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Coding & Signal Transmission Laboratory(www.cst.uwaterta)
Dept. of Elec. and Comp. Eng., University of Waterloo
Waterloo, ON, Canada, N2L 3G1
Tel: 519-884-8552, Fax: 519-888-4338

e-mail: {alireza, mehdi, khandap@cst.uwaterloo.ca

Abstract

In this paper, a single-antenna broadcast channel witte I§xQ number of users is considered. It is assumed
that all users have a hard delay constrdintWe propose a scheduling algorithm for maximizing the tigtgqout
of the system, while satisfying the delay constraint forusérs. It is proved that by using the proposed algorithm,
it is possible to achieve the maximum throughput and maxinfiainmess in the network, simultaneously, in the
asymptotic case of{ — co. We introduce a new performance metric in the network, dafdinimum Average
Throughput”, and prove that the proposed algorithm is cepabmaximizing theminimum average throughpurt
a broadcast channel. Finally, the proposed algorithm isggized for MIMO Broadcast Channels (MIMO-BC),

and shown to achieve the maximum throughput and fairnessltsineously, in the asymptotic case &f— oc.

I. INTRODUCTION

With the development of personal communication service® of the major concerns in supporting
data applications is providing quality of service (QoS) &brsubscribers. In most real-time applications,
high data rates and small transmission delays are desiredt Wata-scheduling schemes proposed for
current systems have concentrated on the system throudgypakploiting multiuser diversity [1]-[5].
In cellular networks, by applying multiuser diversity, thiene-varying nature of the fading channel is
exploited to increase the spectral efficiency of the systéns. shown that transmitting to the user with
the highest signal to noise ratio (SNR) provides the systetin maximum sum-rate throughput [6]. The
opportunistic transmission is proposed in Qualcomm’s Higtta Rate (HDR) system [2].

Although applying multiuser diversity through the schem¢a] achieves the maximum system through-
put, QoS demands, including fairness and delay constrgmsoke designing more appropriate schedul-
ing schemes. The schemes that consider delay constrawvesblean studied extensively in [1], [7]-[22].

Financial supports provided by Nortel, and the correspogdnatching funds by the Federal government: Natural Seieaad Engineering
Research Council of Canada (NSERC) and Province of Ont@niario Centres of Excellence (OCE) are gratefully ackralgkd.
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In [7], the authors propose an algorithm which maintainslariage between the throughput maximization,
delay, and outage probability in a multiple access fadirgndel. The tradeoff between the average delay
and the average transmit power in fading environments isyaed in [8]. In [9], [10], authors propose
scheduling metrics that combine multiuser diversity gaithwhe delay constraints. In [11], the scheduling
scheme is designed based on maximizing the effective dgg@&] which is characterized by data rate,
delay bound, and delay-bound violation probability triplEhe throughput-delay tradeoff of the multicast
channel is analyzed for different schemes in a single cedtesy [12]. This trade-off has been obtained
for more general network topologies in [13]. In the statiaodam network withn nodes, the results of
[13] show that the optimal tradeoff between throughfytand delayD,, is given by D,, = ©(nT,).
They also show that the same result is achieved in randomlenobtworks, wher¥;,, = O(1/+/nlogn).
The first studies on achieving a high throughput and low déatagd-hoc wireless networks are framed
in [4], [14], and [15]. This line of work is further expanded [16]-[18] by using different mobility
models such as the random walk and the Brownian mobility nsoddeely and Modiano [18] consider
the delay-throughput tradeoff only for mobile ad-hoc natwgo They investigate the delay characteristics
by using the redundant packets transmission through nhellppths. In [19], the authors have proposed
and compared different scheduling achemes based on th& akannel qualities and their remaining job
times, in the downlink of a MIMO wireless cellular packet aatystem in fast and slow channel variation
scenarios. In [20], the authors have analytically charatd the scheduling gain achieved by opportunistic
schedulers with both single-user and multi-user multiplgxand showed that the average delay grow
double-exponentially with the overall throughput, withyarpportunistic (single-user time-sharing or multi-
user multiplexing) scheduling. In [21], the authors coesid wireless downlink communication system,
where the channels are characterized by frequency-seddetiling, modeled as a set of parallel block-
fading channels, and a frequency-flat distance-dependshtlpss. They compare delay-limited systems
(which impose hard fairness) with variable-rate systemBigtv impose proportional fairness), in terms
of the achieved system spectral efficien€y(bit/s/Hz) versusE,/N,, and find simple iterative resource
allocation algorithms that converge to the optimal delayited throughput for orthogonal (FDMA/TDMA)
and optimal (superposition/interference cancellatiaghaling. In the limit of largeK and finite M, the
authors find closed-form expressions foras a function oft, /N, and show that in this limit, the optimal
allocation policy consists of letting each user transmititsrbest subchannel only.

In [22], the delay is defined as the minimum number of chanrsgsuthat guarantees all users
successfully receiver packets. Reference [22] studies the statistical promedfethe underlaying delay
function. However, the delay constraint is assumed tadfe meaning that this scheme aims to minimize
the totalaveragenetwork delay and there is not any delay constraints for tickvidual users.

In this paper, we considerfaard delay constrain for each user, which is enforced by the application
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or physical limitations (e.g. buffer size). We define a diiogpevent as the event that there exists a user
who does not meet the desired delay constraint. We proposdedsling scheme for maximizing the
throughput of the system, while satisfying the delay canstrfor all users. The proposed scheduling
algorithm works based on setting a threshold on the charenal @f the users and among the users with
channel gains above the threshold, the user with the minirRaoket Expiry Countdoven(PED), which

is defined as the remaining time to the expiration of that sigeacket, is served. By doing asymptotic
analysis, it is proved that by selecting the threshold lgwelperly, the proposed scheduling algorithm
achieves the maximum throughput, maximum fairness, anchmaim delay in the network, simultaneously,
in the asymptotic case df — oco. The analysis is based on characterizing the probabilitgsrianction

of PED in terms of K, D , and the threshold value, and evaluating the network drappirobability
accordingly. It is also demonstrated that the Round-RoBiR)(scheduling, which focuses on maximizing
the fairness and minimizing the delay in the network, andtMusger Diversity (MUD) scheduling, which
focuses on maximizing the throughput in the system, are tieme cases of the proposed algorithm,
where the former suffers from the weak performance in terinth@ughput and the latter increases the
network delay by a factor ofog K. Moreover, we have introduced a new notion of performancthén
network, called “Average Throughput”, which is defined as groduct of the packet arrival rate and the
amount of information per channel use in each packet, angegrthat the proposed algorithm maximizes
the Minimum Average Throughpum a broadcast channel. Finally, it is demonstrated thatpitoposed
scheduling outperforms the conventional multiuser dimgrscheduling and Round-Robin scheduling in
terms of theMinimum Average Throughpuby factorslog K andloglog K, respectively. The proposed
algorithm is also generalized to MIMO Broadcast ChannelBM-BC) by modifying the Random Beam-
Forming scheme proposed in [25]. It is shown that the propadgorithm is capable of achieving the
maximum throughput, maximum fairness, and minimum delagukaneously, in the asymptotic case of
K — oo. Moreover, it maximizes th&linimum Average Throughpuh a MIMO-BC.

The rest of the paper is organized as follows. In section Hg $ystem model is introduced and
the proposed algorithm is described. Section Il is devdtedhe asymptotic analysis of the proposed
algorithm. Section IV describes the generalization of theppsed algorithm for MIMO-BC, and finally,
section V concludes the paper.

Throughout this paper, the norm of the vectors are denotdd|hyhe Hermitian operation is denoted by
(). Notation ‘log” is used for the natural logarithm, and the rates are expuessnats RH(.) represents
the right hand side of the equations. For any given functigt®) and g(N), f(N) = O(g(N)) is

equivalent tolimy_, %‘ < 00, f(N) = o(g(N)) is equivalent tolimNHw‘%‘ =0, f(N) =
Q(g(N)) is equivalent tolimy_.o, % >0, f(N) = w(g(N)) is equivalent tolimy_.., g(—x; = 00, and

f(N) = ©(g(N)) is equivalent tdimy .., Z{3 = ¢, where0 < ¢ < co. Also, f(N) ~ g(N) is equivalent
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to limy oo # 1, f(N) Z g(N) is equivalent tOthHOO I > 1, f(N) = g(N) + @(h(N)) is
equivalent tof(N) — g(N) ~ ®(h(N)), where ®(.) can be any of the notation®, o, w, 2, or ©.
Moreover, f(N) 2= g(N) + ®(h(N)) is equivalent tof (N) — g(N) = ©(h(N)), where®(.) can be

any of the notation®), o, w, Q, or ©. Finally, f(N) = ¢g(N) means thaif (N) is approximately equal to
g(N), i.e., if we replacef(N) by g(N) in the equations, the results still hold.

Il. SYSTEM MODEL AND PROPOSEDALGORITHM
A. System Model, Assumptions, and Definitions

In this paper, a downlink environment in which a single-ang Base Station (BS) communicates with
a large numberK) single-antenna users, is considered. We assume a honmgenetwork, where the
channel between each user and the BS is modelled as a zerpaosgplex Gaussian random variable

(Rayleigh fading). The received signal at th#h terminal can be written as
Yr = i + ng, 1)

where z denotes the transmitted signal by the BS, which is assumdek tGaussian with the power
constraintP, i.e., E{|z|*} < P %, hy ~ CN(0,1) denotes the channel coefficient between the BS and
the kth terminal, andu, ~ CN(0,1) is AWGN. We assume that block coding for error free transioiss
is performed over frames, where the information content dfaane is called packet. In addition, we
assume that the frame length is constant (unit of time), evthle information content of a frame can
potentially vary depending on the capacity of the corresipog channel realization. As we will see later,
the proposed method results in almost equal informationerdr{packet length in bits) for all the frames.
It is also assumed thainly one useris served during each frame. The channel coefficients aravess
to be constant for the duration of a frame, and change indkgpely at the start of the next frame (block
fading model). The frame itself is assumed to be long enoogallow communication at rates close to
the capacity. This model is also used in [22] and [25].

