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Abstract

We consider a wireless communication network with a fixed number of frequency sub-bands to be shared

among several transmitter-receiver pairs. In traditional frequency division (FD) systems, the available sub-bands

are partitioned into disjoint clusters (frequency bands) and assigned to different users (each user transmits only

in its own band). If the number of users sharing the spectrum is random, this technique may lead to inefficient

spectrum utilization (a considerable fraction of the bands may remain empty most of the time). In addition, this

approach inherently requires either a central network controller for frequency allocation, or cognitive radios which

sense and occupy the empty bands in a dynamic fashion. These shortcomings motivate us to look for a decentralized

scheme (without using cognitive radios) which allows the users to coexist, while utilizing the spectrum efficiently.

We consider a frequency hopping (FH) scheme (with iid Gaussian code-books) where each user transmits over a

selection of sub-bands and hops to another selection (with the same cardinality) from transmission to transmission.

We derive lower and upper bounds on the achievable rate of each user and demonstrate that for large signal-to-noise

ratio (SNR) values, the two bounds coincide. This observation enables us to compute the sum-rate multiplexing

gain (SMG) of the system. Subsequently, we show how each user can regulate its rate to guarantee fairness while

maximizing SMG. We compare the FH and FD systems in terms of the following performance measures: average

sum-rate multiplexing gain (η1), average multiplexing gain per user (η2), the minimum multiplexing gain per

user (η3), average diversity exponent for each user (η4) and service capability. We show that (depending on the

probability mass function of the number of active users), the FH system can offer a significant improvement in terms

of η1 and η2 (implying a more efficient usage of the spectrum) and also in terms of η4 (implying a higher reliability).

It is also shown that 1
e ≤

η
(F H)
3

η
(F D)
3

≤ 1, i.e., the loss incurred in η3 is not more than 1
e . Finally, computation of the

so-called service capability shows that in FH systems any number of users can coexist fairly, while the maximum

number of users in FD system is limited by the number of available bands.
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I. INTRODUCTION

Optimal resource allocation is an imperative issue in wireless networks. When multiple users share the

same spectrum, the destructive effect of multi-user interference can limit the achievable rates. As such, an

effective and low complexity frequency sharing strategy which maximizes the degrees of freedom per user,

while mitigating the impact of the multi-user interference is desirable. In frequency division (FD) systems,

different users transmit over disjoint frequency bands. Due to practical considerations, such FD systems

usually rely on a fixed number of such frequency bands. The main drawback of FD systems is that most

of the time the majority of the potential users may be inactive, reducing the resulting spectral efficiency.

Reference [1] considers a network of several users with mutual interference. Treating the interference

as noise, a central controller computes the optimum power allocation of each link over the spectrum to

maximize a global utility function. This leads to the best spectrum sharing strategy for a specific number

of users. Clearly, if the number of users changes, the system is not guaranteed to offer the best possible

spectral efficiency. In fact, it is shown in [1] that if the crossover gains are sufficiently greater than the

forward gains, the frequency division is optimum. However, as mentioned earlier, if the number of users

sharing the spectrum is random, FD systems can be highly inefficient in terms of the overall spectral

efficiency. To avoid the need for a central controller, cognitive radios [2] are introduced which can sense

the bands and transmit over an unoccupied portion of the available spectrum. Fundamental limits of

wireless networks with cognitive radios are studied in [3]-[5]. Although cognitive radios avoid the use of

a central controller, they require methods for frequency sending and dynamic frequency assignment which

add to the overall system complexity. Regardless of the complexity issue, FD systems (with or without

cognitive radios) can have poor spectrum efficiency when the number of active users is significantly below

its maximum possible value. Noting the above points, it is desirable to have a decentralized frequency

sharing strategy (without the need for cognitive radios) which allows the users to coexist, while utilizing

the spectrum efficiently and fairly.

Motivated by the above observations, we consider a decentralized network operating on a set of u

frequency sub-bands to be shared among n users. Different transmitters are linked to different receivers

through paths with static and non-frequency-selective fading. Each user is assumed to have no prior
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knowledge about the code-books of the other users. We propose a frequency hopping (FH) strategy in

which the ith user selects vi frequency sub-bands among the u available sub-bands and hops to another

set of vi sub-bands for the next transmission. It is assumed that all users transmit independent Gaussian

code-books over their chosen frequency bands.

As each user hops over different subsets of the sub-bands without informing other users about its

hopping pattern, sensing the spectrum to track the instantaneous interference is a difficult task. This

assumption makes the interference probability density function (PDF) on each frequency sub-band at the

receiver side of each user be mixed Gaussian. Since the channel gains have a continuous PDF, the number

of Gaussian components in the interference PDF is 2n−1 with probability one. Each user is able to derive

the interference PDF after a sufficiently long training period. Being a random variable, the number of

active users in the system is taken to be a global knowledge as it can be inferred from the number of

interference levels.

We derive upper and lower bounds on the achievable rate of each user which coincide in the high SNR

regime. This enables us to obtain the sum-rate multiplexing gain of the network. We show how each user

can regulate its rate close to the achievable rate within a gap which saturates as SNR increases. In fact,

the only information each transmitter needs are the highest interference level at its affiliated receiver and

its forward channel gain.

We compare the centralized FD with the FH system based on five measures namely, average sum-rate

multiplexing gain (η1), average multiplexing gain per user (η2), minimum multiplexing gain per use (η3),

average diversity exponent for each user (η4) and service capability where the latter is the average of the

fraction of users who are getting service out of the total number of active users.

We show cases (depending on the probability mass function of the number of active users) where the

FH system offers larger values of η1 and η2 implying more efficient frequency usage. In fact, the FD

system is already designed to service up to K ≤ u users where K|u. The central controller divides the

sub-bands into K clusters each containing u
K

sub-bands. Each cluster is assigned to a user. For example,

if there is only one active user in the system, K−1
K
u frequency bands are unused. But, the FH scheme

allows this active user to spread its power on the whole band achieving a higher spectral efficiency.

On the other hand, since the FD system is designed to handle the case where the number of active

users is K, the minimum multiplexing gain per user is η(FD)
3 = u

K
. As we will see, η(FH)

3 = u
K

(1− 1
K

)K−1

which is less than η(FD)
3 . But, one can easily show that η

(FH)
3

η
(FD)
3

≥ 1
e

for all K, i.e., the loss incurred in the
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FH system in terms of η3 is not more than 1
e
.

In case no transmitter has the necessary knowledge about the channel gains to regulate its rate, we derive

lower bounds on the diversity-multiplexing tradeoff [5] of each active user. It is shown that depending on

the distribution of the number of active users, FH outperform FD in terms of η4, i.e., it provides each user

with significantly more reliability. Also, it might happen that there are more than u users in the system.

Clearly, FD system is not capable to provide service for all of these users. On the other hand, the FH

system allows all of these users to share the spectrum. This is interpreted as a higher service capability.

The paper outline is as follows. System model is given in section II. In section III, upper bounds on the

achievable rates of users are computed. Section IV offers lower bounds on the achievable rates of users.

In section V, based on the results in sections III and IV, we discuss how the users in the FH system fairly

share the band while maximizing the multiplexing gain per user. Comparison between the FH and FD

systems is given in this section. in sections VI and VII, we discuss about generalizing the FH system and

the dual of FH in time respectively. We conclude the paper in section VIII where outage consideration and

diversity-multiplexing tradeoff of the FH system is offered. We use the notation f(γ) ∼ g(γ) implying

limγ→∞
f(γ)
g(γ)

= 1 throughout the paper.

