown that the same is true for the entire capacity region of

the MIMO broadcast channel [8].

These developments motivate finding realizable dirty paper coding techniques. Build-

ing upon [4], Erez and ten Brink [9] proposed a practical code design based on vector

quantization via trellis shaping and using powerful channel codes. Due to the complexity

of implementation, their scheme uses the knowledge of interference up to six future



3

symbols rather than the whole interference sequence. Wei Yu et al. [11] gave a design

based on convolutional shaping and channel codes. Bennatan et al. [10] gave another

design based on superposition coding and successive cancelation decoding. Their design

uses a trellis coded quantizer with memory length nine and a low density parity check

(LDPC) code as channel code.

The schemes that use the interference sequence up to the current symbol can be

used as low-complexity solutions for the dirty paper problem. For example, in [1], scalar

lattice quantization is proposed for data-hiding even though in that context, the host signal

in clearly known non-causally.

In this paper, we consider the problem of channel code design for the M -ary input

AWGN channel with additive causally-known discrete interference. The discrete model

for interference is more appropriate for many practical applications. For example, in the

MIMO broadcast channel, the interference caused by other users is discrete rather than

continuous.

Our design does not rely on the suboptimal (in terms of capacity) scheme of scalar

lattice quantization for the causally known interference [4], [12]. Instead, we consider

code design for the Shannon’s associated channel over all possible input symbols. Another

distinction between our work and the related research in the field is that we consider a

finite channel input alphabet rather than a continuous one.

This paper is organized as follows. In the next section, we summarize Shannon’s

work on channels with causal side information at the transmitter. In section III, we

introduce the channel model. In section IV, we derive the code design criterion for

AWGN channel with causally-known discrete interference at the encoder. In section V,

we consider channels with binary input for which we show that the design criterion

derived in section IV reduces to maximizing the Hamming distance. In section VI, we

consider a special case for which the result for the binary channel also holds for the

M -ary channel. We conclude this paper in section VII.
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Fig. 1. SD-DMC with state information at the encoder.

II. CHANNELS WITH SIDE INFORMATION AT THE TRANSMITTER

Channels with known interference at the transmitter are special case of channels

with side information at the transmitter which were considered by Shannon [13] in the

causal knowledge setting and by Gel’fand and Pinsker [14] in the non-causal knowledge

setting.

Shannon considered a discrete memoryless channel (DMC) whose transition matrix

depends on the channel state. A state-dependent discrete memoryless channel (SD-DMC)

is defined by a finite input alphabet X , a finite output alphabet Y , and transition prob-

abilities p(y|x, s), where the state s takes on values in a finite alphabet S. The block

diagram of a state-dependent channel with state information at the encoder is shown in

fig. 1.
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Fig. 2. The associated regular DMC.

In the causal knowledge setting, the encoder maps a message w into X n as

xi = fi (w, s1, . . . , si) , 1 ≤ i ≤ n. (1)
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Shannon showed that it is sufficient to consider the coding schemes that use only

the current state symbol in the encoding process to achieve the capacity of an SD-DMC

with i.i.d. state sequence known causally at the encoder [13].

The SD-DMC can be used in the way shown in fig. 2 to transmit information. A

precoder is added in front of the SD-DMC. A message w is mapped into T n, where T

is a new alphabet. The output of the precoder ranges over X and depends on the current

interference symbol. The regular (without state) channel from T to Y is defined by the

transition probabilities

q(y|t) =
∑

s∈S

p(s)p(y|x = t(s), s), (2)

where p(s) is the probability of the state s. The DMC defined in (2) is called the

associated channel. The codes for the associated channel describe the codes for the

SD-DMC that use only the current state symbols in the encoding operation. In order to

describe all coding schemes for the SD-DMC that use only the current state symbol in

the encoding process, T must include all functions from the state alphabet to the input

alphabet of the state-dependent channel. There are a total of |X ||S| of such functions,

where |.| denotes the cardinality of a set. Any of the functions can be represented by a

|S|-tuple (x1, x2, . . . , x|S|) composed of elements of X , implying that the value of the

function at state s is xs, s = 1, 2, . . . , |S|.

III. THE CHANNEL MODEL

We consider data transmission over the channel

Y = X + S + N, (3)

where X is the channel input, which takes on values in a fixed real constellation X ,

Y is the channel output, N is additive white Gaussian noise with power σ2, and the

interference S is a discrete random variable that takes on values in a real finite set S.