It is assumed that the users have delay constrainn other words, the delay between two consecutive
received packets should not be greater than the duratian sthmes. Otherwise, the transmitted packet
will be dropped. Thenetwork dropping eventlenoted by#, is defined as the event that dropping occurs
for any user in the network. We define a parametdor each user, which denotes tegpiry countdown
of that user’s packet, i.e., the remaining time to the exjgraof the packetv is expressed in terms of
an integer multiple of the frame length. At the end of eachmiga theexpiry countdowrof each user
is decremented by one, except for the user which is serveigltinat frame. For this user, thexpiry

countdownis set toD at the start of the next frame. Therefore, for all users< D (Fig. 1). Since

INote that the power constraint heredsr frame i.e, is independent of the channel realizations.
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t=7 | ) va(J) vi(J)
t=j+1 [l +1 w+Ey .. . vi(j+1

—o00 < w(j) < D, Yk, j

Vi, vk(j) # vij), for i # k
Vi, v(i+1) =w(j) — 1, for k # s, vs(j +1) = D,

where s is the user which is serviced during the jth frame

Fig. 1. A Schematic figure for thexpiry countdown

the channel model is independent block fading, and the n&tvopology and the proposed scheduling
algorithm are symmetric with respect to the users, it candslye shown that there exists a steady state
for the system (no matter what the initial state is), in whibk statistical behavior of the users’ expiry
countdowns is independent of the time index. In the steaale ssince in each frame only one user is
served by the transmitter, the expiry countdown of the useesdistinct in each time. All the results
derived in this paper are based on the assumption that thensys in the steady state.

In this paper, we are interested in maximizing tiheoughputand fairnessin the network. First, we
give the definitions othroughputandfairness

Definition 1 The throughput is defined as the average sum-rate of the system, when thagaves
computed over all the channel realizations.

Definition 2 Consider a scheduling”. Then, theFairness Factor (F-) for this scheduling is defines as

FF(7) & Dm“T(‘y) (2)

where D,,;, () denotes the minimum value 6f such that Pf#} — 0, using scheduling”.

Definition 3 A scheduling is said to achieve the maximum fairnessFif(#) =1 2.

2This definition is motivated by the fact that for Round-Robitheduling (which is known to be the most fair schedulim@),i, = K.
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B. Proposed Scheduling Algorithm

The proposed scheduling algorithm is described as follows:
Algorithm 1:

1) The BS chooses a threshah] and sends it to all users.
2) Let us define

S = {k| |h|* = ©}. 3)

All users inS send a confirmation message to the BS.
3) Among the users i, the BS serves the one with the minimun{expiry countdowhn
In the proposed algorithm, the thresh@ldis set to trade-off the throughput vs. the fairness in théesgs
If © is chosen to be very large, then the scheduling tends to nzithe throughput. I1® is chosen to

be very small, the algorithm tends to maximize the fairnesthe network.

[1l. ASYMPTOTIC ANALYSIS

In this section, we analyze the network dropping probahitienoted as R}, in terms of the number
of usersK, and the delay constrair®, for the proposed scheduling. We consider the asymptote c&
K — oo and derive the condition fob such that Pf#} — 0. To this end, the probability mass function
(pmf) of v, denoted asf,(v), is characterized in terms dP, K, and©. First, we consider two special
cases of the proposed algorithm:

A. Special Case 19 = 0:

In this case, the user with the minimumis served. In other words, the quality of channel does not
play any role in the scheduling. The s&twhich is defined in (3) is simply the set of all users.

Theorem 1 For © =0, f,(v) can be obtained as follows:

fov) = (4)

# D-K+1<v<D
0 v<D-K '

Proof - Let us definev,, (t) £ minges vx(t), wherev,(t) denotes thexpiry countdowrfor the kth user
at timet¢. We have

—~
N

Pr{vmi(t) =1}

> Pr{u(t) = Ly(t) > i # kY

—~
=
=~

KPr{uv(t) =lva(t) > 1, ,vk(t) > 1}
= KPHu(t) = PH{ua(t) > 1,- -+ Jug(t) > 1 1n(t) =1}, (5)
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where(a) follows from the fact that as in each channel use only one issgerved, the random variables
v;(t)’'s are distinct in each time sldt and (b) results from the symmetry between the users. We have
Pr{va(t) > 1, Juk(t) >l wi(t) =1} =0, for [ >D—K+1, (6)

which results from the fact that fdr> D — K + 1, there are at mosk’ — 2 possible choices for each of
vi(t), 1 = 2,---, K, and sincey(t) are distinct, the assignment problem has no solution. M@eave
can write,

Priv,(t) =1—1} = Pr{u(t—1)=1,2°t-1)}, (7)

where 2.(t — 1) represents the event that useis served during thét — 1)th frame, and2,¢ (¢t — 1)
denotes the complement ot} (¢t — 1). Since we are studying the behavior of the system in its gtead
state condition, it follows that the statistical propestief v, (¢) and 2% (¢t — 1) are independent of the time

index. Hence, we can drop the time index in the above equainahwrite
Py, =1—-1} = Pr{y, =125}
= Py, =1} (1 — P{Zk|vk =1})

= Py, =1} (1 — PHvmm =y =1}). (8)
Combining (5) and (8), and noting that{®r = [} = f,() and P{vwim = llvpy = I} = Pr{rn >
l,--- ,vg > iy =1} (by the symmetry), we have
Sl =1) = f,(D) = fu(DPHve > 1, -+ v > | = 1} (9)
Substituting (6) in (9), we get
L) =f(1—=1),for D-—K+2<I1<D. (10)

Since during each frame, exactly one user is served, thedeves/s one user witexpiry countdowrequal
to D in the system. In other words,

k=1

Pr{O(yk = D)} =1 (11)

Since the events, = D, k =1,--- , K, are mutually exclusive, it follows that

K
> Py, =D} = 1
k=1

@ 1
= LD) = 4. (12)
where(a) comes from the fact that Pr, = D} is the same for alk, and is equal tof, (D). Combining

(10) and (12), we have

f)=—, D-K+1<I1<D. (13)

=[ =
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Since>>" __ f,(I) =1, from the above equation it follows that

which completes the proof of Theorem 1.

|
The above theorem implies that the pmfiofis a step function which is only non-zero in the interval
[D — K + 1, D]. Since the probability of dropping for any given user can kpressed ai?:_oo 1.(0),
it follows from the above equation that fdp» > K, the dropping probability for each user is zero and as
a result, the network dropping probability is zero.

This scheduling is exactly the Round-Robin scheduling, rwtiee users are served based on a pre-
determined order. One can observe that this schedulingeisnibst fair schedulingHF' = 1), as all the
users have the same opportunity for being served, regaradietheir channel quality. However, due to
disregarding the effect of channel quality in the schedylihe achievable throughput is not good. More
precisely, it can be easily shown that the achievable thrpugof this scheduling scales &x1).

B. Special case 19 = maxy, |hy|?:
In this scheduling)S| = 1. In other words, the user with the best channel quality ivestrduring

each frame. This results in the conventional schedulingcpbo# the multiuser diversity and achieves the

maximum sum-rate throughput in the system [24].

Theorem 2 For the Special Case lIf,(v) is equal to

1 1

) = (1 - E)D_Vu(D ) (15)

wherew(.) denotes the unit step function.

Proof - Similar to (8), we can write

=1 = f,()(1—-P{Zlv =1})
Y01 -PH2:))
(b) 1
2 1 (1- %) (16)

where (a) comes from the fact that the selection of users is perfornegrdless of the value of their
expiry countdown(b) results from the fact that the fading process is block-wisgependent, and as a
result, the probability that the channel norm of any userhis highest during a frame i%. From the
above equation, the pmf of can be written as

1

fo(l) = [.(D) <1 - E)Dl, 1< D. (17)
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From (16) and noting thaElD}oo fu(1) =1, we havef,(D) = +. Hence,

1 1 D—1
=—(1-= D — 1
=7 (1-%)  wo-o, (19)

wherew(.) denotes the unit step function. Hence, the pmi dbllows the exponential distribution with
the parametet — .
Theorem 3 For K — oo, the necessary and sufficient condition to havé®} — 0 for the special case
Il'is

D = Klog K + w(K). (29)

Proof - Sufficient Conditionsing (18), the dropping probability for a usér denoted as R}, can
be written as

P{#.} = > f()

l=—00

~ K. (20)

The network dropping probability (Pg8}) can be written as I:Etjk,K:1 P }. Using the union bound for
the probability, we have

P{#} < iPr{%’k}

(2\9) Ke*%

_D-KlogK

= TR (21)

Hence, havingD = K log K + w(K') guarantees R#8} — 0.
Necessary ConditiorvVe can write

Pr{#} = 1—Pr{ﬁ%’,§}. (22)

k=1
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The dropping event for thith user,%;, is equivalent ta/, < 0. Hence, the above equation can be written

as
P{#} = 1—-PH{y >0, ---,vkg >0}
K
= 1—Pr{V1>O}HPr{Vk>O‘V1>07V2>07'”7Vk—1>0}
k=2
K Z(ai; ,?51) fl/17"' Wg—1 (al? T ’ak_l)
= 1-Pry, >0 = X
{Vl }g( Pr{l/l >07 7Vk—1>0}
Pr{l/k;>0‘7/1 =ap,Vy=ag,: - 7Vk1:ak1}> (23)
(a) K Z(aig"?{)l) fV17"'7V}c—1 (al? e ’ak’*l)
= 1-Pr{y, >0 == X
{Vl }g( Pr{]/1>0’...7yk_1>0}