II. SYSTEM MODEL

We consider a communication system with n users where the ith user exploits vi(≤ u) out of the u sub-

bands and spreads its available power, P , equally over these selected bands by transmitting independent

Gaussian signals of variance P
vi

over each of the chosen sub-bands. This user hops to another set of vi

frequency sub-bands after each transmission. We denote the achievable rate of the ith user by Ri. The

static and non frequency-selective fading coefficient of the link connecting the ith transmitter to the jth

receiver is shown by hi,j . Each receiver knows already the hopping pattern of its affiliated transmitter. On

the other hand, as all users hop over different portions of the spectrum from transmission to transmission,

no user is assumed to be capable of tracking the instantaneous interference. This assumption makes the

interference plus noise PDF at the receiver side of each user be a mixed Gaussian distribution. In fact,

depending on different choices the other users make to select the frequency sub-bands and values of the

crossover gains, this mixed Gaussian distribution has up to 2n−1 power levels. For each i, the channel

model for the ith link is as follows:

~Yi = hi,i ~Xi + ~Zi (1)
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where ~Xi is the u×1 input vector of the ith user and ~Zi is the noise plus interference vector on the receiver

side of the ith user. One may write p ~Xi(~x) =
∑

C∈C
1

(uvi)
g(~x, C) where g(~x, C) denotes a zero-mean jointly

Gaussian distribution of covariance matrix C and the set C includes all u × u diagonal matrices where

vi out of the u diagonal elements are P
vi

while the rest are zeros. Denoting the noise plus interference

on the jth band at the receiver side of the ith user by Zi,j (the jth component of ~Zi), it is clear that

pZi,j(z) is not dependent on j. This is by the fact that crossover gains are not sensitive to frequency and

there is no particular interest to a specific frequency sub-band by any user. We assume there are Li + 1

(Li ≤ 2n−1 − 1) possible non-zero power levels for Zi,j , say {σ2
i,l}

Li
l=0. The occurrence probability of σ2

i,l

is denoted by ai,l. Then, pZi,j(z) is a mixed Gaussian distribution as follows:

pZi,j(z) =

Li∑
l=0

ai,l√
2πσi,l

exp− z2

2σ2
i,l

(2)

where σ2 = σ2
i,0 < σ2

i,1 < σ2
i,2 < ... < σ2

i,Li
(σ2 is the ambient noise power). In fact, one may write

Zi,j =
∑n

k=1,k 6=i εk,jhk,iXk,j + νi,j where Xk,j is the signal of the kth user sent on the jth sub-band, εk,j is

a Bernoulli random variable showing if the kth user has utilized the jth sub-band and νi,j is the ambient

noise which is a zero-mean Gaussian random variable with variance σ2. Obviously, Pr{εk,j = 1} = vk
u

.

Also, a quantity of interest would be the following:

ai,0 = Pr{Zi,j contains no interference}

=
∏
k 6=i

Pr{εk,j = 0} =
∏
k 6=i

(1− vi
u

). (3)

We notice that for each l ≥ 1, there exists a ci,l > 0 such that σ2
i,l = σ2+ci,lP where ci,1 < ci,2 < ... < ci,Li .

To compute Ri, one may see that for each i, the communication channel of the ith user is a channel with

state Si, the hopping pattern, which is independently changing over different transmissions and is known

to both the transmitter and receiver ends of the ith user. The achievable rate of such a channel is given

by

Ri = I( ~Xi; ~Yi|Si) =
∑
si∈Si

Pr(Si = si)I( ~Xi; ~Yi|Si = si) (4)

where I( ~Xi; ~Yi|Si = si) is the mutual information between ~Xi and ~Yi for the specific sub-band selection

dictated by Si = si. The set Si denote all possible selections of vi out of the u sub-bands. As p ~Zi(~z) is a

symmetric density function, meaning all its components have the same PDF given in (2), we deduce that
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I( ~Xi; ~Yi|Si = si) is independent of si. Therefore, we may assume any specific sub-band selection for the

ith user in Si, say the first vi out of the u sub-bands. Denoting this specific state by s∗i , we get:

Ri = I( ~Xi; ~Yi|Si = s∗i ) (5)

In this case, we denote ~Yi and ~Xi by ~Yi(s
∗
i ) and ~Xi(s

∗
i ) respectively. Obviously, we have:

Ri = I( ~Xi(s
∗
i ); ~Yi(s

∗
i )) = h(~Yi(s

∗
i ))− h(~Zi). (6)

Throughout the paper, the number of users is assumed to be a random variable. To decode the data, the

receiver of the ith user is expected to know the noise plus interference PDF, p~Zi(~z), after a sufficiently

long training period. As we will see, each transmitter can regulate its rate close to its achievable rate

within a gap which is bounded in terms of SNR. To do this, each transmitter only needs to know the

greatest interference level on each frequency sub-band at the receiver side and its forward channel gain.

In case n = 2, we show even without the knowledge about the greatest interference term, it is possible

to regulate the rate at the transmitters to achieve the ultimate multiplexing gain per user in the high SNR

regime. We conjecture this to be true for all n. Clearly, if the gains {hi,j} have a continuous distribution,

the number of interference levels is equal to 2n−1 with probability one. As such, n is also assumed to be

a global knowledge among users.

III. UPPER BOUNDS ON THE ACHIEVABLE RATES

In this section, we develop an upper bound, Rub
i , on the achievable rate of the ith user which is tight

enough to ensure that Rub
i − Ri does not increase unboundedly as SNR increases. The idea behind this

upper bound is the convexity of Ri in terms of p(~Yi(s∗i )| ~Xi(s
∗
i )).

Let ~Wi be the u× 1 interference vector where its jth component, Wi,j , is a random variable showing

the interference term on the jth frequency band at the receiver. In terms of our previous notation,

Wi,j =
∑n

k=1,k 6=i εk,jhk,iXk,j . Clearly, ~Wi is a mixed Gaussian vector where its Gaussian components

represent different choices the other users make to select their sub-bands. In fact, we have p ~Wi
(~w) =

1
Mi

∑Mi

m=1 g(~w,Di,m) where Mi =
∏

j 6=i
(
u
vj

)
, and as each user transmits independent Gaussian signals

over its chosen sub-bands, the matrices {Di,m}Mi
m=1 are diagonal, i.e., Di,m = diag(d

(1)
i,m, · · · , d

(u)
i,m). If the

probability density function of the interference vector consisted only of g(~w,Di,m), the forward link of the

ith channel would be converted into an additive Gaussian channel. The achievable rate of such a virtual
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channel is simply given by:

Ri,m =
1

2
log

det(Cov( ~Xi(s
∗
i )) +Di,m + σ2Iu)

det(Di,m + σ2Iu)

=
1

2
log

∏vi
j=1(

|hi,i|2P
vi

+ d
(j)
i,m + σ2)∏vi

j=1(d
(j)
i,m + σ2)

=
1

2

vi∑
j=1

log

(
1 +

|hi,i|2P
vi(d

(j)
i,m + σ2)

)
. (7)

Let us state this more concisely as follows. let Ti,m = {j|1 ≤ j ≤ vi, d
(j)
i,m = 0}. Defining γ = P

σ2 , we get:

Ri,m =
|Ti,m|

2
log

(
1 +
|hi,i|2γ
vi

)
+ R̃i,m (8)

where

R̃i,m =
1

2

∑
1≤j≤vi:d

(j)
i,m 6=0

log

(
1 +

|hi,i|2P
vi(d

(j)
i,m + σ2)

)
. (9)

As each non-zero d(j)
i,m is proportional to P , it is clear that limγ→∞ R̃i,m <∞. We know that Ri is convex

in terms of p~Yi| ~Xi(~y|~x) = p~Zi(~y−~x). On the other hand, p~Zi(~z) = 1
Mi

∑Mi

m=1 g(~z,Di,m +σ2Iu). Therefore,

we have:

Ri ≤
1

Mi

Mi∑
m=1

Ri,m

=

(
1

Mi

Mi∑
m=1

|Ti,m|

)
1

2
log

(
1 +
|hi,i|2γ
vi

)
+ R̃i (10)

where R̃i = 1
Mi

∑Mi

m=1 R̃i,m. Clearly, as each R̃i,m saturates by increasing γ, one has limγ→∞ R̃i < ∞.