The sequence of i.i.d. interference symbols is known causally at the encoder.
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The above channel can be considered as a special case of the state-dependent

channel considered by Shannon with one exception, that the channel output alphabet

is continuous. In our case, the likelihood function fY |X,S(y|x, s) is used instead of the

transition probabilities. We denote the input to the associated channel by T , which can

be considered as a function from S to X . We denote the cardinality of X and S by

M and Q, respectively. Then the cardinality of T will be MQ, which is the number all

functions from S to X .

The likelihood function for the associated channel is given by

fY |T (y|t) =
∑

s∈S

p(s)fY |X,S(y|t(s), s)

=
∑

s∈S

p(s)fN (y − t(s) − s), (4)

where p(s) is the probability of the interference symbol s and fN denotes the pdf of the

Gaussian noise N .

IV. THE CODE DESIGN CRITERION

Any coding scheme for the associated channel defined by (4) translates to a coding

scheme for the actual channel defined by fY |X,S(y|x, s). We use the pairwise error

probability (PEP) approach to derive the code design criterion at high SNR. Suppose

that the messages w1 and w2 are encoded into tn1 ≡ t1t2 . . . tn and rn
1 ≡ r1r2 . . . rn,

respectively, where ti’s and ri’s belong to the alphabet T . Using maximum likelihood

decoding, the probability of the event that message w2 is decoded given message w1 was
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sent is given by

Pr{w1 → w2|w1} =
∑

sn
1

p(sn
1 )Pr{w1 → w2|w1, s

n
1}

=
∑

sn
1

p(sn
1 )Pr

{

fY |T (yn
1 |t

n
1 ) < fY |T (yn

1 |r
n
1 )|w1, s

n
1

}

=
∑

sn
1

p(sn
1 )Pr

{

n
∏

i=1

fY |T (yi|ti) <

n
∏

i=1

fY |T (yi|ri)|w1, s
n
1

}

=
∑

sn
1

p(sn
1 )Pr

{

n
∏

i=1

∑

s∈S

p(s)fN(yi − ti(s) − s) <

n
∏

i=1

∑

s∈S

p(s)fN(yi − ri(s) − s)|w1, s
n
1

}

. (5)

where sn
1 ≡ s1 · · · sn ∈ Sn represents the interference sequence during the transmission.

In appendix I, we have shown that the above error probability at high SNR is given by

Pr{w1 → w2|w1} ∝ Q

(

√
∑n

i=1 d2
SI(ti, ri)

2σ

)

, (6)

where dSI(t, r) (SI stands for side information), the distance between two input symbols

of the associated channel t and r, is defined as

dSI(t, r) = min
s1,s2∈S

|t(s1) + s1 − r(s2) − s2|. (7)

According to (6), at high SNR, the code design criterion is to maximize the minimum

distance between the codewords with the distance measure defined in (7).

In order to see how the knowledge of interference at the encoder can result in

increased distances between codewords, consider the channel model introduced in section

III with the exception that the interference sequence is not known at the encoder. In this

case, the discrete interference is considered as noise. In order to obtain the PEP for this

channel, suppose that messages v1 and v2 are encoded into xn
1 ≡ x1 · · ·xn ∈ X n and

zn
1 ≡ z1 · · · zn ∈ X n, respectively. Similarly, it can be shown that the PEP at high SNR

is given by

Pr{v1 → v2|v1} ∝ Q

(

√
∑n

i=1 d2(xi, zi)

2σ

)

, (8)
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where d(x, z), the distance between two symbols x and z of X is defined as

d(x, z) = min
s1,s2∈S

|x + s1 − z − s2|. (9)

It becomes clear by comparing (7) and (9) that higher distances between codewords are

possible for the channel with side information at the encoder.

For example, consider the channel with X = S = {−1, +1}. For the case without

side information at the encoder, we can compute the distances between symbols of X

according to (9) as d(1, 1) = d(−1,−1) = d(1,−1) = 0. Hence, according to (8), it

is impossible to transmit data over this channel with low error probability even at high

SNR.