Pr{v, > 0|y ¢ {a1,as,--- ,ak_l}}>

K Z(al,“-,ak,ﬂ fl/1,~~~,uk_1 ((ll, e 7a/k?—1)
= 1-Pr{y >0} ][] < I=ai=D X
k=2

Pr{v; >0, -+ ,vp_1 >0}

Py > 0} — Y4} fyk<az->) (24)
1— Zf:_ll fuk (&2)
®) s
> 1_HPr{yk, > 0}
k=1
D K
20y _ [1— <1—%) ]
(g 1-— e_K(l_%)L: (23)

where (a) follows from the fact that the only dependency amané is that they are distinct random

k—1 .
variables,(b) results from the fact tha?r{"l’“>gkilzfi:1(fy)k(aZ)
—2i=1 Jrplai

that(1—x)" < e, Vn > 0,z < 1. It follows from the above equation that in order to havé®} — 0,

< Pr{y, > 0}, and(c) results from the fact

D
we must have K(1-%) _, 1, which incursK (1 — %)D — 0. Since K — oo, we can write

1" Dlog(1—+
K(l—?) = KePlel-%)

N Ke-Za+oq/r)

~ e*%(lJrO(l/K)) 29

Hence, K (1—+)” — 0 is equivalent to2=EeX _, o which incursD = Klog K + w(K). This

completes the proof of Theorem 3.
[
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The above theorem states that the minimum delay constraiotder to have small dropping probability
in the network must scale as fast &Slog K. Compared to the Round-Robin scheduling (Case 1), we
have a factor ofog K increase in the Fairness Factor (or equivalently, a factdbg K increase in the

network delay), which is due to ignoringin the scheduling

C. Proposed Algorithm; The general case:

In the previous sections, we have studied our proposed sthgdalgorithm in two extreme cases,
where one extreme focuses on achieving the maximum fairreess the other extreme on achieving
the maximum sum-rate throughput. In general, it is possibldave a trade-off between the fairness
and throughput, by adjusting the threshold value. Now, thestjon is, whether or not, it is possible to
simultaneously achieve the maximum throughput and the max fairness of the system. The following

theorem shows this is indeed possible in the asymptotic chgé — oco.

Theorem 4 Consider the proposed algorithm in the asymptotic cas& 6f> co. Then, for the values of
O satisfying

log K —2loglog K < © <log K — 1.5loglog K, (27)

one can simultaneously achieve:
I- Maximum Throughput:

lim Coumn — R = 0, (28)

K—oo
in which C,,,, denotes the maximum achievable sum-rate in the broadcasineth andR denotes the
achievable sum-rate of the proposed algorithm, and

[I- Maximum Fairness:

D
lim K= 1, while Pr{#A} — 0 (or equivalently, I}im FF =1). (29)

K—o0

Proof - The steps of the proof are as follows: in Lemma 1, we study #feabior of f, (/) and derive
a difference equation satisfied by (/). In Lemma 2, we derive an explicit solution for this diffecen
equation. Based on this solution, in Lemma 3, we presentficieunt condition such that the conditions
limg_ .o 2 — 1 and P{%} — 0 are satisfied simultaneously. Finally, the theorem is pidwe deriving
a lower-bound on the achievable sum-rate, based on thehtficekevel given in (27).

Lemma 1 Defining Dy = D — v/ Kng(ng — 1), wheren, = 3(log K)?, for D, < [ < D, we have
fo(l) ~ %= [1 —o(1/K)], and forl < Dy, f,(l) satisfies the following difference equation:
L= L=1) = nf 01 -pE@ [1+00/VE)|, (30)

%It should be noted that this schedulingligg-term fair, i.e., all the users are equally served over a long periodnoé.t However, with
our definition of fairness (which can be callsbort-termfairness), this scheduling is away from the maximum faisneg a factor oflog K.
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wherep = e ©, n £ %, and F,(.) denotes the CDF of.
Proof - Similar to (8), we have
f=1)=f,() (1 = PHvmm =1k € Sl =1}), (31)
where vy, = ming{vx|k € S}. Having the fact that
pEP{keS=e°, (32)

which is resulted from the exponential distribution fgr,|> (as a result of the Complex Gaussian
distribution for ), and the independence between the users’ channels,awflihat|S| is a Binomial

random variable with paramete(#, p). As a result, we have
K
P{vnin =Lk €Sl =1} = Y PHvi =1,k € 8,[S| = |y, =1}
n=1

K
= Z PH{|S| =n,k €S |vp = 1}PHvmm =l =1, |S| =n,k € S}

n=1

K
@ NTPHIS| = n,k € SYPHumin = l| v = L|S| = n,k € S}

n=1
K
K-1
-2 (n _ 1)p"<1 — ) Ptk = 1 v = L|S| = n, k € S}
n=1
K
K-1
—= nl_ K—n
S (5 ) Jra—nes
Pr{v; > 1,i € S,i# kv =1,|S| = n.k € S}, (33)

where(a) comes from the fact that the evend = n andk € S are independent of the event(t) = .
In fact, the event,(t) = [ is a function of{h,(j)}£ |, 7 < ¢, while the event$S(t)| = n andk € S(t)
are functions of{ h,.(¢t)}5_,, and because of the independent block fading assumptierindependent of
{h.(j)}E,, 7 < t, and consequently independent:qft) = 1.

To evaluate the right hand side of the above equation, we teeédd the following probability:

Py, > l,ieS,i#k|lv,=1,|S|=n,keS}, (34)
which is, by symmetry, equal to

P{vy > 1, vpy > l|v, =1}, (35)
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noting thatv,(t) and k. (t) are independent random variables. An upper-bound on tlisaility can be

given as bellow:

P{vy > 1, vy >1l|lv, =1} = Py >y, =1} x
n—1
Hpr{l/i>l‘l/1>l,"',l/i,1>l,l/n:l} (36)
=2
(a) n—1
< [PHy; > v, =1}]
®» [ Gu(0) ] !
= |\—F| (37)
|:1 - fu(l)
where(a) follows from (24), in which we have shown that{@y > l| vy > 1, ,v;_1 > 1} < PH{y; > 1},
and by following the same approach we can sho\wpPr [|vy > 1,--- v, > Lv, =1} < P{y; >

l|v, = 1}, and (b) results from the fact that the only dependency betweeand v, is that they are

distinct, and hencev; > [| v, = [) is equivalent to(v; > I| v; # [), with the probability of -~ G (l , Where
G,()21—-FE,().
In order to lower-bound Ry; > l|vy > 1,--- ,v;1 > l,v, =}, we need to derive an upper-bound on
f,(1). Since f, (1) is an increasing function df (from (31)), it follows that

fol) < (D), VL (38)

However, unlike the previous caseg,(D) # % This results from the fact that using the proposed
algorithm in the general case, it is probable that no useengesl. Defining the even® (¢) 2 |1, 2i(t)
as the event of serving at least one user in framee have

P2 (1)} = PH[S(H)] >0}
K
= 1-[]PdIm|* <o}
k=1
— 1-(1-e9)". (39)
Noting thatlog K — 2loglogK <O <logK — 1.5loglog K, we havelef)2 o6 o (el ang
hence, (1 — e*@) < e~ (e K)* “Moreover, Pf.2 (t)} in terms of f,(D) can be written as
P{2 ()} = ZPr{uk(tJrl) = D}
k=1

where the first line comes from the distinction gfs and the second line follows from the symmetry

between the users and dropping the time index. Combininy 488 (40) yields,

W)= L 1 fo (e

| (41)
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which is less than}?. Combining (38) with the above equation yields
1
< = .
) < 50 W (42)
Similar to (23) and (24), we can write

Z(al,“',aifl) fl/l,"',l/i_1,l/n(a17 T, @1, l)

Pri{v; >1llvy > 1, i > Ly, =1} = l;;{kziizm P vy e
) y Vi— y Un =
Pr{VZ' > l‘ V1 =0Q1, ", Vi1 = Qi—1,Vp = l}

Z(al,---,ai_l) fl/1,---,l/i_1,yn(a17 T, @1, l)

I<ap<D

TP L s =1
Pr{l/i > l| V; ¢ {&1, cee L Qi1 l}}
Z(al,---,ai,ﬂ f1/1,---,1/i,1,un(@17 c Q1 l)

_ l<ap<D %

Pr{l/l > l, , Vi1 > l,l/n :l}

Privi > 1} — S o (ar)

L= 300 Furlar) = £, (D)

Z(al,---,ai_l) f1/1,---,1/i,1,1/n(@17 ce A1, l)
I<ap<D %
P{vy > 1, vy > Lv, =1}

(Pr{yZ > 1} — nyz g )

(a)

> Gy (43)

where(a) follows from the fact thatf,, (ax) § , Vay, (equation (42)). From the above equation and (36),

Pr{vy > 1, -+ ,v,—1 > l|v, = [} can be lower-bounded as
n—2 Z
Py > 1, vy > vy =1} > 11 (G -%). (44)

Using the above equation, and defining2 3(log K)? and Dy 2 D — v/ Kny(no — 1), a lower-bound on
P{vy > 1, ,v,1 > l|v, =1} is given as,

P{uvy > 1, vp g > v, =1} > g(n,l), (45)
where
12 <Gl,(l) . %’) | < Dy andn < ng

0 Otherwise.

g(n,1) = (46)

As we will see later, the form in (46) is more convenient torgasut our subsequent derivations.
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From (33), (35), (36), and (37), an upper-bound oRiRr, = [,k € S|y, = [} can be obtained as

follows:
(i:jf)ﬁwl—ﬂﬂKn(ig?%%ﬂ)n—l
<§:§)ﬂh%1_pﬁFMJ(T§§%ﬂ)nl

S () () e

pGy(l) K-1
1= 7,0 “‘p)

(a) 2 K1
< U(pGy(l)<1+E> —l—l—p)

n(1-pEM)* (1 - K(fp—%gu)(l))) _

0GR (14 )

2pGu ()

n(l—pF,1)" e e

n(1—pF,0)" 1+ 0(®)), (47)

]~

Pr{l/min:l,k' €S|Vk:l} <

Il
—

n

I
-

I
—

n

K

Il
=3
|
R

I
=

—~

b)