The following lemma offers an explicit expression for 1
Mi

∑Mi

m=1 |Ti,m|.

Lemma 1
1

Mi

Mi∑
m=1

|Ti,m| = vi

n∏
k=1,k 6=i

(
1− vk

u

)
Proof: Defining Aj = {m : |Ti,m| = j}, one may express the left side as:

1

Mi

Mi∑
m=1

|Ti,m| =
1

Mi

vi∑
j=1

j|Aj|

Let F be a random variable showing the number of interference free bands among the vi bands selected
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by the ith user. Noting that Pr{F = j} =
|Aj |
Mi

, we have:

1

Mi

Mi∑
m=1

|Ti,m| =
vi∑
j=1

j Pr{F = j} = E{F}

Let us define:

Fj =

 1 Wi,j = 0

0 Wi,j 6= 0

obviously, F =
∑vi

j=1 Fj . As such, we get:

E{F} =

vi∑
j=1

E{Fj} =

vi∑
j=1

Pr{Wi,j = 0}

but ∀j : Pr{Wi,j = 0} = ai,0 =
∏n

k=1,k 6=i
(
1− vk

u

)
which yields:

E{F} = vi

n∏
k=1,k 6=i

(
1− vk

u

)
.

Based on (10) and lemma 1, we propose the following theorem:

Theorem 1 There exists an upper bound Rub
i on the achievable rate of the ith user given by

Rub
i =

1

2
vi

n∏
k=1,k 6=i

(
1− vk

u

)
log γ + R̃i

where limγ→∞ R̃i <∞. In particular, Rub
i ∼ 1

2
vi
∏n

k=1,k 6=i
(
1− vk

u

)
log γ

As we will see in the next section, limγ→∞R
ub
i −Ri <∞.

IV. LOWER BOUNDS ON THE RATES

In this section, we proceed to obtain a lower bound, Rlb
i , on the achievable rate of the ith user which

has interestingly the same asymptotic expression as that of Rub
i obtained in the previous section. This

enables us to deduce the asymptotic expression for Ri itself. The idea behind deriving this lower bound is

to invoke entropy power inequality (EPI) which was first used by Shannon as a means of getting a lower

bound on the capacity. As we will see, this initial lower bound is not in a closed form as it depends on

the entropy of a mixed Gaussian random variable. In appendix A, through a careful examination of such

an entropy, we obtain an appropriate upper bound on it which leads us to the final lower bound Rlb
i .
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We define ~X ′i to be the vi × 1 signal vector of the first transmitter which is sent through the first

vi chosen frequency bands. Let ~Y ′i = hi,i ~X
′
i + ~Z ′i, where ~Z ′i is the noise plus interference vector at the

receiver side on the first vi frequency bands. According to EPI, we have:

2
2
vi

h(~Y ′i ) ≥ 2
2
vi

h(hi,i ~X
′
i) + 2

2
vi

h(~Z′i). (11)

Dividing both sides by 2h(~Z′i), we get:

h(~Y ′i )− h(~Z ′i) ≥
vi
2

log(2
2
vi

(h(hi,i ~X
′
i)−h(~Z′i)) + 1). (12)

On the other hand, since ~Y ′i is a subvector of ~Yi(s∗i ), we have:

Ri = I( ~Xi(s
∗
i ); ~Yi(s

∗
i )) ≥ I( ~X ′i; ~Y

′
i ) = h(~Y ′i )− h(~Z ′i). (13)

Based on (12) and (13), we get the following lower bound on Ri:

Ri ≥
vi
2

log(2
2
vi

(h(hi,i ~X
′
i)−h(~Z′i)) + 1). (14)

As ~Z ′i is a mixed Gaussian vector, there is no closed-form formula for h(~Z ′i). To circumvent this difficulty,

we have to find an appropriate upper bound on h(~Z ′i). A general upper bound on the entropy of a random

vector is the entropy of a Gaussian vector of the same covariance matrix. But, it can be verified that this

yields a lower bound on Ri which is less than a constant threshold for all values of γ, and hence would

not be suitable for our purposes. To find a sufficiently tight upper bound on h(~Z ′i), we must investigate

the exact PDF of ~Z ′i. Using the chain rule for the entropy function, one has the following bound:

h(~Z ′i) ≤
vi∑
j=1

h(Zi,j) (15)

It is notable that components of ~Z ′i are not independent. Thus, the above bound is actually strict. The

following proposition yields an upper bound on h(Zi,j).

Proposition 1 For every 1 ≤ j ≤ vi and for all values of γ, there exists an upper bound on h(Zi,j) given

by

h(Zi,j) ≤
1

2
(1− ai,0) log(ci,Liγ + 1) + log(

√
2πeσ) + κi

where κi = −ai,0 log ai,0 − (1− ai,0) log ai,Li + 1
2
ai,0 log e is a term not depending on γ and the channel
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gains. Also, we have:

h(Zi,j) ∼
1

2
(1− ai,0) log γ

.

Proof: See Appendix A.

In fact, the upper bound given on h(Zi,j) replacing Zi,j by a Gaussian random variable of the same variance

is asymptotically equivalent to 1
2

log γ. In contrast, the upper bound given in proposition 1, includes the

coefficient 1− ai,0 which makes it tighter. Based on the above proposition, and by (14) and (15), we get:

Ri ≥
vi
2

log

(
2

2
vi

„
1
2

log(2πe
|hi,i|

2P

vi
)vi−vi( 1

2
(1−ai,0) log(ci,Liγ+1)+log(

√
2πeσ)+κi)

«
+ 1

)

=
vi
2

log

(
22κi |hi,i|2γ

(ci,Liγ + 1)1−ai,0
+ 1

)
. (16)

But, vi
2

log

(
22κi |hi,i|2γ

(ci,Liγ+1)1−ai,0
+ 1

)
∼ 1

2
viai,0 log γ. Thus, we come up with the following theorem of this

section:

Theorem 2 There exists a lower bound Rlb
i on the achievable rate of the ith user which satisfies

Rlb
i ∼

1

2
vi

n∏
k=1,k 6=i

(
1− vk

u

)
log γ.

Now, we note the following remarks stating some points regarding the last two theorems.

• Interestingly, Rlb
i has the same asymptotic expression as that of Rub

i . This analogy enables us to deduce

the asymptotic expression for Ri. Also, it is now clear that Rub
i is tight in the sense that limγ→∞R

ub
i −Ri <

limγ→∞R
ub
i −Rlb

i <∞.

• From now on, we assume that the ith transmitter regulates its rate at Rlb
i . It can be seen that the

only parameters needed to compute Rlb
i are |hi,i|, ci,Li and κi. As we know, ci,Li represents the greatest

interference level on each frequency band at the ith user receiver side. This must be passed over to the

transmitter side via a feedback link. On the other hand, κi completely depends on {vj}nj=1 along the terms

ai,0 =
∏n

j=1,j 6=i(1 −
vj
u

) and ai,Li =
∏n

j=1,j 6=i
vj
u

. For example, if u is an integer multiple of n, and we

take vj = u
n

for all j, then ai,0 = (1 − 1
n
)n−1, ai,Li = 1

nn−1 and κi = 1
2

log
n(n−1)(1−(1− 1

n )n−1) exp(1− 1
n

)n−1

(1− 1
n

)(n−1)(1− 1
n )n−1 .