For the case with side information at the encoder, the four symbols of the associated

channel can be represented as u1 = (−1, +1), u2 = (+1,−1), u3 = (+1, +1), u4 =

(−1,−1). Using (7), it is easy to check that the distances between all pairs of the symbols

are zero except for dSI(u1, u2) which is 2. As will be seen in section V, u1 and u2 can

be used in the encoding to achieve arbitrarily low error probabilities as SNR increases.

It is worth mentioning that the distance measures defined in (7) or (9) do not satisfy

the triangle inequality. For example, again consider the channel with X = S = {−1, +1}.

The distances between all pairs of the input symbols of the associated channel are zero

except for dSI(u1, u2) which is 2. Therefore, the triangle inequality does not hold for

dSI(u1, u3), dSI(u3, u2), and dSI(u1, u2).

V. THE BINARY CHANNEL

Any code designed for the regular associated channel translates to a code for the

actual channel with known interference at the encoder. The alphabet size of the associated

channel is MQ. However, we might not need to use all the symbols of the alphabet in

the encoding scheme as long as the distance spectrum of the code is concerned.

For example, we consider the case where M = 2, i. e., when the channel accepts

binary input. However, there is no constraints on the cardinality of interference alphabet.
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We call this channel the binary channel. For the binary channel, the size of T is 2Q. The

following lemma holds for the binary channel.

Lemma 1: For the binary channel, there exist at least two symbols in T with nonzero

distance.

Proof: We may explicitly denote the channel input and interference alphabets by

X = {x1, x2} and S = {s1, . . . , sQ}, where x1 < x2 and s1 < s2 < · · · < sQ. From the

definition of distance in (7), it is sufficient to show that there exist two elements t and

r in T such that the corresponding multi-sets 1 (of size Q) {t(s1) + s1, . . . , t(sQ) + sQ}

and {r(s1) + s1, . . . , r(sQ) + sQ} are disjoint. We prove this by induction on Q.

The statement of the lemma holds for Q = 1 since we may take t = (x1) and

r = (x2). Then the sets {x1 + s1} and {x2 + s1} are disjoint. Now suppose that the

statement of the lemma is true for some Q. Therefore, the exist two Q-tuples composed of

elements of X (two input symbols of the associated channel) such that the corresponding

multi-sets are disjoint. We prove that the statement of the lemma hold for Q + 1.

The element x2 + sQ+1 is larger than any element of the two multi-sets (of size Q).

Hence, it does not belong to any of the multi-sets. If x1 +sQ+1 does not belong to any of

the multi-sets too, then we can include the new elements x1 + sQ+1 and x2 + sQ+1 in the

multi-sets of size Q arbitrarily (one elements in each multi-set). The resulting multi-sets

of size Q + 1 will be disjoint. If x1 + sQ+1 belongs to one of the multi-set of size Q,

we include it in that multi-set and include x2 + sQ+1 in the other multi-set to form the

new disjoint multi-sets of size Q + 1. The two (Q + 1)-tuples (the two input symbols

of the associated channel) are then obtained from the two multi-sets of size Q + 1 by

subtracting the interference symbols from their elements.

Lemma 1 is in fact a special case of theorem 2 in [15] which is stated in the context

of capacity.

Let u1 and u2 be two input symbols of the associated channel with the maximum

1A multi-set differs from a set in that each member may have a multiplicity greater than one. For example, {1, 3, 3, 7}

is a multi-set of size four where 3 has multiplicity two.
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distance among all pairs of input symbols of the associated channel. Since dSI(u1, u2) >

0, we have u1(s) 6= u2(s), ∀s ∈ S, otherwise, from (7), dSI(u1, u2) = 0. We choose an

arbitrary interference symbol s ∈ S to partition T as follows. We put t ∈ T in T1 if

t(s) = u1(s), otherwise (i.e., t(s) = u2(s)) put t in T2. Note that the distance between

any two symbols in Tj is zero, j = 1, 2.

Suppose that a codebook is designed for the binary channel with codewords com-

posed of elements of T . We construct a new codebook from the current one by replacing

the elements of the codewords that belong to T1 by u1 and replacing the elements of

the codewords that belong to T2 by u2. Since the codewords of the new codebook are

composed of just two elements, we may call the new code a binary code.

Theorem 1: The distance spectrum of the binary code constructed by the procedure

described above is at least as good as the distance spectrum of the old code.