2

—
)
~

I

Wi eren: —. (a) comes rom the facts t y v S = equatlon , an or Su |C|enty Small,
heren = 2. (a) from the facts thatl, £, (/) < & (equation (42)), and for sufficiently small

— < 142z, (b) results fromF,(I) < 1, and(c) follows from the fact that sincég K — 2loglog K <

O <log K — 1.5loglog K, we havel®sf)® ), — =6 o (sl \yhich implies that ~ o(1).
Moreover, from (33), (35), and (45), a lower-bound oA B, = [, k € S|y, = 1}, for I < Dy, is given

as follows:

K -1
P{vimin =1,k € Sl =1} = E:( )fﬂ—mK”mmU
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By repeated application of (31) and using (47) to upper-boB{ v, = I, k € S|y, = [}, we obtain
D

fo(D) = f,(Do) < > nf,() (1 =pF,(1)" 1+ 0(p)]
=Dy
@ (D —Dy+1) D— Do\
< 1-— 1
< e PP [1+0(p)]
D—-D 1 D—Dg
< AP Dol E2) 1 o), (49)
where (a) comes from the fact thaf, (/) < + and as a resulf,(I) > 1 — £=L, which implies that
F,(l) > 1 — 2= for | > D,. Having the facts thab — D, ~ 9v/K (log K)* andlog K — 2loglog K <
O < log K — 1.5loglog K, which results inl2s52 ), < (k)" anqy, — & ~ p, the right hand side
of the above equation can be upper-bounded as
9 10gK 6 _(lo 1.5
Substituting in (49) and using (41), noting that’*z%)™* ~ o(1/K), we obtain
1
JDo) = — [1 4 0(1/K)] . (51)
Since f,(1) is an increasing function df it follows from the above equation that
1
full) = = [1+0(1/K)], VI, Dy <1< D. (52)
The above equation incurs that for: Dy, G, (1) 2 2520 = il As a result [ (1 — #(l)) in

(48) can be lower-bounded as

H(l - Kc;iya)) : H (1 ) @"L(”f - ”)

7

_ (ng—=1)(ng—2)
— e 2vKng(ng—1)

1

1+ 0(1/\@), (53)

where (a) follows from the fact that. < ng, and(b) results from the fact that as< ny, m <

. . . i T _ . a
1, which implies thatl — TRy < € VEno(no—-1) . Moreover, similar to (47), we can writ¢@ =

S (B Npr(1 = p)KrG, ()7 as

L n=ng
B K-1

> n|(1—-pFE0)"!

N N eSS (“, )ra- e
(

< n|(1-pF,0))" " -Q )] ) (54)
p)
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where (a) results from the Gaussian approximation for a Binomialriigtion with parametergn, p),
los K1* it follows thatne > 3(K — 1)p. Substituting in

whennp — co. Noting ny = 3[log K> andp < ~*-
~ e~**/2 for large enoughe, the right hand side

the above equation, and having the fact t&dt)

of the above equation can be lower-bounded as
RH (54) > 1 |(1—pF, (1) — 205 ). (55)
Having the facts thatl — pF, (1)) " ~ e (K-DpRu() > ~(K-1p RH (55) can be lower-bounded as

RH (85) > n(1—pF, ()" [1—e 10

—

a

~ n(1-pF,0)" 1+ 0(1/K)], (56)

=

where(a) follows from the fact that ap > % we havee= K=Y ~ O(1/K). Combining (48), (53),
(54), (55), and (56), we have

PHtmin =Lk € Sl =1} 2= n(1-pF,(1)" " [1+0 (1/VE)], (57)

for I < D,. Combining (47) and (57), noting that~ o(1/vK), yields

Pr{vmin = Lk € Sl =1} = n(1-pE0)" " [1+0 (1VE)], (58)
for [ < Dy. Substituting in (31), we have
f0) = 1= 1) Z0f, () (1= pE@) [1+0 (1YVE)], 1< Dy, (59)
Moreover, forD, < | < D, from (52), we havef,(I) = + [1+ o(1/K)], which completes the proof of
Lemma 1.
[
Lemma 2 The solution to the difference equation (30), in the asytiptase of K — oo, is
f(1) ~ &= T I < Dy, (60)

1+ e(K—l)pega(l—Do)
Y 1
for somey =1n [1 + 0 <_\/R):| .

Proof - Rewriting (30), we have

Il

fol) = £t =1) = ) (1= pEAD)™ [1 +0 (1/VE)]
e )

nf (e EEO [ o(Kp?)] 140 (1/VE)|

—~
S
N

I

I

—~
=
=

I

nf, (D)~ K=DpE) [1 i) (1/@)] | < Dy, (61)
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where (a) comes from the fact thatl 4 z)" ~ e*"['*O@) for z ~ o(1), and (b) results from the fact that
p < kXL and as a resultip? ~ o <1/\/F).
Now, consider the following differential equation:

2’ (u) = pa(u)e” E=DPXW 4 < Dy, (62)

with the boundary conditions:(—co) = X (—oc0) = 0, andX (D) = 1—L2720, in whichu is a continuous
variable, andX (u) = [* x(t)dt, andy = [1 +0 <\/%)} . Writing the Taylor series for:(u — 1) about
u, we have

0 n+1 (n)
(1) = (= 1) = /() + Y T ©
n=2
For the second derivative of (62), we have
2"(u) = pa!(w)e  EDPXW _ (K — 1)pa(u)?e K -DpX@)
= <10.1./(u)e—(K—l)PX(u) _ (K _ 1)px'(u)x(u). (64)

From the above equation, noting that with the given boundanyditions for the differential equation
in (62), we havee=(K—1rX(w) < 1 (which follows from the facts that’(u) > 0 and z(u) > 0, which
incurs X (u) > 0), andz(u) < + (which follows from solving (62) with the boundary conditicl (D) =

1—D2=Poy it is easy to see that” (u)| < ¢|z’(u)|. Similarly, we can show that:™ (u)] < 2"~ 1"|2’ (u)].
[1ogK

Substituting in (63), noting thap ~ n ~ p <
' (u)[1+ O(¢)]
pr(u)e” TP 1+ 0 (p)]

na(u)e”E-DpX [1+O<1/\/7>] u < Dy, (65)

, yields

I

x(u) —x(u—1)

—
S
=

12

—~
=
=

124

where(a) comes from (62) andb) follows from the facts thap = 7 [1 +0 <#>} andy ~ O(1/VK).
We also have

u

X(w) 2 3 [X(0) - X(v— 1)

vy o ]
DN 21+ 0e)], (66)

where (a) results from the fact thak' (—oo) = 0, (b) follows from writing the Tailor series foX (v — 1)
aboutv, and(c) comes from the the fact that'(v)| < ez (v), Yo (62), and alsdz™ (v)| < 271" |2/ (v)],
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demonstrated earlier. Defining(u) = >_" z(v) and using the above equation and (65), we have

V=—00

na(u)e” K-DpX [1 +0 <1/\/E>]
na(u)e” E-DpZ@I+0() [1 40 <1 /\/g)}

nr(w)e” K20 [1 4 O(Kp?)] [14—0(1/\/?)}
na(u)e”E-DpZu [1+O<1/\/_>} (67)

Il

x(u) —x(u—1)

I

—
S
=

Il

—~
=
=

I

logK] and as a result,

where (a) results from the fact thap ~ p, and(b) follows from the fact thap <
Kp? ~o <1/\/F> (similar to (b) in (61)). The above equation incurs that the solutlon of €8 satisfies
(61). More precisely, for any value df | < Dy, there exists a such thaty = 7 [1 +0 (#)] and
f.(1) ~ z(l), wheref, () is the solution of (61) and(l) is the solution of (62) at. = [. This suggests us
to solve the differential equation (62), instead of theat#ce equation (61), assuming the same boundary
conditions. The boundary conditions aré—oco) = f,(—o0) = 0 and X (D) = F, (D) = 1 — 2222 The
second condition comes from the fact thiatl) =~ +, for I > Dj.

By taking the integral from both sides of (62), we obtain

2(u) = _ﬁe(Kl)pX(u) +e. (68)

Noting that X (—c0) = z(—00) = 0, ¢ = 255, Substitutinge~K—1rX() py L1 from (62), we come

up with the following differential equation:

—1, (69)

which can be solved as follows:

7' () (K;l)pf(u) _ .
z(u) 1 (K;l)px(u)
= In z(u) = pu+b, (70)

1-— —(Kfl)px(u)
[
whereb is the constant of the integration, to be determined by therdboundary condition. Solving the
above equationg(u) can be written as
Ae?"
(u) = AK—Dp o0 (71)

1+ 5 P epu

where A = ¢. Using (68) and (71), we have

X(u) = rll)p log (1 + Me“’u) . (72)
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3.5

25+

()

= = = Threshold=3, simulation
Threshold=3, Computation
05

Threshold=2, Computation | - —
= & = Threshold=2, simulation

— — ¢ - | 1 1 1 1 L
0 50 100 \{50 200 250 300 350 400 450 500
|

Fig. 2. f.(1) for the proposed method witB = 2,3; D = 500, K = 300, comparison between simulation and computation.

Applying the conditionX (D,) = 1 — 2222 yields

¥ K—1)p(1—2=Lo —wD
A = 7[(3( )( K)_l]ewo
(K —1)p

Y (E-1p—eDo 73
K —1)p" : (73)

where the second line comes from the facts {féat— 1)p > 1 (sincep > M) andp(D — Dy) <« 1
(sincep < 257 and D — D, ~ 9VK (log K)*). SubstitutingA in (71), we have

e(K l)pelp(u DO)

Q

(K— )»
z(u) 1 + e(E=Dpep(u—Do) °

(74)
One can easily check tha{D,) ~ -, which is consistent with (51). Combining (74) with the faloat
f,(1) ~ x(l), Lemma 2 easily follows.
|

Although the derived analytical pmf in (74) is valid in theyagptotic regime ofK' — oo, figure 2 shows
that the analytical expression in (74) indeed works for énilumber of users. In this figurd,(l) is
depicted for the proposed scheduling algorithm with theghold values of 2 and 3, assumiAg= 300
and D = 500. As can be observed, the curves derived by simulation alfiotlstv the curves derived by
computation off, () from (74).