In fact, as we will see in the next section, setting vj = u
n

for all j is towards maximizing the sum-rate

multiplexing gain.
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• In appendix B, for a system with two users, i.e., n = 2, via different bounding techniques from those

offered already, Rub
i and Rlb

i are computed as follows:

Rlb
i =

1

2
(vi −

v1v2

u
) log(1 +

|hi,i|2γ
vi

) +
1

2

v1v2

u
log(1 +

|hi,i|2γ
vi

1 +
|hi′,i|2γ
vi′

) (17)

and

Rlb
i =

1

2
(vi −

v1v2

u
) log(1 +

|hi,i|2γ
vi

) +
1

2

v1v2

u
log(1 +

|hi,i|2γ
vi

1 +
|hi′,i|2γ
vi′

)− κ′i (18)

where i′ = 3 − i for i ∈ {1, 2} and κ′i = −u(ai,0 log ai,0 + (1 − ai,0) log(1 − ai,0)). It is seen that both

bounds are all the same up to a constant difference κ′i which is not dependent on γ and the channel gains.

In particular, we see that R′i = (vi − v0v1
u

) log(1 +
|hi,i|2γ
vi

) − κ′i is an achievable rate (it is less than Rlb
i )

as far as γ is large enough to ensure that R′i > 0. This can be computed knowing |hi,i|. This achievable

rate is asymptotically equivalent to Rub
i . Therefore, we have found a computable rate achieving the full

multiplexing gain which is not dependent on ci,Li . We conjecture that the same result holds for general

n.

V. SYSTEM DESIGN

In this section, we consider the complex case where signals, ambient noise and channel gains are circular

complex Gaussian random variables. This affects the previous results via multiplication by a factor of

two. In general, there are two fixed parameters in the system, the number of frequency bands, u, and the

maximum number of active users that the system is designed to handle, K. We compare the FH system

with the centralized FD system according to five key measures to be defined later. Based on the results

in the previous sections, there exist upper and lower bounds on the achievable rate of each user which

coincide in the high SNR regime. Thus, the achievable rate itself must be asymptotically equivalent to

each of these bounds, i.e.,

Ri ∼ vi

n∏
k=1,k 6=i

(
1− vk

u

)
log γ. (19)

Let SR =
∑n

i=1Ri be the sum-rate. Then,

SR ∼ rSR log γ (20)



12

where

rSR =
n∑
i=1

vi
∏

1≤k≤n,k 6=i

(
1− vk

u

)
. (21)

We call rSR the sum-rate multiplexing gain of the system. rSR is a symmetric function of vi’s. In a “fair”

FH system, it is required that vi = v for all i. Thus,

rSR = nv
(

1− v

u

)n−1

. (22)

Maximizing this in terms of v yields:

vopt =

 1 if u
n
< 1

bu
n
c if u

n
≥ 1

. (23)

In the sequel, we compare the performance of the FD system with that of the decentralized network

adopting the FH strategy. We assume the number of users in the system is a random variable N with

probability mass function qn = Pr{N = n} for n ≥ 1. For the moment, we assume Pr{N > K} = 0.

In what follows all expectations are with respect to the number of active users. Our comparison is based

on five performance measures namely, average sum-rate multiplexing gain, average multiplexing gain per

user, the minimum multiplexing gain per user, average diversity exponent for each user and the so-called

service capability. Service capability shows the fraction of users getting service among all the active users

in the system.

• Average sum-rate multiplexing gain

Average sum-rate multiplexing gain is defined as η1 = E{rSR}. The FD system is already designed to

handle K ≤ u users where K|u. The frequency sub-bands are divided into K clusters each containing u
K

sub-bands. Each user that enters the system looks for an empty cluster. If there is one, the user occupies

the cluster. If there is no empty cluster, no service is available. Therefore, the sum-rate multiplexing gain

is

r
(FD)
SR =

 N u
K

N ≤ K

u N > K
. (24)

On the other hand, in a decentralized network with FH strategy, the parameter K is meaningless. In fact,

by the nature of FH, any number of active users can get service. Since N is a global knowledge, by (22)



13

and (23), r(FH)
SR is given by:

r
(FH)
SR =

 Nb u
N
c(1− 1

u
b u
N
c)N−1 N ≤ u

N(1− 1
u
)N−1 N > u

(25)

Example 1 Assume there are always at most three active users in the system and 2|u. As such, the central

controller in the FD system sets K = 2, and according to (24), we have η(FD)
1 = E{r(FD)

SR } = q1
u
2

+ q2u.

On the other hand, based on (25), we get η(FH)
1 = E{r(FH)

SR } = q1u+2q2
u
2
(1− 1

u
u
2
) = q1u+q2

u
2
. Therefore,

as far as q1u+ q2
u
2
> q1

u
2

+ q2u or equivalently q1 > q2, we have η(FH)
1 > η

(FD)
1 . Thus, if q1 >

1
2
, i.e., the

probability that two users become active simultaneously is less than 1
2
, the FH system utilizes the band

more efficiently.

• Average multiplexing gain per user

Average multiplexing gain per user is defined as η2 = E{ rSR
N
}. This measure shows the multiplexing

gain each user achieves on average.

Example 2 Considering the same setup as in example 1, we have η(FD)
2 = u

2
and η(FH)

2 = q1u+ q2
u
2
(1−

1
u
u
2
) = q1u + q2

u
4
. Therefore, as far as q1u + q2

u
4
> u

2
or equivalently q1 >

1
3
, we have η(FH)

2 > η
(FD)
2 .

This example together with example 1 show that as far as q1 >
1
2
, the FH system outperforms the FD

system in terms of both η1 and η2.

Example 3 We consider a decentralized system where at most three users might show up. For simplicity,

we assume 6|u. The FD controller sets K = 3. Thus, we have η(FD)
1 = q1

u
3

+ q2
2u
3

+ q3u and η
(FH)
1 =

q1u + q2u(1 − 1
u
u
2
) + q3u(1 − 1

u
u
3
)2 = q1u + q2

u
2

+ q3
4u
9

. Hence, as far as 26q1 + 11q2 > 14, we get

η
(FH)
1 > η

(FD)
2 . Also, η(FD)

2 = u
3

and η
(FH)
2 = q1u + q2

u
2
(1 − 1

u
u
2
) + q3

u
3
(1 − 1

u
u
3
)2 = q1u + q2

u
4

+ q3
4u
27

.

Therefore, if 104q1 + 23q2 > 32, we have η(FH)
2 > η

(FD)
2 .

• Minimum multiplexing gain per user

The minimum multiplexing gain per user is the smallest possible multiplexing gain that a user attains.