Proof: Consider any two codewords (t1, . . . , tn) and (r1, . . . , rn) from the old

codebook, where ti, ri ∈ T . The squared distance between the two codewords is equal

to
∑n

i=1 d2
SI(ti, ri). For any i ∈ {1, 2, . . . , n}, we consider two cases:

Case 1: ti and ri belong to the same partition. Then dSI(ti, ri) = 0, so the replace-

ment will not change the distance.

Case 2: ti and ri belong to different partitions. Then since dSI(ti, ri) ≤ dSI(u1, u2),

the replacement will not decrease the distance.

According to theorem 1, as long as the distance spectrum of the code in concerned,

it is sufficient to use two symbols of T with maximum distance, namely u1 and u2,

in the encoding for a binary channel. Since for the binary channel T has size 2Q,

a brute-force search for finding two symbols in T with the maximum distance will

have exponential complexity with respect to Q. We have proposed an algorithm with

polynomial complexity for finding two symbols with the maximum distance in appendix

II.

Since it is sufficient to use u1 and u2 in the encoding for the binary channel, we

can define the Hamming distance between any two codewords, which is the number of
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positions at which two codewords are different. Consider two codewords c1 = (t1, . . . , tn)

and c2 = (r1, . . . , rn) with elements from the binary set {u1, u2}. The squared distance

between these codewords is given by
n
∑

i=1

d2
SI(ti, ri) = d2

SI(u1, u2)dH(c1, c2), (10)

where dH(c1, c2) is the Hamming distance between c1 and c2. Therefore, the problem of

designing codes for the binary channel where the interference sequence is known causally

at the encoder reduces to the design of codes for the binary symmetric channel. The only

difference is that the coding is over the set {u1, u2} rather than {0, 1}.

If we were to use a binary code for the interference-free binary channel with the

input alphabet X = {x1, x2}, then the Euclidean distance between any two codewords

c1 and c2 of length n for the interference-free channel would be

d2
E(c1, c2) = (x1 − x2)

2dH(c1, c2), (11)

where dE denotes the Euclidean distance.

Using (10) and (11), we can compare the performance of a zero-one binary code for

the binary channel with causal side information at the encoder with the same zero-one

binary code for the interference-free binary channel. In the case of channel with side

information, zero and one are mapped to u1 and u2, and in the case of the interference-

free channel, zero and one are mapped to x1 and x2, respectively. Note that u1 and u2 are

functions from the interference alphabet S to the channel input alphabet X = {x1, x2}.

It is clear from (7) that

dSI(u1, u2) ≤ |x1 − x2|. (12)

Therefore, using (10) and (11), the distance spectrum of the code for the interference-

free channel is at least as good as the distance-spectrum of the code for the channel

with known interference at the encoder. Of course, this is not surprising. However, it is

interesting to search for the conditions that (12) is satisfied with equality.
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If (12) is satisfied with equality, the distance spectrum of the two codes will be the

same. In particular, the slope of error probability curves at high SNR (which corresponds

to the minimum distance of the codebook) with maximum likelihood decoding will be the

same for the two cases. In other words, if (12) is satisfied with equality, the knowledge of

interference at the encoder enables us to achieve the same performance as the interference-

free case at high SNR.

Theorem 2: dSI(u1, u2) = |x1 − x2| if and only if

min
i6=j

|si − sj| ≥ |x1 − x2|. (13)

Proof: If min |si − sj| ≥ |x1 − x2|, then we may take u = (x1, x2, x1, . . .) and

v = (x2, x1, x2, . . .). Then it is easy to check that dSI(u1, u2) = |x1 − x2|.

For the other direction, suppose that min |si − sj| < |x1 − x2|. We will show that

dSI(u1, u2) < |x1 − x2|. Suppose that sk, sl ∈ S achieve the minimum of |si − sj| and t1

and t2 arbitrary elements of T . Then, we consider two possibilities:

Case 1: t1(sk) = t1(sl) = x1 and t2(sk) = t2(sl) = x2. Then |t1(sl) + sl − t2(sk) −

sk| < |x1 − x2|.

Case 2: t1(sk) = x1, t1(sl) = x2 and t2(sk) = x2, t2(sl) = x1. Then |t1(sk) + sk −

t2(sl) − sl| < |x1 − x2|.