Figure 3 shows the plots of, (/) for different values of threshol®. The plots off,(!) for the Round-
Robing scheduling and the maximum-throughput scheduliagbso given for comparison. It is observed
that as the value of threshold decreasgg/) merges to that of Round-Robin scheduling, while by

increasing the threshold value, it merges to that of the mari-throughput scheduling.

H log K ~ .
Lemma 3 SettingD, = g (K—-1)+ gT for somey such thaty = 7 [1 +0 <\/L§)} yields P #} —
0, while satisfyinglim_.. 2 = 1.
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4

x 10~

3.5

(1)

Maximum-Throughput Scheduling
Round-Robin Scheduling
Proposed Scheduling, Theta=4

- Proposed Scheduling, Theta=5
Phd - | = = = Proposed Scheduling, Theta=6

- i 1Y Y i i

J
0 1000 2000 3000 4000 5000

Fig. 3. Comparison of, () for the proposed method witB = 4, 5, 6, the Round-Robin schedulin@®(= 0), and the maximum throughput
scheduling;D = 5000, K = 3000.

Proof - We have seen earlier that the dropping probability for easér is equal taF,(0). Using the
union bound for the probability, it follows that having,(0) ~ o(+) guarantees R4} — 0. Using (72)
and (73), we have

F,(0)~ X(0) = log (1 + K= Dp=eDoy (75)

S
(K—1)p

for somep = [1 +0 (\/LR)] From the above equation, the conditiBn(0) ~ o () can be equivalently

written as

eE=1p=¢Do o(p).

It can be easily verified that havinB, = Z(K — 1) + 25, results ine"~re~#P0 — & which satisfies

the above condition (sinc% ~ o(p)). Furthermore, sinc® < log K — 1.5loglog K, it follows that

o~ p > %’ which incurs thaf%f( < 1<§;K' Combining this with the facts thdimy .. £ = 1

and D = D, + 9v/K [log K]* (which follows from the definition ofD,), we havelimy_.., 2 = 1. This

completes the proof of Lemma 3.
[
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The achievable sum-rate of the proposed algorithm can berlbaunded as follows:

R = RyP{Z}+RycPr{2°}
> RoPH{Z}
¢ log(1 + PO)PH{.2°}
§)bg1+P@[Lﬂo<a®M“jH. (76)

whereR 4, andR 5« denote the achievable sum-rate conditionedZsnand 2°¢, respectively, and2
(complement of2") is defined as the event thg| = 0. In the above equatioria) follows from the fact
that conditioned onZ”, the channel gain of the selected user is greater haand hence, the achievable
sum-rate is lower-bounded Hyg(1 + PO).

From the above equation and noting the facts that, ~ log(1 + Plog K + O(loglog K)) [25], and
O > log K — 2loglog K, we have

loglog K
Csum -R S O —F—
~ (bﬂ<)

= lim Coun —R = 0. (77)

K—o0
Combining the above equation with Lemma 3 completes thefgsb®heorem 4.
[

Remark 1-Since D = K is the smallest delay constraint in order not to have any girgpin the
network, the above theorem simply implies that the propasteduling algorithm is capable of achieving
the maximum throughput and minimum network delay, simdtarsly.

Remark 2-Assume that the information data delivered to the users aréngackets which are stored
in the transmitter buffer and each packet is mapped to a cbdete, consisting of. channel uses, and
transmitted over the channel (Fig. 4). Assume that the Ratkesal Rate (PAR) for user to be fixed
and equal tao, (measured as the number of arrived packets per unit time,one frame duration) and
the amount of information in each packet of that user to#&g.. In order to have arbitrary small outage
probability, R, £ = 1,--- , K, must be inside the capacity region of the underlying braatichannel,

which implies thatR;, < C,uw, Vk. Moreover, in order to have arbitrarily small dropping pabfity in the

network, the vector consisting of the PAR of the users, dahdyr = (11, -- ,7x), must be inside the
stability regionof the network [26]. More specifically, far, = r, = - - - = rx = r, this condition reduces
tor < % 4. From this discussion, it follows that the maximunand R, kK = 1,--- , K, in order not to

have any dropping or outage in the network scalej;aand Csum, respectively. The above theorem states
that the proposed scheduling is capable of achieving thermem values ofr and Ry, k = 1,--- | K,
simultaneously. In other words, the proposed algorithnethiea the boundary of theapacity regionand

“Note that this is based on the assumption that at each franheooe user is served.
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Transmitter Buffer

B - B B | yser

Coded frame for user k

n Channel uses
Total Rate = nRy,

V777222
.
)

Packet for user 1 Packet [T' user k

Packet for|user k

Dy = % ‘ . ® [Each data packet is transmitted by a coded frame
® The time unit is equal to the duration of each coded frame
® The total information in each packet of user k is nRy,
B .- 8 O fuser K ® The Packet Arrival Rate (PAR) for user k is equal to 7,
® The latency between any consequative packet of user & is Dy,

Fig. 4. A Schematic figure for the transmission of data packeer the broadcast channel

stability regionof the network, simultaneously. The following corollarjustrates this fact from a different

perspective:

Corollary 1 Consider a Broadcast system illustrated in Fig. 4, wheretthasmitter has the buffer size
of one packet for each user and the Packet Arrival Rate (PAR}He kth user isr, and the amount
of information in each packet for useér is nR;. Let us define the “average throughput” of usér

(normalized per channel use) as
% é TkRk. (78)

Then, for any scheduling scheme, any rate veRot (R4, --- , R ) supported by the channel (decoding
error approaches zero), and for any PAR veatot (ry, - -, rg), the necessary condition for P#} — 0

is having

log log K
T 2 min F, S 808 R (79)

~J K )
which is achievable by the proposed algorithm.

Proof - Necessary ConditionConsider a long interval of tim#'. Defining.4,(¢) as the indicator variable

taking one when the uséris served during the framg and taking zero otherwise, we have

K
> AR < Comy VELSEST (80)
k=1

The above equation comes from the fact that the réf&s- - - , R ) must be supported by the channel.

Taking the summation with respect tpwe can write
T K
D) ARy < Coum T (81)
t=1 k=1

SThis definition is motivated by the fact that there is a timéageof % between two consecutive packets of useand as a result, the
average amount of information per channel use deliveredsén fuis equal tor,Ry.
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Since P{#} — 0, the arrival rate of the packets must be less than or equdidio service rate, over a
long period of time, almost surely. In other woragtT:1 Ai(t) 2 Trg, VE,1 < k < K. Substituting in

the above equation yields

Y log(Plog K), (82)

where(a) comes from [25]. Combining (78) and (82), yields

i T
K
loglog K n log P

K K
loglog K

K
Sufficient Condition Consider the proposed algorithm, with the condition of Tieewo 4, i.e.,log K —

y min

IN

AN

2

(83)

2loglog K < © < log K —1.5loglog K. It is realized from Lemma 3 that selecting = % for all users,
where D is obtained as follows:
log K

D=L(k-1)+ 22 4 9VKlog KT,
v ¢

guarantees R#} — 0. Furthermore, the channel can support the rate
Ry = log[l + P(log K — 2loglog K)] ,

with probability P{.2"} (which is almost equal ta from (39)), for all users. Hence,

log [1 + P(log K — 2loglog K)]

ymin
D

log log K
%. (84)
[

In the above corollary, theninimum average throughputienoted by.7,.;,, is defined as the measure
of performance. The average throughput itself can be inkggd as the average amount of information
(per channel use) delivered to a user over a long period d@.tifhis measure is suitable for the real-time
applications, where the packets have certain amount ofrivdton and certain arrival rates. Note that in
the above corollary, we have assumed that the users haveiffiee §ize of one, which is a very restrictive
assumption in wireless networks. For the realistic scesarihis constraint is more relaxed. However,
since we have shown the optimality of our proposed schegudbnthis assumption, it easily follows that

this optimality holds for more relaxed assumptions, as well
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Fig. 5. Minimum average throughputs. the threshold valugs = 3000, P = 0dB.

ComputingZ,,;, for the two special cases of the proposed algorithm, i.eximam-throughput schedul-
ing (ZXT) and Round-Robin schedulingZ[%%), yields,

min

MT loglog K

T KlogK'’
1
ThRE = (85)

Therefore, the proposed algorithm outperforms these ctiveal scheduling algorithms by a factor of
log K andloglog K, respectively.

The above corollary states that the proposed schedulingnsehmaximizes theninimum average
throughputof the system while making the network dropping probabuéititrarily small in the asymptotic
regime of K — oo, for all the threshold values in the intenidg K — 2 loglog K, log K — 1.51og log K.
However, for finite number of users, it is not possible to dismeously maximize theninimum average
throughputand make the network dropping probability zero. In fact,dagiven constraint on the dropping
probability, theminimum average throughputill be a function of the threshold value, which is desired to
be maximized. Figure 5 shows the plots of théimum average throughpwersus the threshold value,
for different assumptions on the link and network droppimglqabilities. The number of users is set to
3000 and the SNR valué’ is set to0 dB. As can be observed, for each plot, there is an optimum tbtdsh
value for which theminimum average throughpug maximized. Moreover, by making the constraint on
the dropping probability more restrictive, the optimumetsinold value decreases.
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V. EXTENSION TO THEMIMO-BC

So far, we have assumed that the transmitter and the reseawverall equipped with single antennas.
In this section, we assume that the transmitter hasntennas, while the receivers have single antennas.
The main difference between this case and the previous sag®t for SISO-BC, serving one user at
each time (TDMA) is optimal in terms of achieving the maximtimoughput of the system [24], while
in the MIMO-BC, this is not the case. Therefore, we must apayne modifications to our proposed

algorithm, to make it suitable for MIMO-BC.