We denote this by η3. Clearly, this happens when there are exactly K active users in the system. As the

FD system is already designed to handle the case where K users are present in the system, the minimum

multiplexing gain per user is automatically higher. Setting N = K, we have η
(FD)
3 =

r
(FD)
SR

K
= u

K
and

η
(FH)
3 =

r
(FH)
SR

K
= u

K
(1 − 1

K
)K−1 by (24) and (25) respectively. Clearly, 1

e
≤ η

(FH)
3

η
(FD)
3

≤ 1 as (1 − 1
K

)K−1

approaches 1
e

from above by increasing K. Therefore, the loss incurred in the FH system is at most 1
e
.
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• Average diversity exponent per user

The details about the computations in this part are brought in section VI. Assuming the ith transmitter

has not the necessary knowledge about channel fading gains to regulate its rate, one may talk about the

outage probability of the ith user in the high SNR regime, i.e., Pr{Ri < r log γ} where r is the multiplexing

gain of the user. As in [5], we define the diversity exponent for each user as d = limγ→∞
− log Pr{Ri<r log γ}

log γ

(d is the same for all i). Then, the average diversity exponent for each user is defined by η4 = E{d}. A

lower bound on d(FH) is obtained in section VI as follows:

d(FH) ≥


(

(1− vopt
u

)n−1 − r
vopt

)+

n > 2(
1− r

vopt(1−
vopt
u

)n−1

)+

n = 1, 2

(26)

where vopt is defined in (23) and (t)+ = max{0, t} for any t. Based on results in [5], we have d(FD) =

(1− r
u
K

)+.

Example 4 Adopting the setup in the previous examples, one can easily see that η(FH)
4 ≥ q1(1− r

u
)+ +

q2(1 − r
u
2

(1− 1
u
u
2

)
)+. Assuming r ∈ [0, u

4
], we get η(FH)

4 ≥ 1 − (q1+4q2)r
u

. On the other hand, we have

η
(FD)
4 = (1− 2r

u
)+. Thus, for r ∈ [0, u

4
], as far as 1− (q1+4q2)r

u
> 1− 2r

u
or equivalently q1 >

2
3
, we have

η
(FH)
4 > η

(FD)
4 . This together with examples 1 and 2 imply that as far as q1 >

2
3
, FH outperforms FD in

terms of η1, η2 and η4.

• Service capability

Service capability demonstrates the fraction of users getting service out of the whole present users in

the system. Let us denote the number of users getting service by Ns. Therefore, the service capability

is computed as E{Ns
N
}. In the FH system, the service capability is always one. But, in the FD system,

if N > u then certainly a fraction of users can not share the band. This actually occurs whenever

Pr{N > u} > 0. In case Pr{N ≤ u} = 1, both systems have service capability equal to one.

VI. ON THE GENERALIZATION OF FH

One may consider a generalization of the FH system called GFH. Let us assume that the users are not

restricted to choose a fixed number of frequency sub-bands. In fact, for each transmission, the number

of bands can be any number between zero and u, and the probability of choosing 0 ≤ v ≤ u sub-bands

is denoted by µv. Therefore, each user has two random generators. Te first random generator selects a
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number 0 ≤ v ≤ u according to the probability mass function {µv}uv=0 while the other generator selects

v sub-bands among the whole available u bands. This repeats from transmission to transmission. Based

on the arguments we made in section II, we have:

Ri =
u∑
v=0

µvI( ~Xi(s
∗
i,v); ~Yi(s

∗
i,v)) (27)

where s∗i,v denotes the state where the ith user selects the first v sub-bands. Clearly, I( ~Xi(s
∗
i,0); ~Yi(s

∗
i,0)) = 0.

On the other hand, for any 1 ≤ i ≤ n, we have:

ai,0 = Pr{Zi,j contains no interference}

=
u∑

v1=0

u∑
v2=0

· · ·
u∑

vn−1=0

n−1∏
k=1

µvk(1−
vk
u

) =
n−1∏
k=1

u∑
vk=0

µvk(1−
vk
u

)

=

( u∑
v=0

µv(1−
v

u
)

)n−1

= (1− v̄

u
)n−1 (28)

where v̄ =
∑u

v=0 µvv. Based on the results of theorems 1 and 2, we have:

I( ~Xi(s
∗
i,v); ~Yi(s

∗
i,v)) ∼ vai,0 log γ. (29)

Hence, (27) and (29) yield the sum-rate multiplexing gain of GFH as follows:

r
(GFH)
SR = n

u∑
v=0

µvv(1− v̄

u
)n−1 = nv̄(1− v̄

u
)n−1. (30)

This demonstrates that the maximum sum-rate multiplexing gain is actually achieved by the simple FH

scheme.

VII. TIME-HOPPING VS TIME-DIVISION

One may adopt the same hopping idea in time as a dual to frequency hopping. We assume all users

transmit on one frequency band. Each user has an on-off transmission pattern which is modeled as an

i.i.d. Bernoulli process of parameter β. Therefore, the channel model for the ith user is the following:

Yi = ξihi,iXi + Zi (31)
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where ξi is a Bernoulli random variable of parameter β and Zi =
∑

k 6=i ξkhk,iXk+ηi. Assuming Gaussian

signals, the achievable rate of the ith user is given by

Ri = I(Xi;Yi|ξi) = βI(Xi;hi,iXi + Zi). (32)

Based on the results of theorems 1 and 2, we have:

I(Xi;hi,iXi + Zi) ∼ (1− β)n−1 log γ. (33)

Therefore, the sum-rate multiplexing gain is given by:

rSR = nβ(1− β)n−1. (34)

Maximizing this in terms of β yields βopt = 1
n

. Thus, the sum-rate multiplexing gain of the time hopping

(TH) system is given by r
(TH)
SR = (1 − 1

n
)n−1 for n > 1 and r

(TH)
SR = 1 for n = 1. Comparing this

to the time-division (TD) system which is designed to service K users, one can easily find probability

mass functions on the number of actives users where the TH system outperforms TD in terms of average

sum-rate multiplexing gain.

VIII. DIVERSITY-MULTIPLEXING TRADEOFF AND OUTAGE CONSIDERATION

As we mentioned in section IV, each user requires to know the gain of its forward channel and

the greatest interference term on its affiliated receiver to regulate its rate within the achievable region.

Throughout this section, we assume there is no channel state information regarding these quantities at the

transmitter sides. A common method to assess the performance of the network in this case is to evaluate

the outage probability. We assume all crossover gains are modeled as i.i.d circularly complex gaussian

random variables. We consider the FH scheme where the input signals are taken to be of circularly complex

gaussian distribution. The outage probability for the ith link is given by Pr{Ri < ri log γ} where ri is

the multiplexing gain of the ith link which by (19) belongs to [0, viai,0]. As it was pointed out, there is

no closed form for Ri. As such, based on the lower bound derived on Ri in (16), we have:

Pr{Ri < ri log γ} ≤ Pr{vi
2

log

(
22κi |hi,i|2γ

(ci,Liγ + 1)1−ai,0
+ 1

)
< ri log γ} (35)

In fact, ci,Li =
∑n

k=1,k 6=i |hk,i|2 whose distribution is given as χ2
2(n−1). Let us define the random variables

αk,i and α
(c)
i by |hk,i|2 = γ−αk,i and ci,Li = γ−α

(c)
i respectively. The PDF of these random variables are
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given in the following lemma:

Lemma 2 In the high SNR regime, pαi,i(α) and p
α

(c)
i

(α) are given as

pαi,i(α) =

 (ln γ)γ−α α ≥ 0

0 α < 0

and

p
α

(c)
i

(α) =

 (n− 1)(ln γ)γ−(n−1)α α ≥ 0

0 α < 0
.

