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Abstract

In this paper, a single-antenna broadcast channel with large (K) number of users is considered. It is assumed

that all users have a hard delay constraintD. We propose a scheduling algorithm for maximizing the throughput

of the system, while satisfying the delay constraint for allusers. It is proved that by using the proposed algorithm,

it is possible to achieve the maximum throughput and maximumfairness in the network, simultaneously, in the

asymptotic case ofK → ∞. We introduce a new performance metric in the network, called “Minimum Average

Throughput”, and prove that the proposed algorithm is capable of maximizing theminimum average throughputin

a broadcast channel. Finally, the proposed algorithm is generalized for MIMO Broadcast Channels (MIMO-BC),

and shown to achieve the maximum throughput and fairness, simultaneously, in the asymptotic case ofK → ∞.

I. INTRODUCTION

With the development of personal communication services, one of the major concerns in supporting

data applications is providing quality of service (QoS) forall subscribers. In most real-time applications,

high data rates and small transmission delays are desired. Most data-scheduling schemes proposed for

current systems have concentrated on the system throughputby exploiting multiuser diversity [1]–[5].

In cellular networks, by applying multiuser diversity, thetime-varying nature of the fading channel is

exploited to increase the spectral efficiency of the system.It is shown that transmitting to the user with

the highest signal to noise ratio (SNR) provides the system with maximum sum-rate throughput [6]. The

opportunistic transmission is proposed in Qualcomm’s HighData Rate (HDR) system [2].

Although applying multiuser diversity through the scheme in [6] achieves the maximum system through-

put, QoS demands, including fairness and delay constraints, provoke designing more appropriate schedul-

ing schemes. The schemes that consider delay constraints have been studied extensively in [1], [7]–[22].
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In [7], the authors propose an algorithm which maintains a balance between the throughput maximization,

delay, and outage probability in a multiple access fading channel. The tradeoff between the average delay

and the average transmit power in fading environments is analyzed in [8]. In [9], [10], authors propose

scheduling metrics that combine multiuser diversity gain with the delay constraints. In [11], the scheduling

scheme is designed based on maximizing the effective capacity [23] which is characterized by data rate,

delay bound, and delay-bound violation probability triplet. The throughput-delay tradeoff of the multicast

channel is analyzed for different schemes in a single cell system [12]. This trade-off has been obtained

for more general network topologies in [13]. In the static random network withn nodes, the results of

[13] show that the optimal tradeoff between throughputTn and delayDn is given byDn = Θ(nTn).

They also show that the same result is achieved in random mobile networks, whenTn = O(1/
√
n log n).

The first studies on achieving a high throughput and low delayin ad-hoc wireless networks are framed

in [4], [14], and [15]. This line of work is further expanded in [16]–[18] by using different mobility

models such as the random walk and the Brownian mobility models. Neely and Modiano [18] consider

the delay-throughput tradeoff only for mobile ad-hoc networks. They investigate the delay characteristics

by using the redundant packets transmission through multiple paths. In [19], the authors have proposed

and compared different scheduling achemes based on the users’ channel qualities and their remaining job

times, in the downlink of a MIMO wireless cellular packet data system in fast and slow channel variation

scenarios. In [20], the authors have analytically characterized the scheduling gain achieved by opportunistic

schedulers with both single-user and multi-user multiplexing, and showed that the average delay grow

double-exponentially with the overall throughput, with any opportunistic (single-user time-sharing or multi-

user multiplexing) scheduling. In [21], the authors consider a wireless downlink communication system,

where the channels are characterized by frequency-selective fading, modeled as a set ofM parallel block-

fading channels, and a frequency-flat distance-dependent path loss. They compare delay-limited systems

(which impose hard fairness) with variable-rate systems (which impose proportional fairness), in terms

of the achieved system spectral efficiencyC (bit/s/Hz) versusEb/N0, and find simple iterative resource

allocation algorithms that converge to the optimal delay-limited throughput for orthogonal (FDMA/TDMA)

and optimal (superposition/interference cancellation) signaling. In the limit of largeK and finiteM , the

authors find closed-form expressions forC as a function ofEb/N0 and show that in this limit, the optimal

allocation policy consists of letting each user transmit onits best subchannel only.

In [22], the delay is defined as the minimum number of channel uses that guarantees alln users

successfully receivem packets. Reference [22] studies the statistical properties of the underlaying delay

function. However, the delay constraint is assumed to besoft, meaning that this scheme aims to minimize

the totalaveragenetwork delay and there is not any delay constraints for the individual users.

In this paper, we consider ahard delay constraintD for each user, which is enforced by the application
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or physical limitations (e.g. buffer size). We define a dropping event as the event that there exists a user

who does not meet the desired delay constraint. We propose a scheduling scheme for maximizing the

throughput of the system, while satisfying the delay constraint for all users. The proposed scheduling

algorithm works based on setting a threshold on the channel gain of the users and among the users with

channel gains above the threshold, the user with the minimumPacket Expiry Countdowns (PED), which

is defined as the remaining time to the expiration of that users’ packet, is served. By doing asymptotic

analysis, it is proved that by selecting the threshold levelproperly, the proposed scheduling algorithm

achieves the maximum throughput, maximum fairness, and minimum delay in the network, simultaneously,

in the asymptotic case ofK → ∞. The analysis is based on characterizing the probability mass function

of PED in terms ofK, D , and the threshold value, and evaluating the network dropping probability

accordingly. It is also demonstrated that the Round-Robin (RR) scheduling, which focuses on maximizing

the fairness and minimizing the delay in the network, and Multi-User Diversity (MUD) scheduling, which

focuses on maximizing the throughput in the system, are two extreme cases of the proposed algorithm,

where the former suffers from the weak performance in terms of throughput and the latter increases the

network delay by a factor oflogK. Moreover, we have introduced a new notion of performance inthe

network, called “Average Throughput”, which is defined as the product of the packet arrival rate and the

amount of information per channel use in each packet, and proved that the proposed algorithm maximizes

the Minimum Average Throughputin a broadcast channel. Finally, it is demonstrated that theproposed

scheduling outperforms the conventional multiuser diversity scheduling and Round-Robin scheduling in

terms of theMinimum Average Throughput, by factorslogK and log logK, respectively. The proposed

algorithm is also generalized to MIMO Broadcast Channels (MIMO-BC) by modifying the Random Beam-

Forming scheme proposed in [25]. It is shown that the proposed algorithm is capable of achieving the

maximum throughput, maximum fairness, and minimum delay, simultaneously, in the asymptotic case of

K → ∞. Moreover, it maximizes theMinimum Average Throughputin a MIMO-BC.

The rest of the paper is organized as follows. In section II, the system model is introduced and

the proposed algorithm is described. Section III is devotedto the asymptotic analysis of the proposed

algorithm. Section IV describes the generalization of the proposed algorithm for MIMO-BC, and finally,

section V concludes the paper.

Throughout this paper, the norm of the vectors are denoted by‖.‖, the Hermitian operation is denoted by

(.)H . Notation “log” is used for the natural logarithm, and the rates are expressed innats. RH(.) represents

the right hand side of the equations. For any given functionsf(N) and g(N), f(N) = O(g(N)) is

equivalent tolimN→∞

∣

∣

∣

f(N)
g(N)

∣

∣

∣
< ∞, f(N) = o(g(N)) is equivalent tolimN→∞

∣

∣

∣

f(N)
g(N)

∣

∣

∣
= 0, f(N) =

Ω(g(N)) is equivalent tolimN→∞
f(N)
g(N)

> 0, f(N) = ω(g(N)) is equivalent tolimN→∞
f(N)
g(N)

= ∞, and

f(N) = Θ(g(N)) is equivalent tolimN→∞
f(N)
g(N)

= c, where0 < c <∞. Also, f(N) ∼ g(N) is equivalent
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to limN→∞
f(N)
g(N)

= 1, f(N) & g(N) is equivalent tolimN→∞
f(N)
g(N)

≥ 1, f(N) ∼= g(N) + ⊙(h(N)) is

equivalent tof(N) − g(N) ∼ ⊙(h(N)), where⊙(.) can be any of the notationsO, o, ω, Ω, or Θ.

Moreover,f(N) &= g(N) + ⊙(h(N)) is equivalent tof(N) − g(N) & ⊙(h(N)), where⊙(.) can be

any of the notationsO, o, ω, Ω, or Θ. Finally, f(N) ≈ g(N) means thatf(N) is approximately equal to

g(N), i.e., if we replacef(N) by g(N) in the equations, the results still hold.

II. SYSTEM MODEL AND PROPOSEDALGORITHM

A. System Model, Assumptions, and Definitions

In this paper, a downlink environment in which a single-antenna Base Station (BS) communicates with

a large number (K) single-antenna users, is considered. We assume a homogeneous network, where the

channel between each user and the BS is modelled as a zero-mean complex Gaussian random variable

(Rayleigh fading). The received signal at thekth terminal can be written as

yk = hkx+ nk, (1)

where x denotes the transmitted signal by the BS, which is assumed tobe Gaussian with the power

constraintP , i.e., E{|x|2} ≤ P 1, hk ∼ CN (0, 1) denotes the channel coefficient between the BS and

the kth terminal, andnk ∼ CN (0, 1) is AWGN. We assume that block coding for error free transmission

is performed over frames, where the information content of aframe is called packet. In addition, we

assume that the frame length is constant (unit of time), while the information content of a frame can

potentially vary depending on the capacity of the corresponding channel realization. As we will see later,

the proposed method results in almost equal information content (packet length in bits) for all the frames.

It is also assumed thatonly one user is served during each frame. The channel coefficients are assumed

to be constant for the duration of a frame, and change independently at the start of the next frame (block

fading model). The frame itself is assumed to be long enough to allow communication at rates close to

the capacity. This model is also used in [22] and [25].

It is assumed that the users have delay constraintD. In other words, the delay between two consecutive

received packets should not be greater than the duration ofD frames. Otherwise, the transmitted packet

will be dropped. Thenetwork dropping event, denoted byB, is defined as the event that dropping occurs

for any user in the network. We define a parameterν for each user, which denotes theexpiry countdown

of that user’s packet, i.e., the remaining time to the expiration of the packet.ν is expressed in terms of

an integer multiple of the frame length. At the end of each frame, theexpiry countdownof each user

is decremented by one, except for the user which is served during that frame. For this user, theexpiry

countdownis set toD at the start of the next frame. Therefore, for all usersν ≤ D (Fig. 1). Since

1Note that the power constraint here isper frame, i.e, is independent of the channel realizations.
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∀j, νk(j + 1) = νk(j) − 1, for k 6= s, νs(j + 1) = D,

∀j, νk(j) 6= νi(j), for i 6= k

νK(j)t = j

t = j + 1

ν1(j) ν2(j)

ν1(j + 1) ν2(j + 1)

k = 1 k = 2 k = K

νK(j + 1)

−∞ ≤ νk(j) ≤ D, ∀k, j

where s is the user which is serviced during the jth frame

Fig. 1. A Schematic figure for theexpiry countdown.

the channel model is independent block fading, and the network topology and the proposed scheduling

algorithm are symmetric with respect to the users, it can be easily shown that there exists a steady state

for the system (no matter what the initial state is), in whichthe statistical behavior of the users’ expiry

countdowns is independent of the time index. In the steady state, since in each frame only one user is

served by the transmitter, the expiry countdown of the usersare distinct in each time. All the results

derived in this paper are based on the assumption that the system is in the steady state.