A. System Model and Proposed Algorithm

The channel model for thith user is assumed to be
Yk = hpx + ng, (86)

where x € CM*1 is the transmitted signal with the power constraifx’’x} < P, h, € C>M ~
CN(0,1) is the channel vector;, ~ CN(0,1) is AWGN, andy; is the received signal by theth user.
Algorithm 2:
1) Set the threshold'.
2) The BS selectd/ orthogonal unit vectors, denoted I®, - - - , ®,,, randomly, and sends it to all
users.

3) Among each of the following sets:
Sp={kl SINR™ >7T} m=1--- M, (87)

the BS serves the user with the minimuempiry countdownlIn the above equation, SII\@R’) =
iz hy 2|2

[EDDE AT Y

beam, by theith user.

is the received Signal to Interference plus Noise Ratio 85It themth transmitted

As can be observed, this algorithm is a variant of RandomiBEarming scheme proposed in [25], where

the expiry countdowns considered in the scheduling.

B. Asymptotic Analysis

In this section, we analyze the performance of the propokgatithm in the asymptotic case df —
co. Similar to the SISO case, it is interesting to investigdte possibility of achieving the maximum

throughput and fairness of the system, simultaneouslychvis performed in the following theorem:

Theorem 5 Using Algorithm 2, for the values of satisfying

P P
o log K — (M + 1)loglog K] < T < u log K — (M +0.5) loglog K], (88)
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we havelimg .o Coum — R = 0, andlimg . 2 =1, while satisfying P{#} — 0.

Proof - Using the same approach as in the proof of Theorem 4, we firstedg, (v) in terms of K,
D, and Y. Consider the following sets:

S 2 {k| ke A SINR > T, m=1, 0 (89)

where A,, £ {k| [h,®H> > |h, @2, Vj # m}. For simplicity of analysis, we assume that the step
3 of Algorithm 2 works based o), instead ofS,,. It is obvious thatS), C S,,. However, since
SM @22 = ||hy)? < log K + O(loglog K), with probability one [25], it follows that having
SINR™ > T, where T ~ 3£ 1log K and 8 > 1, yields k € A,,. This implies that for the values 6f
satisfying (88), we have) = S,,, with probability one. Rewriting (8), we have

Lol =1) = f,(1) (1 = P{ Zk|vx = 1}) . (90)
Pr{ Z;|v, = [} can be written as follows:

P Zilve =1} & PHZ keS| =1

M
> P2k € S =1, Fo P Ty, = 1}
m=1

M
= Y P{Zi k€S n=1,7,}P{F,}

m=1

M
© 1 Z
m=1

D P2k eS up =1, ), (91)

whereS’ & J¥_, S, and.%,, £ {k € A,}. In the above equatior(a) results from the fact that
Zr C (k€ §'), in order words, the necessary condition for uséo be served is being in any of the sets
S/

m!

the fact that conditioned o#,,, i.e.k € A,,, k € S" incursk € S/, and also the fact that P¢#,,} = %

s=1,---,M. (b) results from the independence of the events= | and.%,, °. (c) follows from

(d) follows from the symmetry between the terms Bf,, k € S/ |vx =1, Fn}, m=1,--- M.
We have

K K
P2 k€S g =1, T}t 2 YD P2 k€S, IS, =n |Anl =5 | v =1,.F0}

n=1 s=n

K K
OSSP A = 5|2} Pr{k € 8L, S = 1 | [ A = 5, Zn}

n=1 s=n
x PH{Zi|lvi=11S,|=n,|An =s,keS,} (92)
®In fact, %, (t) is a function of{hy (¢)}+—,, while the event(t) = [ is a function of{hx(5)}+—,, j < t. Since the channel model is

assumed to be independent block fading, the independeneg 6fl and .%,,, easily follows.
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In the above equatior{a) follows from the fact thatS/, C A,,, and hences > n. (b) results from the
facts that the events4,,| = s andk € S/, are independent af, = [ (As explained in the footnote), and
k € S, is a subset of7,,.
PH{|A,.| = s|-#,.} can be computed as
Pr{|A,.| =s,ke A,}
Pr{k € A,.}
K—1\/1\ (M-1\""

2 ) (57) 9
where (a) follows from the facts that Rk € A,,} = 7, and |A,,| is a Binomial random variable

Pr{|A,| = s|Z.}

—~
S
=

with parameterg K, 1;). In order to compute Pk € S,,|S,,| = n||A,| = s, %, }, we first compute
q = Pr{kecS |%,} as follows:

 PkeS, ke Ay}
¢ = Pr{k e A,}
@ PHkeS,, ke A,}
Pr{k € A,.}
= MpPH{k € Aylk € S}, (94)

]MT

wherep 2 Pr{k € S,,} = W [25]. In the above equatioriq) results from the fact thatk € S/,) =
(k€ Sin)(k € Ay,). Note that as Rik € A, |k € S} = 1, it follows thatq = Mp. Having ¢ from the

above equation, we can write

1
Substituting Pf|A,| = s|.%,} and Pk € S,,,|S,,| = n|[An| = s, Z,} from (94) and (95), and
noting that conditioned ofS,,| = n, 2} is independent ofA4,,| = s, RH (92) can be written as

won = 330 () () (-0

n=1 s=n

Pr{%k\l/k = l, ‘S;n| =n, ke 87/71}

M-l 'S K—=1 _q ! / /
= (M) X () () =t = ke s
f: K—n 1—q\°
s—n M—-1

s=n

M—1 5 K—1 q " / /
= M< M ) Z(n—l) (ﬁ) PH{Zxlve =1,|S.,| =n,k €S} x

@__q) ! e

q K—n , ,
(_ (1=-5)"  PHZi = LIS)| = n.k € ).}, (96)

—1
Pr{k € 8. |S0| = n||Aw| = 5, Fn} = (Z - )qn(l Y, (95)
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As can be observed, the above equation is very similar to, @8) by a similar argument we can show
that

Py, >1,i=1,--- ni#klyy=10|S,|=nkeS })<P{Z, | w=101|S,|=nkeS,}
<Py, >lLi=1,--- ni#£k|v=1|S,|=nkeS,}. (97)

In the above equation, the first inequality results from thet that having; > [, ¢ # k, implies that
the kth user has the minimurexpiry countdowramongs,,, and hence, will be selected. The second
inequality follows from the fact that théth user must have the minimum expiry countdowndJ) in
order to be selected, i.e., no userd¥), should have a smallexpiry countdownNoting the symmetry
of the problem with respect to the users and the fact thatvwkater; > [ (or v; > [) are independent of
|S!.| =n andk € S, the upper bound can be written as{Pr>[,--- ,v,_1 > l|v, =}, which is by

the chain rule equal to

Pl{v, > 1, - jvp 2y, =1 = Py >y, =1} X
n—1
[[Pilviztl =t v > L =1}, (98)
=2

Consider the following probability:

Pv, = Llv; =1}, i # . (99)
For [, =I5, the above probability can be upper-bounded as

Py, = lLlv; =L} < f.(l). (100)

The above inequality comes from the fact tha{iPr= l,,v; = I;} < PP{y; = I;} = f2(l), which is
shown in Appendix A. A brief explanation of this would be, theare M (M — 1) possibilities for the
usersi andj to be selected in the same frame (since thereMrpossibilities for assigning each of them
to any of the beams and they can not be assigned to the samég, veiite in the term Pr{v; = [,} all
the M/? possibilities are encountered.

Also, for l; # I3, we have

fu(ll)
fV(ll) = r{yl l1|l/] l2} = 1_]0”([2) ( 0 )
To prove the above equation, first we note that the rgﬁ‘f@ii;l(llll’;j:b} is the same for all;, # I,. In other

words, the condition; = [, scales the probabilities of the outcomes= [, by the same value fal # [,
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in the conditional sample space. To establish (101), letamtkzr = W,ll # l5. We have

Z Pr{Vi = U‘Vj = lg} + Pr{VZ' = ZQ‘VJ‘ = lg} = 1.

uFly
=3 fowr+Pry;=bly, =L} = 1

u#la
o 1-— Pr{Vi = l2|Vj = lg}

-rE 1= 7, () (102)

Therefore,
Pr{l/i = ll‘l/j = lg} = f,,(ll)x

L) 1 =Py = by = b]}

Using (100) and the fact that fr, = l|v; = o} > 0, (101) easily follows.
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Using (100) and (101), the upper-bound in (98) can be furthmgrer-bounded as

fl/l Vi (ala tt >ai71‘yn = l)
Py, >l > 1, v, 1 > Ly, =1} = SR X
) ; s Vi s Un (alvgi_l) Pr{Vl Z l’ RN 7 Z Z‘Vn — l}
I<a1<D,- l<a;—1<D
Py, > 1|y =a1, - ,vim1 = ai1, v = 1}

Z fVl,"',Vi—l(alv"' 7ai—1‘yn :l)

P > 1 s > om =1}

(a1, ,ai—1
I<a1<D,-,l<a;-1<D

[Py, > 1,% | 2} + Py, > 1,9 | 2}]
_ Z flll,"',l/i_l (ala e 7ai—1‘yn - l) %
Pr{l/l Z l, e Vi Z l‘l/n = l}

(a1,,ai—1)
I<a1<D,-,l<a;—1<D

[Pr{@ | 2YPr{y, > 1| ¥, 2) +

P | 2}P{y; > 1|2, 2}

Z fVl,---,Viﬂ (ah e >ai71‘7/n = l)