Proof:

As hk,i is a complex circular gaussian random variable of variance 1
2

per each dimension, the probability

density function of αk,i for each k and i is given by:

p(α) = (ln γ)γ−α exp(−γ−α). (36)

In the high SNR regime as γ goes to infinity, p(α) approaches the following density:

p∞(α) =

 (ln γ)γ−α α ≥ 0

0 α < 0
. (37)

Let ci,Li = γ−α
(c)
i . As ci,Li =

∑n
k=1,k 6=i |hk,i|2 =

∑n
k=1,k 6=i γ

−αk,i , we can express α(c)
i in the high SNR

regime as follows:

α
(c)
i = −max

k 6=i
−αk,i = min

k 6=i
αk,i. (38)

As αk,i are i.i.d. with common PDF p(α), we get:

p
α

(c)
i

(α) = (n− 1)(1− F∞(α))n−2p∞(α) (39)

where F∞(α) is the commulative distribution function (CDF) corresponding to the PDF p∞(α), and is

given by:

F∞(α) =

∫ α

−∞
p∞(α)dα =

 1− γ−α α ≥ 0

0 α < 0
. (40)
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This together with (37) and (39) yields the following:

p
α

(c)
i

(α) =

 (n− 1)(ln γ)γ−(n−1)α α ≥ 0

0 α < 0
. (41)

We use the notation b .= γa as an alternative for limγ→∞
log b
log γ

= a. Therefore, we may write ci,Liγ + 1
.
=

γ(1−α(c)
i )+ where (x)+ = max{0, x}. By the same token, we get |hi,i|2γ

(ci,Liγ+1)(1−ai,0) +1
.
= γ(1−αi,i−āi,0(1−α(c)

i )+)+

where āi,0 = 1− ai,0. Using this in (35) yields:

Pr{Ri < ri log γ} ≤ Pr{vi(1− αi,i − āi,0(1− α(c)
i )+)+ < ri}. (42)

The following lemma yields the above probability.

Lemma 3 For 0 ≤ ri ≤ viai,0,

Pr{vi(1− αi,i − āi,0(1− α(c)
i )+)+ < ri}

.
= γ

−(ai,0−
ri
vi

)
.

Proof: Let us define:

O = {(αi,i, α(c)
i ) : vi(1− αi,i − āi,0(1− α(c)

i )+)+ < ri} (43)

One can easily see that O = O1 ∪ O2 ∪ O3 ∪ O4 where

O1 = {(αi,i, αci) : α
(c)
i > 1, αi,i > 1},

O2 = {(αi,i, αci) : α
(c)
i > 1, 0 < αi,i < 1, vi(1− αi,i) < ri},

O3 = {(αi,i, α(c)
i ) : 0 < α

(c)
i < 1, 1− αi,i − āi,0(1− α(c)

i ) < 0}

and

O4 = {(αi,i, α(c)
i ) : 0 < α

(c)
i < 1, 0 < vi(1− αi,i − āi,0(1− α(c)

i )) < ri}.

On the other hand, Ol ∩ Ol′ = ∅ for l 6= l′. Therefore, we get:

Pr(O) =
l=4∑
l=1

Pr(Ol). (44)
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To compute Pr(Ol), we proceed as follows. We have:

Pr(Ol) =

∫
(t1,t2)∈Ol

pαi,i(t1)p
α

(c)
i

(t2)dt1dt2

= (n− 1)(ln γ)2

∫
(t1,t2)∈Ol

γ−(t1+(n−1)t2) .= γ−dl (45)

where

dl = inf
(t1,t2)∈Ol

t1 + (n− 1)v2. (46)

The last identity follows from Laplace’s formula in large deviation theory. One may easily find dl

geometrically by sketching Ol and the line t1 + (n − 1)t2 = t for arbitrary t. Increasing t, we look

for the first time that the line intersects Ol. The value of t for which this happens is dl. Following this

method, we obtain:

dl =



n l = 1

n− ri
vi

l = 2

ai,0 l = 3

ai,0 − ri
vi

l = 4

. (47)

By (44) and (45), we have:

Pr(O)
.
= γ−minl dl . (48)

But, (47) gives minl dl = ai,0 − ri
vi

. This concludes the lemma.

If we define di as Pr{Ri < ri log γ} .= γ−di , then by (42) and the above lemma, we get:

di ≥ ai,0 −
ri
vi

(49)

for ri ∈ [0, ai,0vi]. We have shown in appendix B that this lower bound is not in general tight. In fact,

appendix B yields the diversity-multiplexing tradeoff for n = 2 as di = 1 − ri
ai,0vi

. Clearly, ai,0 − ri
vi
<

1− ri
ai,0vi

. To summarize, in a “fair” FH system where v1 = ... = vn = vopt, we come up with the following

for all i:

di ≥


(

(1− vopt
u

)n−1 − r
vopt

)+

n > 2(
1− r

vopt(1−
vopt
u

)n−1

)+

n = 1, 2

. (50)
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It would be interesting to compare the FH setup with another scenario in which all users fix their utilized

bands and stay unchanged throughout the transmission process, i.e., no random hopping is considered here.

We call this scenario fixed band strategy. In a two-user system, each of the two users select x bands out

of the u available bands. As the users remain on the selected bands, the receivers of each link might be

able two recognize the bands used by the other link. As such, it is reasonable to model the noise plus

interference as a gaussian vector in this situation. To compute the outage probability of the first link, we

suppose that it has occupied the first v frequency bands. The second link may overlap with the first link

over v′ of the first v bands. In this case, we denote the achievable rate of the first link by R1(v′). One

has the following:

Pr(R1 < R) =
v∑

v′=0

Pr(R1 < R|v′)Pv′ (51)

where R1 is the achievable rate of the first link, and pv′ =
( vv′)(

u−v
v−v′)

(uv)
is the probability that v′ of the bands

selected by the first link are shared with the second link. Clearly, Pr(R1 < R|v′) = Pr(R1(v′) < R). We

notice that R1(v) = u log
2P
v

+σ2

P
v

+σ2 which tends to the constant level u as SNR increases. Setting R = r log γ,

we see that Pr(R1(v) < r log γ) = 1 in the high SNR regime. Therefore, there appears a constant term

1

(uv)
in the outage probability, and as a consequence, the outage probability does not tend to zero as SNR

increases. For the n link setup, the performance is certainly worse. Thus, the frequency hopping scheme

surpasses fixed band strategy in terms of outage performance.

IX. APPENDIX A

In this appendix, we prove propositions 1. Let us consider a general mixed gaussian distribution pZ(z)

with different power levels {σ2
l }Ll=0 and associated probabilities {al}Ll=1 given by:

pZ(z) =
L∑
l=0

al√
2πσl

exp− z2

2σ2
l

where σ2
l = σ2 + clP and 0 = c0 < c1 < · · · < cL. One may write pZ(z) as follows:

pZ(z) =
aL√
2πσL

exp(− z2

2σ2
L

)
(
1 +

L−1∑
l=0

εl exp−(ζlz
2)
)

(52)

where εl = alσL
aLσl

and ζl = 1
2

(
1
σ2
l
− 1

σ2
L

)
. As exp−(ζlz

2) ≥ exp−(ζ0z
2), taking b =

∑l=L−1
l=0 εl, we have:

pZ(z) ≥ aL√
2πσL

exp(− z2

2σ2
L

)
(
1 + b exp−(ζ0z

2)
)
. (53)
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Hence, we get:

I :=

∫
pZ(z) ln pZ(z)dz

≥
(

ln
aL√
2πσL

)∫
pZ(z)dz − 1

2σ2
L

∫
z2pZ(z)dz +

∫
pZ(z) ln

(
1 + b exp−(ζ0z

2)
)
dz

= ln
aL√
2πσL

−
∑L

l=0 alσ
2
l

2σ2
L

+
L∑
l=0

Jl (54)

where Jl = al√
2πσl

∫
exp−

(
z2

2σ2
l

)
ln(1 + b exp−(ζ0z

2))dz for 0 ≤ l ≤ L. As each Jl is positive, we get

the following lower bound: 1

I ≥ ln
aL√
2πσL

−
∑L

l=0 alσ
2
l

2σ2
L

+ J0 (55)