In this paper, we are interested in maximizing thethroughputand fairnessin the network. First, we

give the definitions ofthroughputand fairness:

Definition 1 The throughput is defined as the average sum-rate of the system, when the average is

computed over all the channel realizations.

Definition 2 Consider a schedulingS . Then, theFairness Factor (FF) for this scheduling is defines as

FF (S ) ,
Dmin(S )

K
, (2)

whereDmin(S ) denotes the minimum value ofD such that Pr{B} → 0, using schedulingS .

Definition 3 A schedulingS is said to achieve the maximum fairness, ifFF (S ) = 1 2.

2This definition is motivated by the fact that for Round-Robinscheduling (which is known to be the most fair scheduling),Dmin = K.
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B. Proposed Scheduling Algorithm

The proposed scheduling algorithm is described as follows:

Algorithm 1:

1) The BS chooses a thresholdΘ, and sends it to all users.

2) Let us define

S , {k| |hk|2 ≥ Θ}. (3)

All users inS send a confirmation message to the BS.

3) Among the users inS, the BS serves the one with the minimumν (expiry countdown).

In the proposed algorithm, the thresholdΘ is set to trade-off the throughput vs. the fairness in the system.

If Θ is chosen to be very large, then the scheduling tends to maximize the throughput. IfΘ is chosen to

be very small, the algorithm tends to maximize the fairness in the network.

III. A SYMPTOTIC ANALYSIS

In this section, we analyze the network dropping probability, denoted as Pr{B}, in terms of the number

of usersK, and the delay constraintD, for the proposed scheduling. We consider the asymptotic case of

K → ∞ and derive the condition forD such that Pr{B} → 0. To this end, the probability mass function

(pmf) of ν, denoted asfν(ν), is characterized in terms ofD, K, andΘ. First, we consider two special

cases of the proposed algorithm:

A. Special Case I;Θ = 0:

In this case, the user with the minimumν is served. In other words, the quality of channel does not

play any role in the scheduling. The setS which is defined in (3) is simply the set of all users.

Theorem 1 For Θ = 0, fν(ν) can be obtained as follows:

fν(ν) =







1
K

D −K + 1 ≤ ν ≤ D

0 ν ≤ D −K
. (4)

Proof - Let us defineνmin(t) , mink∈S νk(t), whereνk(t) denotes theexpiry countdownfor the kth user

at time t. We have

Pr{νmin(t) = l} (a)
=

K
∑

k=1

Pr{νk(t) = l, νi(t) > l, i 6= k}

(b)
= KPr{ν1(t) = l, ν2(t) > l, · · · , νK(t) > l}

= KPr{ν1(t) = l}Pr{ν2(t) > l, · · · , νK(t) > l| ν1(t) = l}, (5)
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where(a) follows from the fact that as in each channel use only one useris served, the random variables

νi(t)’s are distinct in each time slott, and(b) results from the symmetry between the users. We have

Pr{ν2(t) > l, · · · , νK(t) > l| ν1(t) = l} = 0, for l > D −K + 1, (6)

which results from the fact that forl > D−K + 1, there are at mostK − 2 possible choices for each of

νi(t), i = 2, · · · , K, and sinceνi(t) are distinct, the assignment problem has no solution. Moreover, we

can write,

Pr{νk(t) = l − 1} = Pr{νk(t− 1) = l,X C
k (t− 1)}, (7)

whereXk(t − 1) represents the event that userk is served during the(t − 1)th frame, andX C
k (t − 1)

denotes the complement ofXk(t − 1). Since we are studying the behavior of the system in its steady

state condition, it follows that the statistical properties of νk(t) andXk(t−1) are independent of the time

index. Hence, we can drop the time index in the above equationand write

Pr{νk = l − 1} = Pr{νk = l,X C
k }

= Pr{νk = l} (1 − Pr{Xk|νk = l})

= Pr{νk = l} (1 − Pr{νmin = l|νk = l}) . (8)

Combining (5) and (8), and noting that Pr{νk = l} = fν(l) and Pr{νmin = l|νk = l} = Pr{ν2 >

l, · · · , νK > l|ν1 = l} (by the symmetry), we have

fν(l − 1) = fν(l) − fν(l)Pr{ν2 > l, · · · , νK > l|ν1 = l}. (9)

Substituting (6) in (9), we get

fν(l) = fν(l − 1), for D −K + 2 ≤ l ≤ D. (10)

Since during each frame, exactly one user is served, there isalways one user withexpiry countdownequal

to D in the system. In other words,

Pr

{

K
⋃

k=1

(νk = D)

}

= 1. (11)

Since the eventsνk = D, k = 1, · · · , K, are mutually exclusive, it follows that
K
∑

k=1

Pr{νk = D} = 1

⇒ fν(D)
(a)
=

1

K
, (12)

where(a) comes from the fact that Pr{νk = D} is the same for allk, and is equal tofν(D). Combining

(10) and (12), we have

fν(l) =
1

K
, D −K + 1 ≤ l ≤ D. (13)
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Since
∑D

l=−∞ fν(l) = 1, from the above equation it follows that

fν(l) = 0, l ≤ D −K, (14)

which completes the proof of Theorem 1.

�

The above theorem implies that the pmf ofν is a step function which is only non-zero in the interval

[D −K + 1, D]. Since the probability of dropping for any given user can be expressed as
∑0

l=−∞ fν(l),

it follows from the above equation that forD ≥ K, the dropping probability for each user is zero and as

a result, the network dropping probability is zero.

This scheduling is exactly the Round-Robin scheduling, when the users are served based on a pre-

determined order. One can observe that this scheduling is the most fair scheduling (FF = 1), as all the

users have the same opportunity for being served, regardless of their channel quality. However, due to

disregarding the effect of channel quality in the scheduling, the achievable throughput is not good. More

precisely, it can be easily shown that the achievable throughput of this scheduling scales asΘ(1).

B. Special case II;Θ = maxk |hk|2:

In this scheduling,|S| = 1. In other words, the user with the best channel quality is served during

each frame. This results in the conventional scheduling to exploit the multiuser diversity and achieves the

maximum sum-rate throughput in the system [24].

Theorem 2 For the Special Case II,fν(ν) is equal to

fν(ν) =
1

K

(

1 − 1

K

)D−ν
u(D − ν), (15)

whereu(.) denotes the unit step function.

Proof - Similar to (8), we can write

fν(l − 1) = fν(l) (1 − Pr{Xk|νk = l})
(a)
= fν(l) (1 − Pr{Xk})
(b)
= fν(l)

(

1 − 1

K

)

, (16)

where (a) comes from the fact that the selection of users is performed regardless of the value of their

expiry countdown. (b) results from the fact that the fading process is block-wise independent, and as a

result, the probability that the channel norm of any user is the highest during a frame is1
K

. From the

above equation, the pmf ofν can be written as

fν(l) = fν(D)

(

1 − 1

K

)D−l
, l ≤ D. (17)
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From (16) and noting that
∑D

l=−∞ fν(l) = 1, we havefν(D) = 1
K

. Hence,

fν(l) =
1

K

(

1 − 1

K

)D−l
u(D − l), (18)

whereu(.) denotes the unit step function. Hence, the pmf ofν follows the exponential distribution with

the parameter1 − 1
K

.

Theorem 3 For K → ∞, the necessary and sufficient condition to have Pr{B} → 0 for the special case

II is

D ∼= K logK + ω(K). (19)

Proof - Sufficient Condition:Using (18), the dropping probability for a userk, denoted as Pr{Bk}, can

be written as

Pr{Bk} =

0
∑

l=−∞
fν(l)

=
0
∑

l=−∞

1

K

(

1 − 1

K

)D−l

=

(

1 − 1

K

)D

∼ e−
D
K . (20)

The network dropping probability (Pr{B}) can be written as Pr{⋃K
k=1 Bk}. Using the union bound for

the probability, we have

Pr{B} ≤
K
∑

k=1

Pr{Bk}

(20)∼ Ke−
D
K

= e−
D−K logK

K . (21)

Hence, havingD ∼= K logK + ω(K) guarantees Pr{B} → 0.

Necessary Condition:We can write

Pr{B} = 1 − Pr

{

K
⋂

k=1

B
C
k

}

. (22)
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The dropping event for thekth user,Bk, is equivalent toνk ≤ 0. Hence, the above equation can be written

as

Pr{B} = 1 − Pr{ν1 > 0, · · · , νK > 0}

= 1 − Pr{ν1 > 0}
K
∏

k=2

Pr{νk > 0|ν1 > 0, ν2 > 0, · · · , νk−1 > 0}

= 1 − Pr{ν1 > 0}
K
∏

k=2

(

∑

(a1,··· ,ak−1)
1≤ai≤D

fν1,··· ,νk−1
(a1, · · · , ak−1)

Pr{ν1 > 0, · · · , νk−1 > 0} ×

Pr{νk > 0|ν1 = a1, ν2 = a2, · · · , νk−1 = ak−1}
)

(23)

(a)
= 1 − Pr{ν1 > 0}

K
∏

k=2

(

∑

(a1,··· ,ak−1)
1≤ai≤D

fν1,··· ,νk−1
(a1, · · · , ak−1)

Pr{ν1 > 0, · · · , νk−1 > 0} ×

Pr{νk > 0|νk /∈ {a1, a2, · · · , ak−1}}
)

= 1 − Pr{ν1 > 0}
K
∏

k=2

(

∑

(a1,··· ,ak−1)
1≤ai≤D

fν1,··· ,νk−1
(a1, · · · , ak−1)

Pr{ν1 > 0, · · · , νk−1 > 0} ×

Pr{νk > 0} −∑k−1
i=1 fνk(ai)

1 −∑k−1
i=1 fνk(ai)

)

(24)

(b)

≥ 1 −
K
∏

k=1

Pr{νk > 0}

(20)
= 1 −

[

1 −
(

1 − 1

K

)D
]K

(c)

≥ 1 − e−K(1− 1
K )

D

, (25)

where (a) follows from the fact that the only dependency amongνk’s is that they are distinct random

variables,(b) results from the fact that
Pr{νk>0}−

Pk−1
i=1 fνk (ai)

1−
Pk−1
i=1 fνk (ai)

≤ Pr{νk > 0}, and(c) results from the fact

that (1−x)n ≤ e−nx, ∀n > 0, x < 1. It follows from the above equation that in order to have Pr{B} → 0,

we must havee−K(1− 1
K )

D

→ 1, which incursK
(

1 − 1
K

)D → 0. SinceK → ∞, we can write

K

(

1 − 1

K

)D

= KeD log(1− 1
K

)

∼ Ke−
D
K

(1+O(1/K))

∼ e−
D−K logK

K
(1+O(1/K)). (26)

Hence,K
(

1 − 1
K

)D → 0 is equivalent toD−K logK
K

→ ∞, which incursD ∼= K logK + ω(K). This

completes the proof of Theorem 3.

�
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The above theorem states that the minimum delay constraint in order to have small dropping probability

in the network must scale as fast asK logK. Compared to the Round-Robin scheduling (Case I), we

have a factor oflogK increase in the Fairness Factor (or equivalently, a factor of logK increase in the

network delay), which is due to ignoringν in the scheduling3

C. Proposed Algorithm; The general case:

In the previous sections, we have studied our proposed scheduling algorithm in two extreme cases,

where one extreme focuses on achieving the maximum fairness, and the other extreme on achieving

the maximum sum-rate throughput. In general, it is possibleto have a trade-off between the fairness

and throughput, by adjusting the threshold value. Now, the question is, whether or not, it is possible to

simultaneously achieve the maximum throughput and the maximum fairness of the system. The following

theorem shows this is indeed possible in the asymptotic caseof K → ∞.