<
= W P > 1 na > om =1}
I<ar <D I<a; 1 <D
[Pr{@ | 2} + Pr{w; > 1| #C, Q}]
(a) f,j Ui (al, tee ai,l\un = l)
< 1, yVi—1 9
= ( Z | P > 1 s > om =1}
I<ar <D I<a; 1 <D
i—1
[Z Pr{VZ' = ak} + Pr{VZ' = l} + Pr{Vi Z [ ‘ @C, Q}]
k=1
(_Q Z Jorve (@, ai|vn =1) y
(i 1) Pr{l/l Zl, s Vi1 Zl‘l/n:l}
I<ar <D I1<a; 1 <D
i—1 i—1
Priv; > 1} — _ folag) — .
[Z fy(ak) —i—fl,(l) + { } HZ;C_J ( k:) f ( )]
k=1 1- Zk;:l fl/(ak) - fu(l)
(© M
< G- (104)
where 2 (' {v = i} U{vi = v} and 2 2 {vy =ay,--- , i1 = a;_1,v, = 1}. In the above

equation, (a) results from (100), which incurs that P¥ |2} < 1" Pr{y; = ap} + Py, = 1} =

! fulag) + £,(1), (b) results from (101), noting that conditioned &1°, 2, the pointsay, - - -, a; 1,1
are excluded from the sample space). results from: (i) upper-bounding, (ax), k =1,---,7— 1, and
f,(1) by 2, which is due to the facts that,(I) < f,(D) and f,(D) = P{2;} < %, where P{.2}} is

the probability that usek is being selected in a frame and (ii) upper-boundint,'Pr{’leZ}i,12;71 Z)( ;)(l)f”(l)
T 2g=1 v k)" v

"In fact, P25} < % follows from the union bound on the probability. More presis denoting%k(m) as the event that uséris assigned
to beamm, using the same argument as in the SISO case, one can shcm{ﬂﬁ?é;{fm)} < +,and hence, RiZ;.} = PH{UY_, %k<m)} <M
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by Py, > 1} =G, (1 —1).
Using the above equation and (98), the upper bound in (97)eampper-bounded as

n—1 .
Mz
Pr{ut >0, vy > Uy, =1} < 1_1 (G,,a 1)+ 7) : (105)
Moreover, to lower-bound the lower bound in (97), we first évbound Pfv; > ljvy > 1+ 11 >

l,v, =1} as follows:

ful,---,ui, A1, 5 Qi—1|Vn = [
Pr{ve > vy > oo ovia > v =1} 2 Z Pr{v; > ll( -1- Vi1 >1l‘\1/ = l)} .
a5 <p
Pr{l/l' > | V1 =Q1, " Vi1 = Qi—1,Vp = l}
— Z fl/l,"',l/i—1(a17"' 7ai—1"/n:l> %
(@1 mst) Pr{l/l >l,"' ,Vic1 >l‘l/n:l}
I<a1 <D 1<ar 1 <D
[Pr{@ | 2YPHy, > 1| ¥, 2} +
P | 2YPHw, > 1| #C, Q}]
> Z ful,---,ui,l(ab T 70171‘% = l) y
(a1, i) Pr{Vl > l, , Vi1 >Z‘Vn:l}
l<ar<D o lcar 1<D
PH{Z Y| 2 Pr{y; > 1| %Y, 2}
(2) Z fyl,---,l/i_l(ala"' 7ai—1‘yn - l) %
Pr{l/l > l, s Vi > l‘l/n = l}

(a1, ,ai—1)
I<a1<D,-,l<a;—1<D

PH{# | 2}Pr{y; > [}
B Z oo iy (@r, - ai_q|vn, =1) y
e Pr{vy > 1, vy > v, =1}
I<a1<D, - l<a;—1<D
(1-PH{w | 2}) Py, > 1}
(b) Z oo (@1, ai_q|v, =1)

P>y > g =1}

(a1, ,ai—1)
I<a1<D,- l<a;—1<D

<1 — i folar) — fl,(l)) Py, > 1}

(©) Mi
> B
where(a) results from (101) which implies that r, > 1| ¢, 2} > Pr{v; > [}, (b) follows from (100),

which incurs that RiZ|2} < S0 f.(ax) + f.,(1). Finally, (c) results from the fact thaf, (v) < &,

and writing P{v; > [} asG,(1).
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Using the above equation, the lower-bound in (97) can be dwended as
n—1 .
M1
Pr{l/l > l’ crr yUp_1 > l|l/n = l} Z r[ (Gy(l) - ?) . (107)

Similar to the approach used in the SISO case, by defining 3(log K)? and Dy = D —v/Kngy(ng—1),
first we show that forD, <[ < D, we havef,(l) ~ % For this purpose, by repeated application of (90),
and using (91), (92), (96), (97), and (105), we have

D
fo(D) = fu(Do) < Z Wi, (108)
l=Dop+1
where W, £ MY X (Kol (1— )55 (Go(1— 1) + 2. In Appendix B, it has been

shown that; is upper-bounded asf 16X o~(ea K)* | which implies that

2
f,(D)— f,(Dy) < (D— DO)M(IO'%TK)e(logK)m
Me*(loglf)“’

VK
~ 0 (e’(logK)l'5> ) (209)

~ 9M

Moreover, f, (D) can be written as B2} 8, which denotes the probability that useiis selected in a
frame. This probability can be expressed a§{)_, E&”k(m)}, where%k(m) denotes the event that th¢h
user is assigned to theth beam. Defining2 (™ 2 |JX  2,(™, which is the probability that thenth
beam is assigned to some user, we have

P{2 (™} = 1-Pr{|S |=0}
1—(1-Pr{kes D

@ < q )K
= 1-(1--+
M
~ ] e KM
®) 1
> 11— ¢ (ogk)? (110)
. ey . o 1.5
where (a) follows from the definition ofg in (94), and(b) results from the fact thaf;: ~ p > %,
Having the fact that the eventﬁ”k(m), k = 1,.---, K are mutually exclusive, i.e., beams can not be
assigned to multiple users simultaneously, we have
K
Pr{%(m)} _ Z Pr{%k(m)} > 11— e—(IOgK)l.s
k=1
m ]- 1.
= P2} = - (1 — (g k) ) (111)

8More precisely,f,, ) (D) = Pr{Zx(t — 1)}, where the the time index are removed due to the steady statktion.
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where the second line results from the symmetry between seesuMoreover, since the sef§, m =
1,---, M are disjoint, it follows that the even%(m), m = 1,---, M are mutually exclusive. Therefore,

using the above equation,

M
M
_ (m) _ —(log K)1-®
P2} = m§1: P2} > (1 e (og ) . (112)
Combining the above equation with (109), it follows that
1.5
~ = —(log K) <<
£.0) ij [1 +o <Ke )] . Dy<1<D. (113)

In other words, in the intervdlD,, D], f, () is almost constant.
In the regionl < D,, by defining the following functions:

n—1 iM
1 GI/ l - 1 K ) S
gu(n, l) _ Hz:l ( ( ) + K ) n o ’ (114)
1 n > ng
and
n—1 iM
i GV l - K ) S
gl(n7 l) _ Hz:l ( ( ) K ) n L ’ (115)
0 n > ng
whereny = 3(log K)?, using the equations (97), (105), and (107), it follows that
a(n,0) < P2l = 11| = n.k € S} < guln, 1), (116)

where P§ 2 |ve = 1,|S)| = n,k € S/} is the probability we need to find in order to computé R, |y, =
[} in (96). From the above equation,{P%;|v; = [} can be upper-bounded as follows:

P Zil =1} < Mi(ff_‘f) (L) (1= 1) gutmn

no+1
/K —1 qg\" g\ K-n M
— AN (1 - —) G (-1 TT (1
";( n )(M) ( M ( )H(+KGV(Z—1))+
K-1
AN (1 —) 117
no+1
wheren = 17‘7%. In the above equatior(a) results from taking the termg% outside the summation

and make a change of variable— 1 to n. Sincef,(I) ~ % for Dy <1 < D, it follows that G, (D) ~
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M- Do) M"O%*U, which implies that@, (I — 1) > % for Dy < 1 < D. Therefore, the term

T, (1 + KGL(LI)) can be written as

(i) = T )

n .

]

Y o1yo0 (i) , (118)

where (a) results from the fact that as< n,, m < 1, and(b) follows from n < ng. Having the

above equation, RH (117) can be written as

RH (117) =~ "i (K; 1)

< nfg (Kn_ 1) (%)n (1- %)K_HGV(Z )y {1 +0 (\/%)} +
(T G )
<, 1-Lra- | [1 10 (LKN 430 \/(z;(fﬂg(i)&&)

INS

rrle_(K_l)%[Fu(l)_fu(l)] |:]_ -+ O (

5=

—~
)
~

Il

1
—(KE-1) g F.() [ - —(K-1)4%
ne M 1+0 ( +e M
VK

q |
pe—(K-DEE) {1 L0 <\/—E)} | (119)

In the above equatioria) follows from approximating the tale of the Binomial randoriable with the

—
S
=

12

GaussiarQ)(.) function. In deriving(b), we first approximatgl — L F, (I — 1)]K*1 by e~ (K=Dap (=1 —
e~ =D F (=101 which follows fromg < 1. Using the fact that ag- [log K — (M + 1) loglog K] <

T < Lllog K — (M +0.5)loglog K], we haved < &K \which implies thatn, > 3(K — 1)-%, and

also the fact that for: > 1, Q(z) < e **/2, Q Z%) is upper-bounded as 21 (c)
T M\ M

results from the facts that: (i) ag (1) < %, we haveeE Vit =~ 1 + O(q) 2 1+ O <\/LF) and
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i) since F,(I) < 1, e"EDHA0 > o~(K=D3; and as a resulg 2KV < e=(K-Dap e 2(K-Da B (),
Finally, (d) follows from the fact thae~ -V ~ o <\/_) which is due to the fact that > M 1eX°
Similar to (117) and (119), a lower-bound for{P%} |, = [} can be given as follows:

P Zilw =1} > MZ(R_J( ) (1= ) g
=3 () G 0= T T (0 )

1
=~ pe”EDFEO 1140 <—)} : 120
e o (— (120)
Comparing (119) and (120), it follows that

PH{ 2i|vy, = 1} = pe” TV O {1 +0 (\/%)] : (121)

Substituting in (91), we reach the following difference atjon in the region < Dy:

1

(1= 1) ~nf, (e K-V Fv<l>{1+o<—)} 122
fol) = ful = 1) ~nfy(De” Nice (122)

Comparing the above equation with (30), it is realized that above difference equation is the same as
the difference equation obtained in the SISO case, with ifierence in replacings’ by £, andp by q.
Therefore, all the results stated in Lemmas 2-4 are validttier MIMO case, by substitutingd by %
which completes the proof of Theorem 5.