As an example, consider a binary channel with X = S = {−1, +1} and with

equiprobable interference symbols. The two symbols with the maximum distance in the

input alphabet of the associated channel are u1 = (−1, +1), u2 = (+1,−1). We have

simulated the error probability performance of the above channel without error control

coding and with maximum likelihood decoding. The error probability vs. SNR (not in

dB) for the above channel is plotted in fig. 3.

The error probability curve for the interference-free binary channel with X =

{−1, +1} is plotted for comparison. For the interference-free channel, Pe = Q( 1
σ
). It

is easy to check that for this example, dSI(u1, u2) = |x1 − x2| = 2. As it can be seen,

the curves have the same slopes as expected at high SNR. Note that if the interference
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Fig. 3. Error probability vs. SNR for the binary input AWGN channel with/without (known) interference. X = S =

{−1, +1}.

were not known at the encoder, the error probability curve would reach an error floor of
1
4
.

Another example is illustrated in fig. 4. For this example, X = {−1, +1},S =

{−1, 0, +1}. We can find by inspection two symbols of the associated channel input

alphabet with the maximum distance as u1 = (−1,−1, +1), u2 = (+1, +1,−1). Here,

we have dSI(u1, u2) = 1 < |x1 − x2| = 2. Therefore, the error probability curve for

the channel with known interference at the encoder does not decay as fast as the error

probability curve for the interference-free channel.

VI. THE M -ARY CHANNEL

In general, the statement of theorem 1 is not extendable to the case with M > 2

channel input symbols. In fact, by using more than M input symbols of the associated
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Fig. 4. Error probability vs. SNR for the binary input AWGN channel with/without (known) interference. X =

{−1, +1},S = {−1, 0, +1}.

channel, we can obtain a better codebook in terms of distance spectrum than any other

codebook composed of M symbols of the associated channel. As an example, consider

the channel with X = {1, 4, 5, 7} and S = {0, 4}. Consider the following codebook with

six codewords of length two that uses seven symbols of the associated channel.

((4, 1), (5, 1))

((4, 1), (1, 5))

((5, 4), (5, 4))

((5, 4), (4, 5))

((1, 5), (4, 1))

((1, 5), (1, 4))



15

The minimum distance of the above code is 3. However, it can be verified by a computer

program that any code for this channel with codebook size six and length two that uses

any four symbols of the associated channel yields a minimum distance less than 3.

Under some condition on the channel input and interference alphabets, the statement

of theorem 1 can be generalized to the case with M > 2.

Theorem 3: As long as the distance spectrum of code is concerned, it is sufficient

to use M (out of MQ) input symbols of the associated channel in the encoding if

min
si,sj∈S

|si − sj| > 2 max
xi,xj∈X

|xi − xj|.

Proof: Consider the M input symbols of the associated channel u1 = (x1, . . . , x1),

u2 = (x2, . . . , x2), . . ., uM = (xM , . . . , xM). We use these symbols to partition the

associated channel input alphabet T as follows. Put t ∈ T in Ti if the first element of

t is xi, i = 1, 2, . . . , M . Note that Ti has size MQ−1 and the distance between any two

symbols in Ti is zero, i = 1, 2, . . . , M .

Suppose that a codebook is designed with codewords composed of possibly all

elements of T . We construct a new codebook from the current one by replacing the

elements of the codewords that belong to Ti by ui, i = 1, 2, . . . , M . Considering the

condition of the theorem, it is easy to check that the distance spectrum of the new code

is at least as good as the distance spectrum of the old code.

In theorem 3, we showed that given the the condition of the theorem satisfied, it is

sufficient to use the associated channel input symbols u1, . . . , uM in the encoding. But any

of these symbols is a constant function from S to X . Therefore, the same symbol enters

the channel regardless of the current interference symbol. In fact, given the condition of

theorem 3 satisfied, the knowledge of interference symbols at the encoder is not helpful

(in terms of distance spectrum improvement).

VII. CONCLUSION

In this paper, we derived the code design criterion at high SNR for the M -ary input

AWGN channel with additive Q-level interference, where the sequence of interference
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symbols is known causally at the encoder. Although we considered the AWGN channel

with additive interference, our treatment applies to more general channels characterized

by

Y = f(X, S) + N, (14)

where f is a function of two variables and S is the channel state which is known causally

at the encoder. Another special case of this more general channel is the fast fading channel

Y = SX + N, (15)

where S is the fading coefficient.