To find a proper lower bound on the J0 in this expression, we proceed as follows:

J0 =
a0√
2πσ

∫
exp−

(
z2

2σ2

)
ln(1 + b exp−(ζ0z

2))dz

≥ 2a0√
2πσ

∫ ∞
0

exp−
(
z2

2σ2

)
ln(b exp−(ζ0z

2))dz

=
2a0 ln b√

2πσ

∫ ∞
0

exp− z2

2σ2
− 2a0ζ0√

2πσ

∫ ∞
0

z2 exp−
(
z2

2σ2

)
dz

= a0 ln b− a0ζ0σ
2. (56)

In retrospect, we have obtained the following lower bound:

I ≥ ln

(
aL√
2πσL

)
−
∑L

l=0 alσ
2
l

2σ2
L

+a0 ln b− a0ζ0σ
2

= ln
aL√
2π
− 1

2
ln(cLP + σ2)− P

∑L
l=0 clal + σ2

2(cLP + σ2)

+a0 ln

(
a0

aL

√
cLP + σ2

σ2
+

L−1∑
l=1

al
aL

√
cLP + σ2

clP + σ2

)
− 1

2
a0 −

a0σ
2

2σ2
L

. (57)

Thus, the right hand side is asymptotically equivalent to −1
2

lnP + a0 ln
√
P = −1

2
(1− a0) logP . Since

I = −h(Z)
loge

, there exists an upper bound on h(Z), namely f(γ), which is asymptotically equivalent to

1One may show that Jl goes to zero as P goes to infinity for 1 ≤ l ≤ L.
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1
2
(1−a0) log γ. One may simplify the lower bound in (57) as follows. Since

∑L
l=0 alcl ≤ cL

∑L
l=0 al = cL,

the term −P
PL
l=0 clal+σ

2

cLP+σ2 can be lower bounded by −1. Also, we omit the term a0σ2

2σ2
L

in −a0( 1
σ2 − 1

σ2
L

)σ2

and the term
∑L−1

l=1
al
aL

√
cLP+σ2

clP+σ2 inside the ln function. Thus, we come up with the following:

h(Z) ≤ 1

2
log(cLγ + 1)− 1

2
a0 log(cLγ + 1)− log

aL√
2π

+
1

2
log σ2 − a0 log

a0

aL
+

1

2
(1 + a0) log e.

=
1

2
(1− a0) log(cLγ + 1) + log(

√
2πeσ) + κ (58)

where κ = −a0 log a0− (1−a0) log aL+ 1
2
a0 log e is a constant not depending on P . The coefficient cN is

seen to be the only term which might be important, specially in the high SNR regime. To show the second

part of proposition 1, it suffices to derive a lower bound on h(Z) which is asymptotically equivalent to

1
2
(1 − a0) log γ. We know that entropy is a concave functional of the probability density function. Let

gl(z) = 1√
2πσl

exp− z2

2σ2
l
. As pZ(z) =

∑L
l=0 algl(z), we get:

h(Z) ≥ 1

2

L∑
l=0

al log(2πeσ2
l )

=
1

2

L∑
l=0

al log(2πe(clP + σ2)) ∼ 1

2

( L∑
l=1

al
)

logP =
1

2
(1− a0) logP.

Hence, there exist a lower bound on h(Z) which is asymptotically equivalent to 1
2
(1− a0) logP .

X. APPENDIX B

In this appendix, we derive the diversity multiplexing gain tradeoff for n = 2. As a consequence of this

result, we demonstrate that the lower bound on the diversity-multiplexing tradeoff for arbitrary n given

in (49) is not tight. We obtain upper and lower bounds on Ri to deduce our result. From now on, we

suppose n = 2.

To get an upper bound on Ri, we use the fact that in general for two random variables U and V ,

I(U ;V ) is a convex function of pV |U(.|.) for fixed pU(.). We investigate two users using the RFH strategy

where the ith link exploits vi bands out of the u bands on each transmission. We suppose i ∈ {0, 1}

here for notational simplicity. Let us consider a situation where the two links overlap over v∗ common

frequency bands. In this case, we denote Ri by Ri(v
∗) which is given by:

Ri(v
∗) = (vi − v∗) log(1 +

|hi,i|2γ
vi

) + v∗ log(1 +

|hi,i|2γ
vi

1 +
|hi′,i|2γ
vi′

) (59)
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where for a given i ∈ {0, 1}, we define i′ to be i′ = 1− i. The probability of overlapping of the two users

on v∗ bands is pv∗ =
(viv∗)(

u−vi
vi′−v

∗)

( u
vi′

)
. Clearly, 0 ≤ v∗ ≤ mink vk and vi′ − v∗ ≤ u − vi. As such, we get the

following upper bound on Ri:

Ri ≤
mink vk∑

v∗=(v0+v1−u)+

pv∗R1(v∗)

=
( mink vk∑
v∗=(v0+v1−u)+

(vi − v∗)pv∗
)

log(1 +
|hi,i|2γ
vi

) +
( mink vk∑
v∗=(v0+v1−u)+

v∗pv∗
)

log(1 +

|hi,i|2γ
vi

1 +
|hi′,i|2γ
vi′

). (60)

As pv∗ for (v0 + v1 − u)+ ≤ v∗ ≤ mink vk is the hypergeometric probability function, we get

mink vk∑
v∗=(v0+v1−u)+

pv∗ = 1

and
mink vk∑

v∗=(v0+v1−u)+

v∗pv∗ =
v0v1

u
.

Therefore, we come up with the following upper bound:

Ri ≤ (vi −
v0v1

u
) log(1 +

|hi,i|2γ
vi

) +
v0v1

u
log(1 +

|hi,i|2γ
vi

1 +
|hi′,i|2γ
vi′

). (61)

To get a lower bound on Ri, we notice that Ri = h(~Yi(s
∗
i ))−h(~Zi). Thus, by finding appropriate lower

and upper bounds on h(~Yi(s
∗
i )) and h(~Zi) respectively, we get a lower bound on Ri.

• Lower Bound on h(~Yi(s
∗
i ))

p~Yi(s∗i )(~y) is given by:

p~Yi(s∗i )(~y) = p ~Xi(s∗i )(~y) ∗ p~Zi(~y)

= g(~y,Cov( ~Xi(s
∗
i ))) ∗

( 1(
u
vi′

) ( u
vi′

)∑
l=1

g(~y, Cl)
)

=
1(
u
vi′

) ( u
vi′

)∑
l=1

g(~v,Cov( ~Xi(s
∗
i )) + Cl) (62)

where each Cl is a u× u matrix which has a vi′ × vi′ principal sub-matrix equal to Ivi′ and the rest of its

elements are zero. as we know, Cov( ~Xi(s
∗
i )) =

 Ivi 0vi×(u−vi)

0(u−vi)×vi 0(u−vi)×(u−vi)

. Let us define the set Bv∗

as follows:

Bv∗ = {l : There are exactly v∗ of the first vi diagonal elements of Cl equal to one}. (63)
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Thus, we have:

p~Yi(s∗i )(~y) =
1(
u
vi′

) mink vk∑
v∗=(v0+v1−u)+

∑
l∈Bv∗

g(~y,Cov( ~Xi(s
∗
i )) + Cl). (64)

Now, we use the fact that differential entropy is a concave function of the PDF, we obtain the following

lower bound:

h(~Yi(s
∗
i )) ≥

1(
u
vi′

) mink vk∑
v∗=(v0+v1−u)+

∑
l∈Bv∗

log((2πe)udet(Cov( ~Xi(s
∗
i )) + Cl)). (65)