Theorem 4 Consider the proposed algorithm in the asymptotic case ofK → ∞. Then, for the values of

Θ satisfying

logK − 2 log logK < Θ < logK − 1.5 log logK, (27)

one can simultaneously achieve:

I- Maximum Throughput:

lim
K→∞

Csum −R = 0, (28)

in which Csum denotes the maximum achievable sum-rate in the broadcast channel andR denotes the

achievable sum-rate of the proposed algorithm, and

II- Maximum Fairness:

lim
K→∞

D

K
= 1, while Pr{B} → 0 (or equivalently, lim

K→∞
FF = 1). (29)

Proof - The steps of the proof are as follows: in Lemma 1, we study the behavior offν(l) and derive

a difference equation satisfied byfν(l). In Lemma 2, we derive an explicit solution for this difference

equation. Based on this solution, in Lemma 3, we present a sufficient condition such that the conditions

limK→∞
D
K

→ 1 and Pr{B} → 0 are satisfied simultaneously. Finally, the theorem is proved by deriving

a lower-bound on the achievable sum-rate, based on the threshold level given in (27).

Lemma 1 Defining D0 = D −
√
Kn0(n0 − 1), wheren0 = 3(logK)2, for D0 ≤ l ≤ D, we have

fν(l) ∼ 1
K

[1 − o(1/K)], and for l < D0, fν(l) satisfies the following difference equation:

fν(l) − fν(l − 1) = ηfν(l) [1 − pFν(l)]
K−1

[

1 +O(1/
√
K)
]

, (30)

3It should be noted that this scheduling islong-term fair, i.e., all the users are equally served over a long period of time. However, with

our definition of fairness (which can be calledshort-termfairness), this scheduling is away from the maximum fairness by a factor oflogK.
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wherep = e−Θ, η , p
1−p , andFν(.) denotes the CDF ofν.

Proof - Similar to (8), we have

fν(l − 1) = fν(l) (1 − Pr{νmin = l, k ∈ S|νk = l}) , (31)

whereνmin = mink{νk|k ∈ S}. Having the fact that

p , Pr{k ∈ S} = e−Θ, (32)

which is resulted from the exponential distribution for|hk|2 (as a result of the Complex Gaussian

distribution forhk), and the independence between the users’ channels, it follows that|S| is a Binomial

random variable with parameters(K, p). As a result, we have

Pr{νmin = l, k ∈ S|νk = l} =

K
∑

n=1

Pr{νmin = l, k ∈ S, |S| = n|νk = l}

=

K
∑

n=1

Pr{|S| = n, k ∈ S |νk = l}Pr{νmin = l| νk = l, |S| = n, k ∈ S}

(a)
=

K
∑

n=1

Pr{|S| = n, k ∈ S}Pr{νmin = l| νk = l, |S| = n, k ∈ S}

=

K
∑

n=1

(

K − 1

n− 1

)

pn(1 − p)K−nPr{νmin = l| νk = l, |S| = n, k ∈ S}

=

K
∑

n=1

(

K − 1

n− 1

)

pn(1 − p)K−n ×

Pr{νi > l, i ∈ S, i 6= k| νk = l, |S| = n, k ∈ S}, (33)

where(a) comes from the fact that the events|S| = n andk ∈ S are independent of the eventνk(t) = l.

In fact, the eventνk(t) = l is a function of{hk(j)}Kk=1, j < t, while the events|S(t)| = n andk ∈ S(t)

are functions of{hk(t)}Kk=1, and because of the independent block fading assumption, are independent of

{hk(j)}Kk=1, j < t, and consequently independent ofνk(t) = l.

To evaluate the right hand side of the above equation, we needto find the following probability:

Pr{νi > l, i ∈ S, i 6= k| νk = l, |S| = n, k ∈ S}, (34)

which is, by symmetry, equal to

Pr{ν1 > l, · · · , νn−1 > l| νn = l}, (35)
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noting thatνk(t) andhk(t) are independent random variables. An upper-bound on this probability can be

given as bellow:

Pr{ν1 > l, · · · , νn−1 > l| νn = l} = Pr{ν1 > l| νn = l} ×
n−1
∏

i=2

Pr{νi > l| ν1 > l, · · · , νi−1 > l, νn = l} (36)

(a)

≤ [Pr{νi > l| νn = l}]n−1

(b)
=

[

Gν(l)

1 − fν(l)

]n−1

, (37)

where(a) follows from (24), in which we have shown that Pr{νi > l| ν1 > l, · · · , νi−1 > l} ≤ Pr{νi > l},

and by following the same approach we can show Pr{νi > l| ν1 > l, · · · , νi−1 > l, νn = l} ≤ Pr{νi >
l| νn = l}, and (b) results from the fact that the only dependency betweenνi and νn is that they are

distinct, and hence(νi > l| νn = l) is equivalent to(νi > l| νi 6= l), with the probability of Gν(l)
1−fν(l) , where

Gν(l) , 1 − Fν(l).

In order to lower-bound Pr{νi > l| ν1 > l, · · · , νi−1 > l, νn = l}, we need to derive an upper-bound on

fν(l). Sincefν(l) is an increasing function ofl (from (31)), it follows that

fν(l) ≤ fν(D), ∀l. (38)

However, unlike the previous cases,fν(D) 6= 1
K

. This results from the fact that using the proposed

algorithm in the general case, it is probable that no user is served. Defining the eventX (t) ,
⋃K
k=1 Xk(t)

as the event of serving at least one user in framet, we have

Pr{X (t)} = Pr{|S(t)| > 0}

= 1 −
K
∏

k=1

Pr{|hk|2 < Θ}

= 1 −
(

1 − e−Θ
)K

. (39)

Noting that logK − 2 log logK < Θ < logK − 1.5 log logK, we have(logK)1.5

K
< e−Θ < (logK)2

K
, and

hence,
(

1 − e−Θ
)K

. e−(logK)1.5. Moreover, Pr{X (t)} in terms offν(D) can be written as

Pr{X (t)} =
K
∑

k=1

Pr{νk(t+ 1) = D}

= Kfν(D), (40)

where the first line comes from the distinction ofνk’s and the second line follows from the symmetry

between the users and dropping the time index. Combining (39) and (40) yields,

fν(D) ∼= 1

K

[

1 −
∣

∣

∣
O
(

e−(logK)1.5
)∣

∣

∣

]

, (41)
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which is less than1
K

. Combining (38) with the above equation yields

fν(l) ≤
1

K
, ∀l. (42)

Similar to (23) and (24), we can write

Pr{νi > l| ν1 > l, · · · , νi−1 > l, νn = l} =

∑

(a1,··· ,ai−1)
l<ak≤D

fν1,··· ,νi−1,νn(a1, · · · , ai−1, l)

Pr{ν1 > l, · · · , νi−1 > l, νn = l} ×

Pr{νi > l| ν1 = a1, · · · , νi−1 = ai−1, νn = l}

=

∑

(a1,··· ,ai−1)
l<ak≤D

fν1,··· ,νi−1,νn(a1, · · · , ai−1, l)

Pr{ν1 > l, · · · , νi−1 > l, νn = l} ×

Pr{νi > l| νi /∈ {a1, · · · , ai−1, l}}

=

∑

(a1,··· ,ai−1)
l<ak≤D

fν1,··· ,νi−1,νn(a1, · · · , ai−1, l)

Pr{ν1 > l, · · · , νi−1 > l, νn = l} ×

Pr{νi > l} −∑i−1
k=1 fνi(ak)

1 −∑i−1
k=1 fνi(ak) − fνi(l)

≥

∑

(a1,··· ,ai−1)
l<ak≤D

fν1,··· ,νi−1,νn(a1, · · · , ai−1, l)

Pr{ν1 > l, · · · , νi−1 > l, νn = l} ×
(

Pr{νi > l} −
i−1
∑

k=1

fνi(ak)

)

(a)

≥ Gν(l) −
i− 1

K
, (43)

where(a) follows from the fact thatfνi(ak) ≤ 1
K

, ∀ak (equation (42)). From the above equation and (36),

Pr{ν1 > l, · · · , νn−1 > l| νn = l} can be lower-bounded as

Pr{ν1 > l, · · · , νn−1 > l| νn = l} ≥
n−2
∏

i=0

(

Gν(l) −
i

K

)

. (44)

Using the above equation, and definingn0 , 3(logK)2 andD0 , D−
√
Kn0(n0 − 1), a lower-bound on

Pr{ν1 > l, · · · , νn−1 > l| νn = l} is given as,

Pr{ν1 > l, · · · , νn−1 > l| νn = l} ≥ g(n, l), (45)

where

g(n, l) ,







∏n−2
i=0

(

Gν(l) − i
K

)

l < D0 andn ≤ n0

0 Otherwise.
(46)

As we will see later, the form in (46) is more convenient to carry out our subsequent derivations.
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From (33), (35), (36), and (37), an upper-bound on Pr{νmin = l, k ∈ S|νk = l} can be obtained as

follows:

Pr{νmin = l, k ∈ S|νk = l} ≤
K
∑

n=1

(

K − 1

n− 1

)

pn(1 − p)K−n
(

Gν(l)

1 − fν(l)

)n−1

= η

K
∑

n=1

(

K − 1

n− 1

)

pn−1(1 − p)K−n+1

(

Gν(l)

1 − fν(l)

)n−1

= η

K−1
∑

n=0

(

K − 1

n

)(

pGν(l)

1 − fν(l)

)n

(1 − p)K−n

= η

(

pGν(l)

1 − fν(l)
+ 1 − p

)K−1

(a)
< η

(

pGν(l)
(

1 +
2

K

)

+ 1 − p

)K−1

= η (1 − p Fν(l))
K−1

(

1 +
2pGν(l)

K(1 − pFν(l))

)K−1

(b)

≤ η (1 − p Fν(l))
K−1

(

1 +
2pGν(l)

K(1 − p)

)K−1

∼ η (1 − p Fν(l))
K−1 e

2pGν (l)
1−p

(c)∼= η (1 − p Fν(l))
K−1 [1 +O(p)], (47)

whereη , p
1−p . (a) comes from the facts that∀l, fν(l) ≤ 1

K
(equation (42)), and forx sufficiently small,

1
1−x < 1 + 2x, (b) results fromFν(l) ≤ 1, and(c) follows from the fact that sincelogK − 2 log logK <

Θ < logK − 1.5 log logK, we have(logK)1.5

K
< p = e−Θ < (logK)2

K
, which implies thatp ∼ o(1).

Moreover, from (33), (35), and (45), a lower-bound on Pr{νmin = l, k ∈ S|νk = l}, for l < D0, is given

as follows:

Pr{νmin = l, k ∈ S|νk = l} ≥
K
∑

n=1

(

K − 1

n− 1

)

pn(1 − p)K−ng(n, l)

=

n0
∑

n=1

(

K − 1

n− 1

)

pn(1 − p)K−n
n−2
∏

i=0

(

Gν(l) −
i

K

)

=

n0
∑

n=1

(

K − 1

n− 1

)

pn(1 − p)K−nGν(l)
n−1

n−2
∏

i=0

(

1 − i

KGν(l)

)

.