The code design is over an input alphabet T of size MQ. For the general channel

model (14), the distance between two symbols t and r of T is defined as

dSI(t, r) = min
s1,s2∈S

|f(t(s1), s1) − f(t(s2), s2)|. (16)

The performance of a code for our channel at high SNR is governed by the minimum

distance between the codewords with elements from T . We may not need to use all

symbols of T in the encoding. In particular, we showed that for the case M = 2, as long

as the distance spectrum of the code is concerned, we just need to use two symbols of

T with the maximum distance among all pairs of symbols. This reduces the code design

problem for our channel to code design for binary symmetric channel which has been

well researched in the past fifty years.

It is worth mentioning that lemma 1 and theorems 2 and 3 do not hold for the

more general channel model in (14) and are specific to the AWGN channel with additive

interference.

APPENDIX I

DERIVATION OF CODE DESIGN CRITERION AT HIGH SNR

Define

Ai = {ti(s) + s : s ∈ S}, i = 1, . . . , n, (17)

Bi = {ri(s) + s : s ∈ S}, i = 1, . . . , n. (18)
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It is worth mentioning that the cardinality of Ai (or Bi) can be less than Q, i = 1, . . . , n,

since different interference symbols may yield the same element in Ai (or Bi). For any

i = 1, . . . , n, we have

∑

s

p(s)fN(y − ti(s) − s) =
∑

a∈Ai

p(a)fN(y − a), (19)

∑

s

p(s)fN(y − ri(s) − s) =
∑

b∈Bi

p(b)fN (y − b), (20)

where p(a) and p(b) are obtained from p(s) according to

p(a) =
∑

s∈S:ti(s)+s=a

p(s), (21)

p(b) =
∑

s∈S:ri(s)+s=b

p(s). (22)

For any sequence an
1 ≡ a1 · · ·an ∈ A1×· · ·×An and bn

1 ≡ b1 · · · bn ∈ B1×· · ·×Bn,

we define the events

E1(a
n
1 ) : ai = arg min

a∈Ai

|yi − a|, i = 1, . . . , n, (23)

E2(b
n
1 ) : bi = arg min

b∈Bi

|yi − b|, i = 1, . . . , n,

given that w1 has been sent and the interference sequence sn
1 has occurred. Any term in
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the error probability in (5) can be written as

Pr

{

n
∏

i=1

∑

a∈Ai

p(a)fN (yi − a) <

n
∏

i=1

∑

b∈Bi

p(b)fN(yi − b)|w1, s
n
1

}

=
∑

an
1

∑

bn
1

Pr

{

n
∏

i=1

∑

a∈Ai

p(a)fN (yi − a) <

n
∏

i=1

∑

b∈Bi

p(b)fN(yi − b), E1(a
n
1 ), E2(b

n
1 )|w1, s

n
1

}

=
∑

an
1

∑

bn
1

Pr











n
∏

i=1

fN(yi − ai)






p(ai) +

∑

a∈Ai
a6=ai

p(a)
fN(yi − a)

fN(yi − ai)







<

n
∏

i=1

fN (yi − bi)









p(bi) +
∑

b∈Bi
b6=bi

p(b)
fN(yi − b)

fN(yi − bi)









, E1(a
n
1 ), E2(b

n
1 )|w1, s

n
1















=
∑

an
1

∑

bn
1

Pr

{

n
∑

i=1

(yi − ai)
2 >

n
∑

i=1

(yi − bi)
2 + Kσ2, E1(a

n
1 ), E2(b

n
1 )|w1, s

n
1

}

, (24)

where K = K(yn
1 , an

1 , b
n
1 ) is given by

K(yn
1 , an

1 , b
n
1 ) = 2

n
∑

i=1

log

p(ai) +
∑

a∈Ai
a6=ai

p(a) fN (yi−a)
fN (yi−ai)

p(bi) +
∑

b∈Bi
b6=bi

p(b) fN (yi−b)
fN (yi−bi)

. (25)

Given the events E1(a
n
1 ) and E1(b

n
1 ), it is easy to check that K(yn

1 , an
1 , b

n
1 ) is bounded as

K1(a
n
1 ) = 2

n
∑

i=1

log p(ai) < K(yn
1 , an

1 , b
n
1 ) < K2(b

n
1 ) = 2

n
∑

i=1

log
1

p(bi)
. (26)