On he other hand,

det(Cov( ~Xi(s
∗
i ))+Cl) = (

|hi,i|2P
vi

+σ2)vi−v
∗
(
|hi,i|2P
vi

+
|hi′,i|2P
vi′

+σ2)v
∗
(
|hi′,i|2P
vi′

+σ2)vi′−v
∗
(σ2)u−v0−v1+v∗

= (
|hi,i|2γ
vi

+ 1)vi−v
∗
(
|hi,i|2γ
vi

+
|hi′,i|2γ
vi′

+ 1)v
∗
(
|hi′,i|2γ
vi′

+ 1)vi′−v
∗
(σ2)u (66)

for l ∈ Bv∗ . Based on (65) and (66), we have:

h(~Yi(s
∗
i )) ≥ u log(2πeσ2)

+
1(
u
vi′

) mink vk∑
v∗=(v0+v1−u)+

(vi − v∗)|Bv∗| log(
|hi,i|2γ
vi

+ 1)

+
1(
u
vi′

) mink vk∑
v∗=(v0+v1−u)+

v∗|Bv∗| log(
|hi,i|2γ
vi

+
|hi′,i|2γ
vi′

+ 1)

+
1(
u
vi′

) mink vk∑
v∗=(v0+v1−u)+

(vi′ − v∗)|Bv∗| log(
|hi′,i|2γ
vi′

+ 1) (67)

where |Bv∗| is he cardinality of the set Bv∗ . As |Bv∗ | =
(
vi
v∗

)(
u−vi
vi′−v∗

)
, we have |Bv∗ |

( u
vi′

)
= pv∗ . Hence, according

to the properties of the hypergeometric distribution stated earlier, we get:

h(~Yi(s
∗
i )) ≥ u log(2πeσ2)

+

mink vk∑
v∗=(v0+v1−u)+

(vi − v∗)pv∗ log(
|hi,i|2γ
vi

+ 1)

+

mink vk∑
v∗=(v0+v1−u)+

v∗pv∗ log(
|hi,i|2γ
vi

+
|hi′,i|2γ
vi′

+ 1)
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+

mink vk∑
v∗=(v0+v1−u)+

(vi′ − v∗)pv∗ log(
|hi′,i|2γ
vi′

+ 1)

= u log(2πeσ2) + (vi −
v0v1

u
) log(

|hi,i|2γ
vi

+ 1)

+
v0v1

u
log(
|hi,i|2γ
vi

+
|hi′,i|2γ
vi′

+ 1) + (vi′ −
v0v1

u
) log(

|hi′,i|2γ
vi′

+ 1). (68)

• Upper Bound on h(~Zi)

Clearly, h(~Zi) ≤
∑u

j=1 h(Zi,j). On the other hand, based on proposition 1, we have:

h(Zi,j) ≤
vi′

u
log(
|hi′,i|2γ
vi′

+ 1) + log(2πeσ2) + κi (69)

where κi is a constant not depending on γ. As a result, we get the following upper bound on h(~Zi):

h(~Zi) ≤ vi′ log(
|hi′,i|2γ
vi′

+ 1) + u log(2πeσ2) + uκ. (70)

According to (68) and (70), we deduce the following lower bound on Ri:

Ri ≥ −uκ+ (vi −
v0v1

u
) log(

|hi,i|2γ
vi

+ 1)

+
v0v1

u
log(
|hi,i|2γ
vi

+
|hi′,i|2γ
vi′

+ 1) + (vi′ −
v0v1

u
) log(

|hi′,i|2γ
vi′

+ 1)− vi′ log(
|hi′,i|2γ
vi′

+ 1)

= (vi −
v0v1

u
) log(1 +

|hi,i|2γ
vi

) +
v0v1

u
log(1 +

|hi,i|2γ
vi

1 +
|hi′,i|2γ
vi′

)− uκ. (71)

Interestingly, the upper and lower bounds derived on Ri are similar up to a deterministic SNR-free

difference. Therefore, Ri is asymptotically equivalent to the upper bound derived, i.e.,

Ri ∼ (vi −
v0v1

u
) log(1 +

|hi,i|2γ
vi

) +
v0v1

u
log(1 +

|hi,i|2γ
vi

1 +
|hi′,i|2γ
vi′

). (72)

As a result, defining the outage event on the ith link as Oi = {(hi,i, hi′,i) : Ri < ri log γ}, in the high

SNR regime, we get:

Pr(Oi) = Pr((vi −
v0v1

u
) log(1 +

|hi,i|2γ
vi

) +
v0v1

u
log(1 +

|hi,i|2γ
vi

1 +
|hi′,i|2γ
vi′

) < ri log γ)

= Pr((vi −
v0v1

u
)(1− αi,i)+ +

v0v1

u
(1− αi,i − (1− αi′,i)+)+ < ri). (73)
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where ri ∈ [0, vi − v0v1
u

] as usual. We describe the outage event in different cases.

♦ αi,i > 1 and αi′,i > 1

Under these conditions, the outage event is equivalent to ri > 0 which is a triviality. Therefore, the

outage event in this case is the following:

Oi[1] = {(αi,i, αi′,i) : αi,i > 1, αi′,i > 1}. (74)

♦ αi,i > 1 and αi′,i < 1

It is easily seen that this case is also equivalent to the trivial condition ri > 0. Thus the outage region

would be

Oi[2] = {(αi,i, αi′,i) : αi,i > 1, αi′,i < 1}. (75)

♦ αi,i < 1 and αi′,i > 1

We obtain (vi − v0v1
u

)(1− αi,i) + v0v1
u

(1− αi,i) = vi(1− αi,i) < ri. Denoting the outage region in this

case by Oi[3], we have:

Oi[3] = {(αi,i, αi′,i) : αi,i < 1, αi′,i > 1, vi(1− αi,i) < ri}. (76)

♦ αi,i < 1 and αi′,i < 1

We get (yi − v0v1
u

)(1− αi,i) + v0v1
u

(αi′,i − αi,i)+ < ri. If αi,i < αi′,i, then we get the following region:

Oi[4] =

{
(αi,i, αi′,i) :

αi,i < 1, αi′,i < 1, αi,i < αi′,i

vi − v0v1
u
− viαi,i + v0v1

u
αi′,i < ri

}
. (77)

If αi,i > αi′,i, the outage region is the following set:

Oi[5] = {(αi,i, αi′,i) : αi,i < 1, αi′,i < 1, αi,i > αi′,i, (vi −
v0v1

u
)(1− αi,i) < ri}. (78)

We have Oi = ∪5
l=1Oi[l] where Oi[l] ∩ Oi[l′] = ∅ for l 6= l′. Thus,

Pr(Oi) =
5∑
l=1

Pr(Oi[l]). (79)

If we set Pr(Oi[l])
.
= γ−di[l], then clearly di = minl di[l] where Pr(Oi)

.
= γdi . In the following we obtain

di[l] = min(t1,t2)∈Oi[l] t1 + t2.

♦ l = 1, 2, 3 The outage region has a simple structure, and one can simply verify that di[1] = 2,
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di[2] = 1 and di[3] = (1− ri
vi

)+.

♦ l = 4

Fig. 1 illustrates Oi[4]. We simply get di[4] = 2(1− ri
viai,0

)+ where ai,0 = 1− vi′
u

.

Fig. 1. The Region Oi[4]

♦ l = 5

Fig. 2 depicts the outage region Oi[5]. Based on this sketch, di[5] = (1− ri
viai,0

)+.

Now, one can easily see di = minl di[l] = di[5] = (1− ri
viai,0

)+. This is the desired result.
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