(48)
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By repeated application of (31) and using (47) to upper-bound Pr{νmin = l, k ∈ S|νk = l}, we obtain

fν(D) − fν(D0) ≤
D
∑

l=D0

ηfν(l) (1 − pFν(l))
K−1 [1 +O(p)]

(a)

≤ η(D −D0 + 1)

K

(

1 − p+ p
D −D0

K

)K−1

[1 +O(p)]

≤ η(D −D0 + 1)

K
e−(K−1)p(1−D−D0

K )[1 +O(p)], (49)

where (a) comes from the fact thatfν(l) ≤ 1
K

and as a resultFν(l) ≥ 1 − D−l
K

, which implies that

Fν(l) ≥ 1− D−D0

K
for l ≥ D0. Having the facts thatD−D0 ∼ 9

√
K(logK)4 and logK − 2 log logK <

Θ < logK − 1.5 log logK, which results in(logK)1.5

K
< p < (logK)2

K
, andη = p

1−p ∼ p, the right hand side

of the above equation can be upper-bounded as

RH(49) .
9(logK)6

K3/2
e−(logK)1.5. (50)

Substituting in (49) and using (41), noting thate−(logK)1.5 ∼ o(1/K), we obtain

fν(D0) ∼=
1

K
[1 + o(1/K)] . (51)

Sincefν(l) is an increasing function ofl, it follows from the above equation that

fν(l) ∼=
1

K
[1 + o(1/K)] , ∀l, D0 ≤ l ≤ D. (52)

The above equation incurs that forl < D0, Gν(l) & D−D0

K
= n0(n0−1)√

K
. As a result,

∏n−2
i=0

(

1 − i
KGν(l)

)

in

(48) can be lower-bounded as
n−2
∏

i=0

(

1 − i

KGν(l)

)

(a)

&
n0−2
∏

i=0

(

1 − i√
Kn0(n0 − 1)

)

(b)
≈

n0−2
∏

i=0

e
− i√

Kn0(n0−1)

= e
− (n0−1)(n0−2)

2
√
Kn0(n0−1)

∼= 1 +O
(

1/
√
K
)

, (53)

where(a) follows from the fact thatn ≤ n0, and(b) results from the fact that asi < n0, i√
Kn0(n0−1)

≪
1, which implies that1 − i√

Kn0(n0−1)
≈ e

− i√
Kn0(n0−1) . Moreover, similar to (47), we can writeΨ ,

∑n0

n=1

(

K−1
n−1

)

pn(1 − p)K−nGν(l)
n−1 as

Ψ = η

[

(1 − pFν(l))
K−1 −

K−1
∑

n=n0

(

K − 1

n

)

pn(1 − p)K−nGν(l)
n

]

≥ η

[

(1 − pFν(l))
K−1 −

K−1
∑

n=n0

(

K − 1

n

)

pn(1 − p)K−n

]

(a)
≈ η

[

(1 − pFν(l))
K−1 −Q

(

n0 − (K − 1)p
√

(K − 1)p(1 − p)

)]

, (54)
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where (a) results from the Gaussian approximation for a Binomial distribution with parameters(n, p),

whennp → ∞. Noting n0 = 3[logK]2 andp < [logK]2

K
, it follows thatn0 ≥ 3(K − 1)p. Substituting in

the above equation, and having the fact thatQ(x) ≈
1√
2πx

e−x
2/2 for large enoughx, the right hand side

of the above equation can be lower-bounded as

RH (54) ≥ η
[

(1 − pFν(l))
K−1 − e−2(K−1)p

]

. (55)

Having the facts that(1 − pFν(l))
K−1 ∼ e−(K−1)pFν(l) ≥ e−(K−1)p, RH (55) can be lower-bounded as

RH (55) ≥ η (1 − pFν(l))
K−1 [1 − e−(K−1)p

]

(a)∼= η (1 − pFν(l))
K−1 [1 +O(1/K)] , (56)

where(a) follows from the fact that asp > (logK)1.5

K
, we havee−(K−1)p ∼ O(1/K). Combining (48), (53),

(54), (55), and (56), we have

Pr{νmin = l, k ∈ S|νk = l} &= η (1 − pFν(l))
K−1

[

1 +O
(

1/
√
K
)]

, (57)

for l < D0. Combining (47) and (57), noting thatp ∼ o(1/
√
K), yields

Pr{νmin = l, k ∈ S|νk = l} ∼= η (1 − pFν(l))
K−1

[

1 +O
(

1/
√
K
)]

, (58)

for l < D0. Substituting in (31), we have

fν(l) − fν(l − 1) ∼= ηfν(l) (1 − pFν(l))
K−1

[

1 +O
(

1/
√
K
)]

, l < D0. (59)

Moreover, forD0 ≤ l ≤ D, from (52), we havefν(l) ∼= 1
K

[1 + o(1/K)], which completes the proof of

Lemma 1.

�

Lemma 2 The solution to the difference equation (30), in the asymptotic case ofK → ∞, is

fν(l) ∼
ϕ

(K−1)p
e(K−1)peϕ(l−D0)

1 + e(K−1)peϕ(l−D0)
l < D0, (60)

for someϕ ∼= η
[

1 +O
(

1√
K

)]

.

Proof - Rewriting (30), we have

fν(l) − fν(l − 1) ∼= ηfν(l) (1 − pFν(l))
K−1

[

1 +O
(

1/
√
K
)]

(a)∼= ηfν(l)e
−(K−1)pFν(l)[1+O(p)]

[

1 +O
(

1/
√
K
)]

∼= ηfν(l)e
−(K−1)pFν(l)

[

1 +O(Kp2)
]

[

1 +O
(

1/
√
K
)]

(b)∼= ηfν(l)e
−(K−1)pFν(l)

[

1 +O
(

1/
√
K
)]

l < D0, (61)
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where(a) comes from the fact that(1 + x)n ∼ exn[1+O(x)] for x ∼ o(1), and(b) results from the fact that

p < [logK]2

K
and as a result,Kp2 ∼ o

(

1/
√
K
)

.

Now, consider the following differential equation:

x′(u) = ϕx(u)e−(K−1)pX(u) u < D0, (62)

with the boundary conditions:x(−∞) = X(−∞) = 0, andX(D0) = 1−D−D0

K
, in whichu is a continuous

variable, andX(u) =
∫ u

−∞ x(t)dt, andϕ ∼= η
[

1 +O
(

1√
K

)]

. Writing the Taylor series forx(u−1) about

u, we have

x(u) − x(u− 1) = x′(u) +

∞
∑

n=2

(−1)n+1x(n)(u)

n!
. (63)

For the second derivative of (62), we have

x′′(u) = ϕx′(u)e−(K−1)pX(u) − ϕ(K − 1)px(u)2e−(K−1)pX(u)

= ϕx′(u)e−(K−1)pX(u) − (K − 1)px′(u)x(u). (64)

From the above equation, noting that with the given boundaryconditions for the differential equation

in (62), we havee−(K−1)pX(u) ≤ 1 (which follows from the facts thatx′(u) ≥ 0 and x(u) ≥ 0, which

incursX(u) ≥ 0), andx(u) ≤ 1
K

(which follows from solving (62) with the boundary conditionX(D0) =

1− D−D0

K
), it is easy to see that|x′′(u)| < ϕ|x′(u)|. Similarly, we can show that|x(n)(u)| < 2n−1ϕn|x′(u)|.

Substituting in (63), noting thatϕ ∼ η ∼ p < [logK]2

K
, yields

x(u) − x(u− 1) ∼= x′(u)[1 +O(ϕ)]
(a)∼= ϕx(u)e−(K−1)pX(u) [1 +O (ϕ)]
(b)∼= ηx(u)e−(K−1)pX(u)

[

1 +O
(

1/
√
K
)]

u < D0, (65)

where(a) comes from (62) and(b) follows from the facts thatϕ ∼= η
[

1 +O
(

1√
K

)]

andϕ ∼ O(1/
√
K).

We also have

X(u)
(a)
=

u
∑

v=−∞
[X(v) −X(v − 1)]

(b)
=

u
∑

v=−∞

[

x(v) +

∞
∑

n=1

(−1)nx(n)(v)

(n+ 1)!

]

(c)∼
u
∑

v=−∞
x(v) [1 +O(ϕ)] , (66)

where(a) results from the fact thatX(−∞) = 0, (b) follows from writing the Tailor series forX(v− 1)

aboutv, and(c) comes from the the fact that|x′(v)| ≤ ϕx(v), ∀v (62), and also|x(n)(v)| < 2n−1ϕn|x′(v)|,
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demonstrated earlier. DefiningZ(u) ,
∑u

v=−∞ x(v) and using the above equation and (65), we have

x(u) − x(u− 1) ∼= ηx(u)e−(K−1)pX(u)
[

1 +O
(

1/
√
K
)]

∼= ηx(u)e−(K−1)pZ(u)[1+O(ϕ)]
[

1 +O
(

1/
√
K
)]

(a)∼= ηx(u)e−(K−1)pZ(u)
[

1 +O(Kp2)
]

[

1 +O
(

1/
√
K
)]

(b)∼= ηx(u)e−(K−1)pZ(u)
[

1 +O
(

1/
√
K
)]

, (67)

where(a) results from the fact thatϕ ∼ p, and(b) follows from the fact thatp < [logK]2

K
and as a result,

Kp2 ∼ o
(

1/
√
K
)

(similar to(b) in (61)). The above equation incurs that the solution of (62)also satisfies

(61). More precisely, for any value ofl, l < D0, there exists aϕ such thatϕ ∼= η
[

1 +O
(

1√
K

)]

, and

fν(l) ∼ x(l), wherefν(l) is the solution of (61) andx(l) is the solution of (62) atu = l. This suggests us

to solve the differential equation (62), instead of the difference equation (61), assuming the same boundary

conditions. The boundary conditions arex(−∞) = fν(−∞) = 0 andX(D0) = Fν(D0) = 1− D−D0

K
. The

second condition comes from the fact thatfν(l) ≈
1
K

, for l ≥ D0.

By taking the integral from both sides of (62), we obtain

x(u) = − ϕ

(K − 1)p
e−(K−1)pX(u) + c. (68)

Noting thatX(−∞) = x(−∞) = 0, c = ϕ
(K−1)p

. Substitutinge−(K−1)pX(u) by x′(u)
ϕx(u)

from (62), we come

up with the following differential equation:

x′(u)

ϕx(u)
[

1 − (K−1)p
ϕ

x(u)
] = 1, (69)

which can be solved as follows:

x′(u)

x(u)
+

(K−1)p
ϕ

x′(u)

1 − (K−1)p
ϕ

x(u)
= ϕ

⇒ ln
x(u)

1 − (K−1)p
ϕ

x(u)
= ϕu+ b, (70)

whereb is the constant of the integration, to be determined by the other boundary condition. Solving the

above equation,x(u) can be written as

x(u) =
Aeϕu

1 + A(K−1)p
ϕ

eϕu
, (71)

whereA = eb. Using (68) and (71), we have

X(u) =
1

(K − 1)p
log

(

1 +
A(K − 1)p

ϕ
eϕu
)

. (72)
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Fig. 2. fν(l) for the proposed method withΘ = 2, 3; D = 500, K = 300, comparison between simulation and computation.