As we are considering the high SNR regime, we may assume that the noise power is

sufficiently small so that the error probability (5) can be well approximated by

∑

sn
1

p(sn
1 )
∑

an
1

∑

bn
1

Pr

{

n
∑

i=1

(yi − ai)
2 >

n
∑

i=1

(yi − bi)
2, E1(a

n
1 ), E2(b

n
1 )|w1, s

n
1

}

. (27)
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Any term in the summation (27) can be upper bounded as

Pr

{

n
∑

i=1

(yi − ai)
2 >

n
∑

i=1

(yi − bi)
2, E1(a

n
1 ), E2(b

n
1 )|w1, s

n
1

}

≤ Pr

{

n
∑

i=1

(yi − ci)
2 >

n
∑

i=1

(yi − bi)
2, E1(a

n
1 ), E2(b

n
1 )|w1, s

n
1

}

≤ Pr

{

n
∑

i=1

(yi − ci)
2 >

n
∑

i=1

(yi − bi)
2|w1, s

n
1

}

= Q

(

√
∑n

i=1 |ci − bi|2

2σ

)

≤ Q

(

√
∑n

i=1 d2
SI(ti, ri)

2σ

)

, (28)

where

ci = ti(si) + si, i = 1, . . . , n. (29)

The first inequality is due to the fact that given E1(a
n
1 ), we have |yi − ai| ≤ |yi − ci|, i =

1, . . . , n.

Now, we show that the upper bound (28) is tight for the term(s) in the summation

(27) satisfying

{ai, bi} = arg min
a∈Ai
b∈Bi

|a − b|, i = 1, . . . , n, (30)

and

ai = ci, i = 1, . . . , n. (31)

Any term in (27) equals the integral of the joint probability distribution of yn
1 ≡

y1 · · ·yn (given w1, s
n
1 ) over the region in the n-dimensional Euclidean space defined by

{

yn
1 :

n
∑

i=1

(yi − ai)
2 >

n
∑

i=1

(yi − bi)
2, E1(a

n
1 ), E2(b

n
1 )

}

. (32)

This region is illustrated by the shaded area ABCD in fig. 5 for n = 2. For the

terms in (27) which satisfy (30) and (31) the region defined in (32) includes the region
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F

Fig. 5. Illustrating the regions of integration for dimension n = 2.

defined by
{

n
∑

i=1

(yi − ai)
2 >

n
∑

i=1

(yi − bi)
2, min(ai, bi) < yi < max(ai, bi), i = 1, . . . , n

}

. (33)

The above region is illustrated by the shaded area EFGH in fig. 5. This region is not

empty since we may assume that ai 6= bi, i = 1, . . . , n. We may consider an n-cube inside

this region with sides equal to δ > 0 as shown in fig. 5 and perform the integration over

this smaller region.
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In summary,

Pr

{

n
∑

i=1

(yi − ai)
2 >

n
∑

i=1

(yi − bi)
2, E1(a

n
1 ), E2(b

n
1 )|w1, s

n
1

}

≥ Pr

{

n
∑

i=1

(yi − ai)
2 >

n
∑

i=1

(yi − bi)
2, min(ai, bi) < yi < max(ai, bi), i = 1, . . . , n|w1, s

n
1

}

≥

[

1 − Q

(

δ

2σ

)]n−1 [

Q

(

‖bn
1 − an

1‖

2σ

)

− Q

(

‖bn
1 − an

1‖ + δ

2σ

)]

≈ Q

(

‖bn
1 − an

1‖

2σ

)

as σ → 0

= Q

(

√
∑n

i=1 d2
SI(ti, ri)

2σ

)

. (34)

APPENDIX II

A POLYNOMIAL COMPLEXITY ALGORITHM FOR FINDING TWO INPUT SYMBOLS OF T

WITH THE MAXIMUM DISTANCE

Consider the bipartite graph G shown in fig. 6 with 2Q vertices at each part. Each of

the non-intersecting sets U1, · · · , UQ contains two vertices of the upper part and each of

the nonintersecting sets V1, · · · , VQ contains two vertices of the lower part. The vertices

of the sets Ui = {ui1, ui2} and Vi = {vi1, vi2} are labeled by the elements of the set

X + si = {x1 + si, x2 + si}, i = 1, . . . , Q. A vertex in Ui is connected to a vertex in

Vj if the absolute value of the difference of their labels is greater than or equal to some

d0 ≥ 0, i, j = 1, . . . , Q.