Applying the conditionX(D0) = 1 − D−D0

K
yields

A =
ϕ

(K − 1)p

[

e(K−1)p(1−D−D0
K

) − 1
]

e−ϕD0

≈
ϕ

(K − 1)p
e(K−1)p−ϕD0 , (73)

where the second line comes from the facts that(K − 1)p≫ 1 (sincep > (logK)1.5

K
) andp(D−D0) ≪ 1

(sincep < (logK)2

K
andD −D0 ∼ 9

√
K(logK)4). SubstitutingA in (71), we have

x(u) ∼
ϕ

(K−1)p
e(K−1)peϕ(u−D0)

1 + e(K−1)peϕ(u−D0)
. (74)

One can easily check thatx(D0) ∼ 1
K

, which is consistent with (51). Combining (74) with the factthat

fν(l) ∼ x(l), Lemma 2 easily follows.

�

Although the derived analytical pmf in (74) is valid in the asymptotic regime ofK → ∞, figure 2 shows

that the analytical expression in (74) indeed works for finite number of users. In this figure,fν(l) is

depicted for the proposed scheduling algorithm with the threshold values of 2 and 3, assumingK = 300

andD = 500. As can be observed, the curves derived by simulation almostfollow the curves derived by

computation offν(l) from (74).

Figure 3 shows the plots offν(l) for different values of thresholdΘ. The plots offν(l) for the Round-

Robing scheduling and the maximum-throughput scheduling are also given for comparison. It is observed

that as the value of threshold decreases,fν(l) merges to that of Round-Robin scheduling, while by

increasing the threshold value, it merges to that of the maximum-throughput scheduling.

Lemma 3 SettingD0 = p
ϕ

(K − 1)+ logK
ϕ

, for someϕ such thatϕ ∼= η
[

1 +O
(

1√
K

)]

, yields Pr{B} →
0, while satisfyinglimK→∞

D
K

= 1.
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Fig. 3. Comparison offν(l) for the proposed method withΘ = 4, 5, 6, the Round-Robin scheduling (Θ = 0), and the maximum throughput

scheduling;D = 5000, K = 3000.

Proof - We have seen earlier that the dropping probability for each user is equal toFν(0). Using the

union bound for the probability, it follows that havingFν(0) ∼ o( 1
K

) guarantees Pr{B} → 0. Using (72)

and (73), we have

Fν(0) ∼ X(0) =
1

(K − 1)p
log
(

1 + e(K−1)p−ϕD0
)

, (75)

for someϕ ∼= η
[

1 +O
(

1√
K

)]

. From the above equation, the conditionFν(0) ∼ o
(

1
K

)

can be equivalently

written as

e(K−1)p−ϕD0 ∼ o(p).

It can be easily verified that havingD0 = p
ϕ
(K − 1) + logK

ϕ
, results ine(K−1)pe−ϕD0 = 1

K
, which satisfies

the above condition (since1
K

∼ o(p)). Furthermore, sinceΘ < logK − 1.5 log logK, it follows that

ϕ ∼ η ∼ p > [logK]1.5

K
, which incurs thatlogK

ϕ
. K√

logK
. Combining this with the facts thatlimK→∞

p
ϕ

= 1

andD ∼= D0 + 9
√
K[logK]4 (which follows from the definition ofD0), we havelimK→∞

D
K

= 1. This

completes the proof of Lemma 3.

�



SUBMITTED TO IEEE TRANS. ON INFORM. THEORY 22

The achievable sum-rate of the proposed algorithm can be lower-bounded as follows:

R = RX Pr{X } + RX CPr{X C}

≥ RX Pr{X }
(a)

≥ log(1 + PΘ)Pr{X }
(39)

≥ log(1 + PΘ)
[

1 −
∣

∣

∣
O
(

e−(logK)1.5
)∣

∣

∣

]

. (76)

whereRX andRX C denote the achievable sum-rate conditioned onX andX C , respectively, andX C

(complement ofX ) is defined as the event that|S| = 0. In the above equation,(a) follows from the fact

that conditioned onX , the channel gain of the selected user is greater thanΘ, and hence, the achievable

sum-rate is lower-bounded bylog(1 + PΘ).

From the above equation and noting the facts thatCsum ∼ log(1 + P logK + O(log logK)) [25], and

Θ > logK − 2 log logK, we have

Csum −R . O

(

log logK

logK

)

⇒ lim
K→∞

Csum −R = 0. (77)

Combining the above equation with Lemma 3 completes the proof of Theorem 4.

�

Remark 1-SinceD = K is the smallest delay constraint in order not to have any dropping in the

network, the above theorem simply implies that the proposedscheduling algorithm is capable of achieving

the maximum throughput and minimum network delay, simultaneously.

Remark 2-Assume that the information data delivered to the users are put in packets, which are stored

in the transmitter buffer and each packet is mapped to a codedframe, consisting ofn channel uses, and

transmitted over the channel (Fig. 4). Assume that the Packet Arrival Rate (PAR) for userk to be fixed

and equal tork (measured as the number of arrived packets per unit time, i.e., one frame duration) and

the amount of information in each packet of that user to benRk. In order to have arbitrary small outage

probability,Rk, k = 1, · · · , K, must be inside the capacity region of the underlying broadcast channel,

which implies thatRk ≤ Csum, ∀k. Moreover, in order to have arbitrarily small dropping probability in the

network, the vector consisting of the PAR of the users, denoted byr = (r1, · · · , rK), must be inside the

stability regionof the network [26]. More specifically, forr1 = r2 = · · · = rK = r, this condition reduces

to r ≤ 1
K

4. From this discussion, it follows that the maximumr andRk, k = 1, · · · , K, in order not to

have any dropping or outage in the network scale as1
K

andCsum, respectively. The above theorem states

that the proposed scheduling is capable of achieving the maximum values ofr andRk, k = 1, · · · , K,

simultaneously. In other words, the proposed algorithm reaches the boundary of thecapacity regionand

4Note that this is based on the assumption that at each frame, only one user is served.
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Transmitter Buffer

User 1

User k

User K

n Channel uses
Packet for user 1

Total Rate = nRk
Dk = 1

rk

Packet for user k

The total information in each packet of user k is nRk
The Packet Arrival Rate (PAR) for user k is equal to rk

The latency between any consequative packet of user k is Dk

Coded frame for user k

Each data packet is transmitted by a coded frame

The time unit is equal to the duration of each coded frame

Packet for user k

Fig. 4. A Schematic figure for the transmission of data packets over the broadcast channel

stability regionof the network, simultaneously. The following corollary illustrates this fact from a different

perspective:

Corollary 1 Consider a Broadcast system illustrated in Fig. 4, where thetransmitter has the buffer size

of one packet for each user and the Packet Arrival Rate (PAR) for the kth user isrk and the amount

of information in each packet for userk is nRk. Let us define the “average throughput” of userk

(normalized per channel use) as5

Tk , rkRk. (78)

Then, for any scheduling scheme, any rate vectorR = (R1, · · · ,RK) supported by the channel (decoding

error approaches zero), and for any PAR vectorr = (r1, · · · , rK), the necessary condition for Pr{B} → 0

is having

Tmin , min
k

Tk .
log logK

K
, (79)

which is achievable by the proposed algorithm.

Proof - Necessary Condition -Consider a long interval of timeT . DefiningAk(t) as the indicator variable

taking one when the userk is served during the framet, and taking zero otherwise, we have

K
∑

k=1

Ak(t)Rk ≤ Csum, ∀t, 1 ≤ t ≤ T. (80)

The above equation comes from the fact that the rates(R1, · · · ,RK) must be supported by the channel.

Taking the summation with respect tot, we can write

T
∑

t=1

K
∑

k=1

Ak(t)Rk ≤ CsumT. (81)

5This definition is motivated by the fact that there is a time delay of 1
rk

between two consecutive packets of userk, and as a result, the

average amount of information per channel use delivered to userk is equal torkRk.
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Since Pr{B} → 0, the arrival rate of the packets must be less than or equal to their service rate, over a

long period of time, almost surely. In other words,
∑T

t=1 Ak(t) & Trk, ∀k, 1 ≤ k ≤ K. Substituting in

the above equation yields

K
∑

k=1

Tk =

K
∑

k=1

rkRk . Csum

(a)∼ log(P logK), (82)

where(a) comes from [25]. Combining (78) and (82), yields

Tmin ≤
∑K

k=1 Tk

K

.
log logK

K
+

logP

K

∼ log logK

K
. (83)

Sufficient Condition -Consider the proposed algorithm, with the condition of Theorem 4, i.e.,logK −
2 log logK < Θ < logK− 1.5 log logK. It is realized from Lemma 3 that selectingrk = 1

D
for all users,

whereD is obtained as follows:

D =
p

ϕ
(K − 1) +

logK

ϕ
+ 9

√
K[logK]4,

guarantees Pr{B} → 0. Furthermore, the channel can support the rate

Rk = log [1 + P (logK − 2 log logK)] ,

with probability Pr{X } (which is almost equal to1 from (39)), for all users. Hence,

Tmin ≥ log [1 + P (logK − 2 log logK)]

D

∼ log logK

K
. (84)

�

In the above corollary, theminimum average throughput, denoted byTmin, is defined as the measure

of performance. The average throughput itself can be interpreted as the average amount of information

(per channel use) delivered to a user over a long period of time. This measure is suitable for the real-time

applications, where the packets have certain amount of information and certain arrival rates. Note that in

the above corollary, we have assumed that the users have the buffer size of one, which is a very restrictive

assumption in wireless networks. For the realistic scenarios, this constraint is more relaxed. However,

since we have shown the optimality of our proposed scheduling for this assumption, it easily follows that

this optimality holds for more relaxed assumptions, as well.
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Fig. 5. Minimum average throughputvs. the threshold value,K = 3000, P = 0dB.

ComputingTmin for the two special cases of the proposed algorithm, i.e., maximum-throughput schedul-

ing (T MT
min ) and Round-Robin scheduling (T RR

min ), yields,

T
MT

min ∼ log logK

K logK
,

T
RR

min ∼ 1

K
. (85)

Therefore, the proposed algorithm outperforms these conventional scheduling algorithms by a factor of

logK and log logK, respectively.

The above corollary states that the proposed scheduling scheme maximizes theminimum average

throughputof the system while making the network dropping probabilityarbitrarily small in the asymptotic

regime ofK → ∞, for all the threshold values in the interval[logK−2 log logK, logK−1.5 log logK].

However, for finite number of users, it is not possible to simultaneously maximize theminimum average

throughputand make the network dropping probability zero. In fact, fora given constraint on the dropping

probability, theminimum average throughputwill be a function of the threshold value, which is desired to

be maximized. Figure 5 shows the plots of theminimum average throughputversus the threshold value,

for different assumptions on the link and network dropping probabilities. The number of usersK is set to

3000 and the SNR valueP is set to0 dB. As can be observed, for each plot, there is an optimum threshold

value for which theminimum average throughputis maximized. Moreover, by making the constraint on

the dropping probability more restrictive, the optimum threshold value decreases.
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IV. EXTENSION TO THE MIMO-BC

So far, we have assumed that the transmitter and the receivers are all equipped with single antennas.

In this section, we assume that the transmitter hasM antennas, while the receivers have single antennas.