From the definition of distance in (7), there exist two symbols in T with distance

d ≥ d0 if and only if G has a complete bipartite subgraph KQ,Q with exactly one vertex

in each Ui and each Vj. If such a subgraph exists, we label the edges of the subgraph

by 1 and we label the rest of the edges of G by 0. We denote the label of edge e by
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x1 + s1 x2 + s1
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V1

U1

V2

x2 + s2

U2 UQ

x2 + sQ

x2 + sQ

VQ

x1 + sQ

x1 + sQx2 + s2

x1 + s2

x1 + s2

Fig. 6. A bipartite graph.

ye ∈ {0, 1}. Such a labeling satisfies the following set of constraints

∑

e:e∩Ui 6=φ

ye = Q, i = 1, . . . , Q, (35)

∑

e:e∩Vi 6=φ

ye = Q, i = 1, . . . , Q, (36)

ye ∈ {0, 1}. (37)

Note that by definition an edge of a graph is a set of two vertices. Therefore, the notation

e∩Ui in (35) is meaningful. The equations (35) and (36) state that the sum of the labels

of the edges going out of any Ui and Vi is Q.

We devise an objective function for the constraints (35), (36), and (37) such that

the objective function takes a given maximum value only for the labeling with label 1

for the edges of the subgraph KQ,Q and label 0 for the rest of the edges. Consider the
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following optimization problem

max
ye

Q
∑

i=1

2
∑

j=1





∑

e:uij∈e

ye





2

+

Q
∑

i=1

2
∑

j=1





∑

e:vij∈e

ye





2

subject to
∑

e:e∩Ui 6=φ

ye = Q, i = 1, . . . , Q,

∑

e:e∩Vi 6=φ

ye = Q, i = 1, . . . , Q,

ye ∈ {0, 1}. (38)

We have

2
∑

j=1





∑

e:uij∈e

ye



 =
∑

e:e∩Ui 6=φ

ye = Q, i = 1, . . . , Q, (39)

2
∑

j=1





∑

e:vij∈e

ye



 =
∑

e:e∩Vi 6=φ

ye = Q, i = 1, . . . , Q. (40)

Therefore, for any i = 1, . . . , Q, the maximum of

2
∑

j=1





∑

e:uij∈e

ye





2

and
2
∑

j=1





∑

e:vij∈e

ye





2

will be Q2 and this maximum occurs if and only if one vertex in any of U1, . . . , UQ

and V1, . . . , VQ is connected to Q edges with label 1 and the other vertex in any of

U1, . . . , UQ and V1, . . . , VQ is not connected to any edge with label 1. This is equivalent

to the existence of the subgraph KQ,Q. Then the maximum of the objective function in

(38) will be Q × Q2 + Q × Q2 = 2Q3.
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We may relax the integrality constraint (37) and change equality signs in (35) and

(36) to inequality signs to obtain the following optimization program

max
ye

Q
∑

i=1

2
∑

j=1





∑

e:uij∈e

ye





2

+

Q
∑

i=1

2
∑

j=1





∑

e:vij∈e

ye





2

subject to
∑

e:e∩Ui 6=φ

ye ≤ Q, i = 1, . . . , Q,

∑

e:e∩Vi 6=φ

ye ≤ Q, i = 1, . . . , Q,

0 ≤ ye ≤ 1. (41)

It is easy to check that the value 2Q3 is achievable for the above maximization problem

too if and only if a subgraph KQ,Q of the graph G exists. The above optimization problem

is a quadratic programming problem [16] and can be solved in polynomial time [17] in

terms of the number of edges of G, which is at most 4Q2.

In summary, we turned the problem of finding two symbols in T with distance

at least d0 > 0 into the quadratic programming problem (41). If the maximum value

of (41) is 2Q3, then two such symbols are obtained from the optimal solution of (41).

Otherwise, two such symbols do not exist. To find two symbols in T with the maximum

distance, we need to run the described algorithm for a few values for d0. We can obtain

an upper bound on the number of possible distances between symbols of T . From the

definition of distance in (7), a loose upper bound is M2Q2 = 4Q2. By using the binary

search algorithm [18], the search over possible distances can be done with logarithmic

complexity with respect to the number of possible distances.
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