The main difference between this case and the previous case is that for SISO-BC, serving one user at

each time (TDMA) is optimal in terms of achieving the maximumthroughput of the system [24], while

in the MIMO-BC, this is not the case. Therefore, we must applysome modifications to our proposed

algorithm, to make it suitable for MIMO-BC.

A. System Model and Proposed Algorithm

The channel model for thekth user is assumed to be

yk = hkx + nk, (86)

where x ∈ CM×1 is the transmitted signal with the power constraintE{xHx} ≤ P , hk ∈ C1×M ∼
CN (0, I) is the channel vector,nk ∼ CN (0, 1) is AWGN, andyk is the received signal by thekth user.

Algorithm 2:

1) Set the thresholdΥ.

2) The BS selectsM orthogonal unit vectors, denoted byΦ1, · · · ,ΦM , randomly, and sends it to all

users.

3) Among each of the following sets:

Sm = {k| SINR(m)
k > Υ}, m = 1, · · · ,M, (87)

the BS serves the user with the minimumexpiry countdown. In the above equation, SINR(m)
k ,

P
M

|hkΦH
m|2

1+
P

j 6=m
P
M

|hkΦH
j |2 is the received Signal to Interference plus Noise Ratio (SINR) on themth transmitted

beam, by thekth user.

As can be observed, this algorithm is a variant of Random-Beam-Forming scheme proposed in [25], where

the expiry countdownis considered in the scheduling.

B. Asymptotic Analysis

In this section, we analyze the performance of the proposed algorithm in the asymptotic case ofK →
∞. Similar to the SISO case, it is interesting to investigate the possibility of achieving the maximum

throughput and fairness of the system, simultaneously, which is performed in the following theorem:

Theorem 5 Using Algorithm 2, for the values ofΥ satisfying

P

M
[logK − (M + 1) log logK] < Υ <

P

M
[logK − (M + 0.5) log logK] , (88)
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we havelimK→∞ Csum −R = 0, and limK→∞
MD
K

= 1, while satisfying Pr{B} → 0.

Proof - Using the same approach as in the proof of Theorem 4, we first derive fν(ν) in terms ofK,

D, andΥ. Consider the following sets:

S ′
m ,

{

k
∣

∣

∣
k ∈ Am, SINR(m)

k > Υ
}

, m = 1, · · · ,M, (89)

whereAm , {k| |hkΦH
m|2 > |hkΦH

j |2, ∀j 6= m}. For simplicity of analysis, we assume that the step

3 of Algorithm 2 works based onS ′
m instead ofSm. It is obvious thatS ′

m ⊂ Sm. However, since
∑M

m=1 |hkΦH
m|2 = ‖hk‖2 < logK + O(log logK), with probability one [25], it follows that having

SINR(m)
k > Υ, whereΥ ∼ β P

M
logK andβ > 1

2
, yields k ∈ Am. This implies that for the values ofΥ

satisfying (88), we haveS ′
m = Sm, with probability one. Rewriting (8), we have

fν(l − 1) = fν(l) (1 − Pr{Xk|νk = l}) . (90)

Pr{Xk|νk = l} can be written as follows:

Pr{Xk|νk = l} (a)
= Pr{Xk, k ∈ S ′|νk = l}

=

M
∑

m=1

Pr{Xk, k ∈ S ′|νk = l,Fm}Pr{Fm|νk = l}

(b)
=

M
∑

m=1

Pr{Xk, k ∈ S ′|νk = l,Fm}Pr{Fm}

(c)
=

1

M

M
∑

m=1

Pr{Xk, k ∈ S ′
m|νk = l,Fm}

(d)
= Pr{Xk, k ∈ S ′

m|νk = l,Fm}, (91)

where S ′ ,
⋃M
m=1 S ′

m, and Fm , {k ∈ Am}. In the above equation,(a) results from the fact that

Xk ⊆ (k ∈ S ′), in order words, the necessary condition for userk to be served is being in any of the sets

S ′
m, s = 1, · · · ,M . (b) results from the independence of the eventsνk = l and Fm

6. (c) follows from

the fact that conditioned onFm, i.e. k ∈ Am, k ∈ S ′ incursk ∈ S ′
m, and also the fact that Pr{Fm} = 1

M
.

(d) follows from the symmetry between the terms Pr{Xk, k ∈ S ′
m|νk = l,Fm}, m = 1, · · · ,M .

We have

Pr{Xk, k ∈ S ′
m|νk = l,Fm}

(a)
=

K
∑

n=1

K
∑

s=n

Pr{Xk, k ∈ S ′
m, |S ′

m| = n, |Am| = s
∣

∣ νk = l,Fm}

(b)
=

K
∑

n=1

K
∑

s=n

Pr{|Am| = s|Fm}Pr
{

k ∈ S ′
m, |S ′

m| = n
∣

∣ |Am| = s,Fm

}

× Pr{Xk|νk = l, |S ′
m| = n, |Am| = s, k ∈ S ′

m} (92)

6In fact, Fm(t) is a function of{hk(t)}Kk=1, while the eventνk(t) = l is a function of{hk(j)}Kk=1, j < t. Since the channel model is

assumed to be independent block fading, the independence ofνk = l andFm easily follows.
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In the above equation,(a) follows from the fact thatS ′
m ⊂ Am, and hences ≥ n. (b) results from the

facts that the events|Am| = s andk ∈ S ′
m are independent ofνk = l (As explained in the footnote), and

k ∈ S ′
m is a subset ofFm.

Pr{|Am| = s|Fm} can be computed as

Pr{|Am| = s|Fm} =
Pr{|Am| = s, k ∈ Am}

Pr{k ∈ Am}
(a)
= M

(

K − 1

s− 1

)(

1

M

)s(
M − 1

M

)K−s
, (93)

where (a) follows from the facts that Pr{k ∈ Am} = 1
M

, and |Am| is a Binomial random variable

with parameters(K, 1
M

). In order to compute Pr
{

k ∈ S ′
m, |S ′

m| = n
∣

∣|Am| = s,Fm

}

, we first compute

q , Pr{k ∈ S ′
m|Fm} as follows:

q =
Pr{k ∈ S ′

m, k ∈ Am}
Pr{k ∈ Am}

(a)
=

Pr{k ∈ Sm, k ∈ Am}
Pr{k ∈ Am}

= MpPr{k ∈ Am|k ∈ Sm}, (94)

wherep , Pr{k ∈ Sm} = e−
MΥ
P

(1+Υ)M−1 [25]. In the above equation,(a) results from the fact that(k ∈ S ′
m) =

(k ∈ Sm)
⋂

(k ∈ Am). Note that as Pr{k ∈ Am|k ∈ Sm} ≈ 1, it follows that q ≈ Mp. Havingq from the

above equation, we can write

Pr
{

k ∈ S ′
m, |S ′

m| = n
∣

∣|Am| = s,Fm

}

=

(

s− 1

n− 1

)

qn(1 − q)s−n. (95)

Substituting Pr{|Am| = s|Fm} and Pr
{

k ∈ S ′
m, |S ′

m| = n
∣

∣|Am| = s,Fm

}

from (94) and (95), and

noting that conditioned on|S ′
m| = n, Xk is independent of|Am| = s, RH (92) can be written as

RH(92) =
K
∑

n=1

K
∑

s=n

M

(

K − 1

s− 1

)(

1

M

)s(
M − 1

M

)K−s(
s− 1

n− 1

)

qn(1 − q)s−n ×

Pr{Xk|νk = l, |S ′
m| = n, k ∈ S ′

m}

= M

(

M − 1

M

)K K
∑

n=1

(

K − 1

n− 1

)(

q

1 − q

)n

Pr{Xk|νk = l, |S ′
m| = n, k ∈ S ′

m} ×

K
∑

s=n

(

K − n

s− n

)(

1 − q

M − 1

)s

= M

(

M − 1

M

)K K
∑

n=1

(

K − 1

n− 1

)(

q

1 − q

)n

Pr{Xk|νk = l, |S ′
m| = n, k ∈ S ′

m} ×
(

1 − q

M − 1

)n [

1 +
1 − q

M − 1

]K−n

= M

K
∑

n=1

(

K − 1

n− 1

)

( q

M

)n (

1 − q

M

)K−n
Pr{Xk|νk = l, |S ′

m| = n, k ∈ S ′
m}. (96)
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As can be observed, the above equation is very similar to (33), and by a similar argument we can show

that

Pr{νi > l, i = 1, · · · , n, i 6= k|νk = l, |S ′
m| = n, k ∈ S ′

m} ≤ Pr{Xk | νk = l, |S ′
m| = n, k ∈ S ′

m}

≤ Pr{νi ≥ l, i = 1, · · · , n, i 6= k | νk = l, |S ′
m| = n, k ∈ S ′

m}. (97)

In the above equation, the first inequality results from the fact that havingνi > l, i 6= k, implies that

the kth user has the minimumexpiry countdownamongS ′
m, and hence, will be selected. The second

inequality follows from the fact that thekth user must have the minimum expiry countdown inS ′
m in

order to be selected, i.e., no user inS ′
m should have a smallerexpiry countdown. Noting the symmetry

of the problem with respect to the users and the fact that the eventsνi > l (or νi ≥ l) are independent of

|S ′
m| = n andk ∈ S ′

m, the upper bound can be written as Pr{ν1 ≥ l, · · · , νn−1 ≥ l|νn = l}, which is by

the chain rule equal to

Pr{ν1 ≥ l, · · · , νn−1 ≥ l|νn = l} = Pr{ν1 ≥ l|νn = l} ×
n−1
∏

i=2

Pr{νi ≥ l|ν1 ≥ l, · · · , νi−1 ≥ l, νn = l}. (98)

Consider the following probability:

Pr{νi = l1|νj = l2}, i 6= j. (99)

For l1 = l2, the above probability can be upper-bounded as

Pr{νi = l1|νj = l1} ≤ fν(l1). (100)

The above inequality comes from the fact that Pr{νi = l1, νj = l1} ≤ Pr2{νi = l1} = f 2
ν (l), which is

shown in Appendix A. A brief explanation of this would be, there areM(M − 1) possibilities for the

usersi andj to be selected in the same frame (since there areM possibilities for assigning each of them

to any of the beams and they can not be assigned to the same beam), while in the term Pr2{νi = l1} all

theM2 possibilities are encountered.

Also, for l1 6= l2, we have

fν(l1) ≤ Pr{νi = l1|νj = l2} ≤ fν(l1)

1 − fν(l2)
. (101)

To prove the above equation, first we note that the ratioPr{νi=l1|νj=l2}
fν(l1)

is the same for alll1 6= l2. In other

words, the conditionνj = l2 scales the probabilities of the outcomesνi = l1 by the same value forl1 6= l2
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in the conditional sample space. To establish (101), let us denotex , Pr{νi=l1|νj=l2}
fν(l1)

, l1 6= l2. We have

∑

u 6=l2

Pr{νi = u|νj = l2} + Pr{νi = l2|νj = l2} = 1.

⇒
∑

u 6=l2

fν(u)x+ Pr{νi = l2|νj = l2} = 1

⇒ x =
1 − Pr{νi = l2|νj = l2}

1 − fν(l2)
. (102)

Therefore,

Pr{νi = l1|νj = l2} = fν(l1)x

=
fν(l1) [1 − Pr{νi = l2|νj = l2]}

1 − fν(l2)
. (103)

Using (100) and the fact that Pr{νi = l2|νj = l2} ≥ 0, (101) easily follows.
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Using (100) and (101), the upper-bound in (98) can be furtherupper-bounded as

Pr{νi ≥ l|ν1 ≥ l, · · · , νi−1 ≥ l, νn = l} =
∑

(a1,··· ,ai−1)
l≤a1≤D,··· ,l≤ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 ≥ l, · · · , νi−1 ≥ l|νn = l} ×

Pr{νi ≥ l | ν1 = a1, · · · , νi−1 = ai−1, νn = l}

=
∑

(a1,··· ,ai−1)
l≤a1≤D,··· ,l≤ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 ≥ l, · · · , νi−1 ≥ l|νn = l} ×

[

Pr{νi ≥ l,Y |Q} + Pr{νi ≥ l,Y C |Q}
]

=
∑

(a1,··· ,ai−1)
l≤a1≤D,··· ,l≤ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 ≥ l, · · · , νi−1 ≥ l|νn = l} ×

[

Pr{Y |Q}Pr{νi ≥ l |Y ,Q} +

Pr{Y C |Q}Pr{νi ≥ l |Y C ,Q}
]

≤
∑

(a1,··· ,ai−1)
l≤a1≤D,··· ,l≤ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 ≥ l, · · · , νi−1 ≥ l|νn = l} ×

[

Pr{Y |Q} + Pr{νi ≥ l |Y C ,Q}
]

(a)

≤
∑

(a1,··· ,ai−1)
l≤a1≤D,··· ,l≤ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 ≥ l, · · · , νi−1 ≥ l|νn = l} ×

[

i−1
∑

k=1

Pr{νi = ak} + Pr{νi = l} + Pr{νi ≥ l |Y C ,Q}
]

(b)

≤
∑

(a1,··· ,ai−1)
l≤a1≤D,··· ,l≤ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 ≥ l, · · · , νi−1 ≥ l|νn = l} ×

[

i−1
∑

k=1

fν(ak) + fν(l) +
Pr{νi ≥ l} −∑i−1

k=1 fν(ak) − fν(l)

1 −∑i−1
k=1 fν(ak) − fν(l)

]

(c)

≤ Mi

K
+Gν(l − 1). (104)

where Y ,
⋃i−1
k=1{νi = νk}

⋃{νi = νn} and Q , {ν1 = a1, · · · , νi−1 = ai−1, νn = l}. In the above

equation,(a) results from (100), which incurs that Pr{Y |Q} ≤ ∑i−1
k=1 Pr{νi = ak} + Pr{νi = l} =

∑i−1
k=1 fν(ak) + fν(l), (b) results from (101), noting that conditioned onY C ,Q, the pointsa1, · · · , ai−1, l

are excluded from the sample space.(c) results from: (i) upper-boundingfν(ak), k = 1, · · · , i − 1, and

fν(l) by M
K

, which is due to the facts thatfν(l) ≤ fν(D) andfν(D) = Pr{Xk} ≤ M
K

, where Pr{Xk} is

the probability that userk is being selected in a frame7, and (ii) upper-boundingPr{νi≥l}−
Pi−1
k=1 fν(ak)−fν(l)

1−
Pi−1
k=1 fν(ak)−fν(l)

7In fact, Pr{Xk} ≤ M
K

follows from the union bound on the probability. More precisely, denotingX (m)
k as the event that userk is assigned

to beamm, using the same argument as in the SISO case, one can show thatPr{X (m)
k } ≤ 1

K
, and hence, Pr{Xk} = Pr{

SM
m=1 X

(m)
k } ≤ M

K
.
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by Pr{νi ≥ l} = Gν(l − 1).

Using the above equation and (98), the upper bound in (97) canbe upper-bounded as

Pr{ν1 ≥ l, · · · , νn−1 ≥ l|νn = l} ≤
n−1
∏

i=1

(

Gν(l − 1) +
Mi

K

)

. (105)

Moreover, to lower-bound the lower bound in (97), we first lower-bound Pr{νi > l|ν1 > l, · · · , νi−1 >

l, νn = l} as follows:

Pr{νi > l|ν1 > l, · · · , νi−1 > l, νn = l} ≥
∑

(a1,··· ,ai−1)
l<a1≤D,··· ,l<ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 > l, · · · , νi−1 > l|νn = l} ×

Pr{νi > l | ν1 = a1, · · · , νi−1 = ai−1, νn = l}

=
∑

(a1,··· ,ai−1)
l<a1≤D,··· ,l<ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 > l, · · · , νi−1 > l|νn = l} ×

[

Pr{Y |Q}Pr{νi > l |Y ,Q} +

Pr{Y C |Q}Pr{νi > l |Y C ,Q}
]

≥
∑

(a1,··· ,ai−1)
l<a1≤D,··· ,l<ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 > l, · · · , νi−1 > l|νn = l} ×

Pr{Y C |Q}Pr{νi > l |Y C ,Q}
(a)

≥
∑

(a1,··· ,ai−1)
l<a1≤D,··· ,l<ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 > l, · · · , νi−1 > l|νn = l} ×

Pr{Y C |Q}Pr{νi > l}

=
∑

(a1,··· ,ai−1)
l<a1≤D,··· ,l<ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 > l, · · · , νi−1 > l|νn = l} ×

(1 − Pr{Y |Q}) Pr{νi > l}
(b)

≥
∑

(a1,··· ,ai−1)
l<a1≤D,··· ,l<ai−1≤D

fν1,··· ,νi−1
(a1, · · · , ai−1|νn = l)

Pr{ν1 > l, · · · , νi−1 > l|νn = l} ×

(

1 −
i−1
∑

k=1

fν(ak) − fν(l)

)

Pr{νi > l}

(c)

≥ Gν(l) −
Mi

K
, (106)

where(a) results from (101) which implies that Pr{νi > l |Y C ,Q} ≥ Pr{νi > l}, (b) follows from (100),

which incurs that Pr{Y |Q} ≤ ∑i−1
k=1 fν(ak) + fν(l). Finally, (c) results from the fact thatfν(ν) ≤ M

K
,

and writing Pr{νi > l} asGν(l).



SUBMITTED TO IEEE TRANS. ON INFORM. THEORY 33

Using the above equation, the lower-bound in (97) can be lower-bounded as

Pr{ν1 > l, · · · , νn−1 > l|νn = l} ≥
n−1
∏

i=1

(

Gν(l) −
Mi

K

)

. (107)

Similar to the approach used in the SISO case, by definingn0 = 3(logK)2 andD0 = D−
√
Kn0(n0−1),

first we show that forD0 ≤ l ≤ D, we havefν(l) ∼ M
K

. For this purpose, by repeated application of (90),

and using (91), (92), (96), (97), and (105), we have

fν(D) − fν(D0) ≤
D
∑

l=D0+1

Wl, (108)

where Wl , M
∑K

n=1

(

K−1
n−1

)

( q
M

)n
(

1 − q
M

)K−n∏n−1
i=1

(

Gν(l − 1) + Mi
K

)

. In Appendix B, it has been

shown thatWl is upper-bounded asM (logK)2

K
e−(logK)1.5 , which implies that

fν(D) − fν(D0) ≤ (D −D0)M
(logK)2

K
e−(logK)1.5

∼ 9M
(logK)6

√
K

e−(logK)1.5

∼ o
(

e−(logK)1.5
)

. (109)

Moreover,fν(D) can be written as Pr{Xk} 8, which denotes the probability that userk is selected in a

frame. This probability can be expressed as Pr{⋃M
m=1 X

(m)
k }, whereX

(m)
k denotes the event that thekth

user is assigned to themth beam. DefiningX (m) ,
⋃K
k=1 X

(m)
k , which is the probability that themth

beam is assigned to some user, we have

Pr{X (m)} = 1 − Pr{|S ′
m| = 0}

= 1 − (1 − Pr{k ∈ S ′
m})K

(a)
= 1 −

(

1 − q

M

)K

∼= 1 − e−Kq/M

(b)

≥ 1 − e−(logK)1.5, (110)

where(a) follows from the definition ofq in (94), and(b) results from the fact thatq
M

∼ p > (logK)1.5

K
,

Having the fact that the eventsX (m)
k , k = 1, · · · , K are mutually exclusive, i.e., beams can not be

assigned to multiple users simultaneously, we have

Pr{X (m)} =

K
∑

k=1

Pr{X (m)
k } ≥ 1 − e−(logK)1.5

⇒ Pr{X (m)
k } ≥ 1

K

(

1 − e−(logK)1.5
)

, (111)

8More precisely,fνk(t)(D) = Pr{Xk(t− 1)}, where the the time index are removed due to the steady state condition.
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where the second line results from the symmetry between the users. Moreover, since the setsS ′
m, m =

1, · · · ,M are disjoint, it follows that the eventsX (m)
k , m = 1, · · · ,M are mutually exclusive. Therefore,

using the above equation,

Pr{Xk} =

M
∑

m=1

Pr{X (m)
k } ≥ M

K

(

1 − e−(logK)1.5
)

. (112)

Combining the above equation with (109), it follows that

fν(l) ∼=
M

K

[

1 + o
(

Ke−(logK)1.5
)]

, D0 ≤ l ≤ D. (113)

In other words, in the interval[D0, D], fν(l) is almost constant.

In the regionl < D0, by defining the following functions:

gu(n, l) =







∏n−1
i=1

(

Gν(l − 1) + iM
K

)

, n ≤ n0

1 n > n0

, (114)

and

gl(n, l) =







∏n−1
i=1

(

Gν(l) − iM
K

)

, n ≤ n0

0 n > n0

, (115)

wheren0 = 3(logK)2, using the equations (97), (105), and (107), it follows that

gl(n, l) ≤ Pr{Xk|νk = l, |S ′
m| = n, k ∈ S ′

m} ≤ gu(n, l), (116)

where Pr{Xk|νk = l, |S ′
m| = n, k ∈ S ′

m} is the probability we need to find in order to compute Pr{Xk|νk =

l} in (96). From the above equation, Pr{Xk|νk = l} can be upper-bounded as follows:

Pr{Xk|νk = l} ≤ M

K
∑

n=1

(

K − 1

n− 1

)

( q

M

)n (

1 − q

M

)K−n
gu(n, l)

(a)
= η

K−1
∑

n=0

(

K − 1

n

)

( q

M

)n (

1 − q

M

)K−n
gu(n + 1, l)

= η

n0
∑

n=0

(

K − 1

n

)

( q

M

)n (

1 − q

M

)K−n n
∏

i=1

(

Gν(l − 1) +
iM

K

)

+

η
K−1
∑

n0+1

(

K − 1

n

)

( q

M

)n (

1 − q

M

)K−n

= η

n0
∑

n=0

(

K − 1

n

)

( q

M

)n (

1 − q

M

)K−n
Gν(l − 1)n

n
∏

i=1

(

1 +
iM

KGν(l − 1)

)

+

η
K−1
∑

n0+1

(

K − 1

n

)

( q

M

)n (

1 − q

M

)K−n
, (117)

whereη = q
1− q

M
. In the above equation,(a) results from taking the terms

q
M

1− q
M

outside the summation

and make a change of variablen− 1 to n. Sincefν(l) ∼ M
K

for D0 ≤ l ≤ D, it follows thatGν(D0) ∼
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M(D−D0)
K

= Mn0(n0−1)√
K

, which implies thatGν(l − 1) ≥ Mn0(n0−1)√
K

, for D0 ≤ l ≤ D. Therefore, the term
∏n

i=1

(

1 + iM
KGν(l−1)

)

can be written as

n
∏

i=1

(

1 +
iM

KGν(l − 1)

)

≤
n
∏

i=1

(

1 +
i√

Kn0(n0 − 1)

)

(a)≈ 1 +
n
∑

i=1

i√
Kn0(n0 − 1)

= 1 +
n(n + 1)

2
√
Kn0(n0 − 1)

(b)∼ 1 +O

(

1√
K

)

, (118)

where(a) results from the fact that asi ≤ n0, i√
Kn0(n0−1)

≪ 1, and(b) follows from n ≤ n0. Having the

above equation, RH (117) can be written as

RH (117) ∼= η

n0
∑

n=0

(

K − 1

n

)

( q

M

)n (

1 − q

M

)K−n
Gν(l − 1)n

[

1 +O

(

1√
K

)]

+

η
K−1
∑

n0+1

(

K − 1

n

)

( q

M

)n (

1 − q

M

)K−n

≤ η

K−1
∑

n=0

(

K − 1

n

)

( q

M

)n (

1 − q

M

)K−n
Gν(l − 1)n

[

1 +O

(

1√
K

)]

+

η
K−1
∑

n0+1

(

K − 1

n

)

( q

M

)n (

1 − q

M

)K−n

(a)∼= η
[

1 − q

M
Fν(l − 1)

]K−1
[

1 +O

(

1√
K

)]

+ ηQ





n0 − (K − 1) q
M

√

(K − 1) q
M

(

1 − q
M

)





(b)

≤ ηe−(K−1) q
M

[Fν(l)−fν(l)]
[

1 +O

(

1√
K

)]

+ ηe−2(K−1) q
M

(c)∼= ηe−(K−1) q
M
Fν(l)

[

1 +O

(

1√
K

)

+ e−(K−1) q
M

]

(d)∼= ηe−(K−1) q
M
Fν(l)

[

1 +O

(

1√
K

)]

. (119)

In the above equation,(a) follows from approximating the tale of the Binomial random variable with the

GaussianQ(.) function. In deriving(b), we first approximate
[

1 − q
M
Fν(l − 1)

]K−1
by e−(K−1) q

M
Fν(l−1) =

e−(K−1) q
M

[Fν(l)−fν(l)], which follows fromq ≪ 1. Using the fact that asP
M

[logK − (M + 1) log logK] <

Υ < P
M

[logK − (M + 0.5) log logK], we have q
M
< (logK)2

K
, which implies thatn0 > 3(K − 1) q

M
, and

also the fact that forx ≫ 1, Q(x) < e−x
2/2, Q

(

n0−(K−1) q
M

q

(K−1) q
M (1− q

M )

)

is upper-bounded ase−2(K−1) q
M . (c)

results from the facts that: (i) asfν(l) ≤ M
K

, we havee(K−1) q
M
fν(l) ∼= 1 + O(q) ∼= 1 + O

(

1√
K

)

, and
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ii) since Fν(l) ≤ 1, e−(K−1) q
M
Fν(l) ≥ e−(K−1) q

M , and as a result,e−2(K−1) q
M ≤ e−(K−1) q

M e−2(K−1) q
M
Fν(l).

Finally, (d) follows from the fact thate−(K−1) q
M ∼ o

(

1√
K

)

, which is due to the fact thatq > M (logK)1.5

K
.

Similar to (117) and (119), a lower-bound for Pr{Xk|νk = l} can be given as follows:

Pr{Xk|νk = l} ≥ M
K
∑

n=1

(

K − 1

n− 1

)

( q

M

)n (

1 − q

M

)K−n
gu(n, l)

= η

n0
∑

n=0

(

K − 1

n

)

( q

M

)n (

1 − q

M

)K−n n
∏

i=1

(

Gν(l) −
iM

K

)

∼= ηe−(K−1) q
M
Fν(l)

[

1 +O

(

1√
K

)]

. (120)

Comparing (119) and (120), it follows that

Pr{Xk|νk = l} ∼= ηe−(K−1) q
M
Fν(l)

[

1 +O

(

1√
K

)]

. (121)

Substituting in (91), we reach the following difference equation in the regionl < D0:

fν(l) − fν(l − 1) ∼ ηfν(l)e
−(K−1) q

M
Fν(l)

[

1 +O

(

1√
K

)]

. (122)

Comparing the above equation with (30), it is realized that the above difference equation is the same as

the difference equation obtained in the SISO case, with the difference in replacingK by K
M

, andp by q.

Therefore, all the results stated in Lemmas 2-4 are valid forthe MIMO case, by substitutingK by K
M

,

which completes the proof of Theorem 5.

�

In fact, algorithm 2 basically separates the MIMO-BC intoM “virtual” SISO-BCs by assigning the

users to the beam for which the maximum SINR is attained. Therefore, the analysis offν(l) is similar

to the case of SISO-BC, discussed in the previous section. However, there are two main differences: i)

In SISO-BC, all the users are always served by the same transmitter, while in MIMO-BC the users are

switched independently between the virtual transmitters,from frame to frame. This causesν1, · · · , νK
(The packet expiry countdown of the users) not to be necessarily distinct. However, we have shown in the

proof of Theorem 5 that this does not affect the analysis. ii)The sizes of the virtual SISO-BCs (Am) are

not fixed. In fact,|Am|, m = 1, · · · ,M , are Binomial random variables with parameters(K, 1
M

). Using

Gaussian approximation for the Binomial distribution, we can write

Pr

{

K

M
(1 − ǫ) < |Am| <

K

M
(1 + ǫ)

}

≈ 1 − 2Q





K
M
ǫ

√

K
M

(1 − 1
M

)



 . (123)

Settingǫ ,
√

2(M−1) logK
K

, and using the approximationQ(x) ≈
1√
2πx

e−
x2

2 for x≫ 1, the above equation

can be written as

Pr

{

K

M

(

1 −
√

2(M − 1) logK

K

)

< |Am| <
K

M

(

1 +

√

2(M − 1) logK

K

)}

∼ 1 − o

(

1

K

)

.

(124)
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Therefore, with probability one, the size of the setsAm scales asK
M

[

1 − O

(

√

logK
K

)]

. Following the

above discussions, MIMO-BC can be considered asM parallel SISO-BCs, each serving approximately
K
M

users. The network dropping event (B) can be considered as the union of the dropping events for the

SISO sub-channels, denoted byBm, m = 1, · · · ,M . From the union bound for the probability, we have

Pr{B} ≤
M
∑

m=1

Pr{Bm}

= MPr{Bm}, (125)

where the second line comes from the symmetry between the events Bm. Following the steps of proof

for Theorem 4, and setting[logK]1.5

K
< p < [logK]2

K
and D = p

ϕ
K
M

+ logK
ϕ

+ 9
√
K[logK]4, guarantees

Pr{Bm} → 0, and hence, Pr{B} → 0. Note that asp ∼ e−
MΥ
P

(1+Υ)M−1 [25], the condition[logK]1.5

K
< p < [logK]2

K

incurs that

P

M
[logK − (M + 1) log logK] < Υ <

P

M
[logK − (M + 0.5) log logK] . (126)

Noting thatCsum ∼M log(1 + P
M

logK +O(log logK)) [25], it follows that limK→∞ Csum −R = 0.

�

Theorem 5 implies that the proposed scheduling algorithm iscapable of achieving the maximum sum-

rate throughput, while guaranteeinglimK→∞
MDmin

K
= 1, whereDmin is the minimum value ofD such

that Pr{B} → 0. Noting that ⌈K
M
⌉ is the minimum value ofD in MIMO-BC to have Pr{B} → 0,

(using Round-Robin scheduling, assuming thatM users are served during each frame), it follows that the

proposed scheme achieves the maximum sum-rate and maximum fairness in the network, simultaneously.

Defining theminimum average throughputas in (79), it is straightforward to show that for the proposed

algorithm,

Tmin ∼ M log logK

K
, (127)

which is asymptotically the maximum achievable value in MIMO-BC.

V. CONCLUSION

In this paper, a single-antenna broadcast channel with large (K) number of users is considered. It has

been assumed that all users have hard delay constraintD. We have proposed a scheduling algorithm

for maximizing the throughput of the system, while satisfying the delay constraint for all users. By

characterizing the network dropping probability, in termsof K,D, and the threshold value in the algorithm,

it has been shown that by using the proposed algorithm, it is possible to achieve the maximum throughput

and maximum fairness in the network, simultaneously, in theasymptotic case ofK → ∞. Moreover,

we have introduced a performance measure in the network, called “Minimum Average Throughput”, and

proved that the proposed algorithm maximizes the maximumminimum average throughputin a broadcast
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channel. Finally, the proposed algorithm is generalized for (MIMO-BC), and shown to be optimum in the

sense of achieving the maximum throughput and maximum fairness in the network, simultaneously, in

the asymptotic case ofK → ∞.

APPENDIX A; PROOF OF(100)

From the definition ofνi(t), we have

Pr{νi(t) = l1, νj(t) = l1} = Pr
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, (128)

whereψ , t−D+l1. In the above equation,(a) comes from the fact that the eventsνi(ψ) = D andXi(ψ−
1) are equivalent9. (b) results from the fact that conditioned onXi(ψ − 1),

⋂t
l=ψ X C

i (l) is independent

of Xj(ψ − 1) 10. Finally, (c) follows from writing Pr{Xi(ψ − 1)}Pr
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= σµ+ σ∗(1 − µ), (129)

9In fact, if we haveXi(ψ− 1), i.e., the useri is served in the(ψ− 1)th frame, in the next frame its expiry countdown will be set toD.

In other words,Xi(ψ− 1) results inνi(ψ) = D. By a similar argument one can conclude thatνi(ψ) = D results inXi(ψ− 1). Therefore,

this two events are equivalent.
10In fact, since in each frameM users are served with probability one, conditioned onXi(ψ− 1), there areM − 1 other users which are

served in the same frame. Since the rest of users are all the same for theith user (because of the homogeneity of the network), it follows

that the conditionXj(ψ − 1) does not change the conditional probability Pr
n

Tt
l=ψ X

C
i (l)

˛

˛
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o
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From the above equation,σ can be written as
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where Zj denotes the event that userj is excluded from the network, and hence is never served.(a)

comes from the fact that the event
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Substitutingσ from the above equation in the right hand side of (128) yields
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where (a) follows from the fact that Pr{Xj(ψ − 1)}Pr
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}
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and(b) results from the fact that Pr{Xj(ψ−1)} ∼ M
K

(which we have shown earlier in the paper in (112))

and also Pr{Xj(ψ − 1) |Xi(ψ − 1)} ∼ M−1
K

. The latter is due to the fact that conditioned onXi(ψ− 1),

the network can be considered as a(K − 1)-user broadcast channel, in which(M − 1) beams are to be

assigned to(M − 1) users. Hence, the probability of assigning a beam to a randomly selected user is
M−1
K−1

≈ M−1
K

. From (131), (100) easily follows.
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APPENDIX B

For upper-bounding the right hand side of (108), we use the fact that
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which follows from the fact thatfν(l) ≤ M
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whereη = q
1− q

M
. In the above equation,(a) follows from the fact thatD − l + 1 ≥ 1 (sincel ≤ D). (b)

follows from writing
(
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and canceling outn! by (n+ 1)!, which leaves the termn+ 1
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