[

In fact, algorithm 2 basically separates the MIMO-BC intb “virtual” SISO-BCs by assigning the
users to the beam for which the maximum SINR is attained. &fbeg, the analysis of, (/) is similar
to the case of SISO-BC, discussed in the previous sectiomeker, there are two main differences: i)
In SISO-BC, all the users are always served by the same tigesmvhile in MIMO-BC the users are
switched independently between the virtual transmittésn frame to frame. This causes, - - - , vk
(The packet expiry countdown of the users) not to be necésslstinct. However, we have shown in the
proof of Theorem 5 that this does not affect the analysisThig¢ sizes of the virtual SISO-BCgA(,) are
not fixed. In fact,|A,,|, m = 1,--- , M, are Binomial random variables with parametéfs, ;). Using
Gaussian approximation for the Binomial distribution, wananrite

K K £
Prd = (1—¢) < [An| < —(1+6) s ~1—2Q M (123)
M M Knq_ L
M( ]W)
Settinge 2 /2-D1e K and using the approximatiad(z) ~ ﬁe*é for > 1, the above equation

can be written as

Pr{% (1 . \/2(M _[?logK> < || < % <1+ \/2(M _[?logK>} ~1—0 <%) .

(124)
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log K
K

above discussions, MIMO-BC can be considered\agarallel SISO-BCs, each serving approximately

Therefore, with probability one, the size of the sgts scales a% 1-0 . Following the

% users. The network dropping evenB) can be considered as the union of the dropping events for the
SISO sub-channels, denoted 83},,, m = 1,--- , M. From the union bound for the probability, we have

M
Pr{#} < > PH{#%.}
_ WP}, (125)

where the second line comes from the symmetry between thesewe,. Following the steps of proof

for Theorem 4, and settind251" < p < LKL ang p — L&+ 8 4+ 9VKlog K%, guarantees

]\[T
Pr{#,,} — 0, and hence, Rt} — 0. Note thatap ~ 4w [25], the COI’]dItIOﬂM <p< [1ogzq

incurs that

P P
% log K — (M + 1)loglog K] < T < u [log K — (M + 0.5) loglog K] . (126)

Noting thatCsy, ~ M log(1 + ﬁ log K 4+ O(loglog K)) [25], it follows thatlimg . Cqum — R = 0.
]
Theorem 5 implies that the proposed scheduling algorithoaable of achieving the maximum sum-
rate throughput, while guaranteeitign .o, 22xie
that P{%} — 0. Noting that[4] is the minimum value ofD in MIMO-BC to have P{#} — 0,

(using Round-Robin scheduling, assuming thatusers are served during each frame), it follows that the

= 1, where D,,;, IS the minimum value ofD such

proposed scheme achieves the maximum sum-rate and maxiaiumess in the network, simultaneously.
Defining theminimum average throughpas in (79), it is straightforward to show that for the propbse

algorithm,

M loglog K

K

which is asymptotically the maximum achievable value in NONBC.

Tonins ~ (127)

V. CONCLUSION

In this paper, a single-antenna broadcast channel witle |6k number of users is considered. It has
been assumed that all users have hard delay constfaini/e have proposed a scheduling algorithm
for maximizing the throughput of the system, while satisfyithe delay constraint for all users. By
characterizing the network dropping probability, in teraid<, D, and the threshold value in the algorithm,
it has been shown that by using the proposed algorithm, ibssiple to achieve the maximum throughput
and maximum fairness in the network, simultaneously, in degmptotic case ok — oc. Moreover,
we have introduced a performance measure in the networedcalinimum Average Throughput”, and

proved that the proposed algorithm maximizes the maximuimimum average throughput a broadcast
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channel. Finally, the proposed algorithm is generalized¥tiMO-BC), and shown to be optimum in the
sense of achieving the maximum throughput and maximumdasgrin the network, simultaneously, in
the asymptotic case dk — oc.

APPENDIX A; PROOF OF(100)

From the definition ofy;(t), we have

Pr{vi(t) = I, v;(t) = I} Pr{’/i(l/)) = D,v;(¢) =D,

Pr{%(#} - 1), Zi(v - 1),
=
= P{Zi(v - 1}P{Z;(v - 1)| Zi(v - 1)}

Pr {ﬁ ()
=1

pr{m 20| 2w - 1), 2506 - 1. () 2
1=y

Pr{Zi(y—1)}

| 70

1=

Pr { 270
1=y

Pr{Zi(y — 1| Zi(¢ — 1)} x

%(¢ - 1)7 %(,¢ - 1)7 ﬂ %C(l)}
I=¢

Prvi(t) = L}Pr{Z;(v — 1) [ Zi(¢ — 1)} x

Pr{ﬁ 200 | 2w —1), Zi(w - 1), ﬂ %%)} ., (128)
=y I=1)

wherey) = t— D+1;. In the above equatiorig) comes from the fact that the evem$y) = D and 2;(y—
1) are equivalent. (b) results from the fact that conditioned o#f; (v — 1), ﬂfzw Z2:°(1) is independent
of Z;(¢ — 1) *°. Finally, (c) follows from writing Pr{.2;(¢ — 1)}Pr{ﬂfzw %C(l)) Zi(Y — 1)} as
Pr{v;(t) = I, }. For computings £ Pr {ﬂfzw 220 ) Zi(W = 1), Z;(¢ —1),Ni_y, ,%C(l)}, we have

Pr {ﬁ 22
1=

®In fact, if we haveZ;(«) — 1), i.e., the usei is served in theyy) — 1)th frame, in the next frame its expiry countdown will be set/2o

(129)

Z;w—1). %C(l)} =op+o*(1-p),
1=

In other words,Z; (¢ — 1) results inv; () = D. By a similar argument one can conclude that)) = D results inZ;(¢¥ — 1). Therefore,

this two events are equivalent.
10/n fact, since in each frama/ users are served with probability one, conditioned®i(y) — 1), there areM — 1 other users which are

served in the same frame. Since the rest of users are all the && theith user (because of the homogeneity of the network), it faslo
that the conditionZ’; () — 1) does not change the conditional probability{:mf:w A0 ‘ Zi(p — 1)}.
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whereo* 2 Pr{(_, 2,°()| Z;(v = 1),Ni_,_, ()} and

t
p= Pr{%(w -1 [ 250 -1, %C(l)} :
1=
From the above equation, can be written as

Prini, 20| 2500 = 10).Niy 2500} = (1 - o’
ol
Pr{Niey 20| 250 =1} ~ (1= o’

INE

=

o PN 200] 20 -1} - 0 wer{ AL, 20| 2w -1, 2,)
1

—
)
~

t

~ Pr { ﬂ c%/jc(l)

1=y
where Z; denotes the event that usgris excluded from the network, and hence is never seryey.
comes from the fact that the eveﬂf:w Z2.°(1) reduces Pl{ﬂl;:w E&”jc(l) ’ (1 — 1)}. (b) results from
the fact thato™ > Pr{ﬂfzw 5&@0(1)] 25 — 1),5&3}, which is due to the fact that excluding théh
user from the network, increases the chance of uger be served during each frame and as a result,
reduces the conditional probability I{ﬂfﬂb 2E(1) ’ 2 —1), ﬂf:¢_1 ,%C(l)}. (c) follows from the
fact that asK — oo, the effect of excluding the usgrfrom the network on the conditional probability

Pr{ﬂfzw 2 ’ Zi(h — 1)} is negligible. In other words,
Pr{ﬁ%jc(l) «%’W—l),ff}} %Pr{h%jc(l) «%’W—l)}'
=1 =4

Substitutinge from the above equation in the right hand side of (128) yields

Pvi(t) =i, v;(t) = h} < PHu(t) = L}Pr{Z;( — 1) | Zi(v — 1)} X
t
Pr{ﬂ 2L | 2 - 1)}
=1
(a Pr{Z;(v - 1) | Zi(y — 1)}
r{yl(t) ll} r{l/](t) ll} Pr{%(w — 1)}

b M—-1
~ Pr{l/z(t) = ll}Pr{Vj(t> = ll} M
where (a) follows from the fact that P{.2;(¢ — 1)} Pr{ﬂ§:¢ 2:E(1) ‘ Zi(Y — 1)} = Pruy(t) = 11},
and (b) results from the fact that Pr2;(¢v— 1)} ~ % (which we have shown earlier in the paper in (112))
and also P{2;(v — 1) | Zi(¢ — 1)} ~ 2=1. The latter is due to the fact that conditioned @f(y) — 1),
the network can be considered a$/& — 1)-user broadcast channel, in whi¢h/ — 1) beams are to be
assigned ta M — 1) users. Hence, the probability of assigning a beam to a ralydeaiected user is
M- ~ M1 From (131), (100) easily follows.

N2

—
=

(131)
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APPENDIX B

For upper-bounding the right hand side of (108), we use thetfeat
M(D—-1+1)

K )
which follows from the fact tha, (1) < 2, vi, and consequentlyy, (I — 1) = >0, f,(v) < Y21
Having the above equation, RH (108) can be upper-boundedllasvs:

RH (108) < Mi (ff_‘ll) (L) (1- %)“ﬁ (w ) %)

G,(l-1)< (132)

() G ) ()

o (N6 - )T (M) T (o _m)
s () G 0 () T

X (T G ) (M) e

—
Sy
=

q
<= n{l-+;
M) [1—(D—1+1)n?
g\K
(_2) M(l(}?K) 67(10gK)15’ (133)

wheren =

) follows from the fact thatD — [+ 1 > 1 (sincel < D). (b)

=5 and canceling oub! by (n + 1)!, which leaves the term + 1

nl(K
in the numerator(c) results from the fact thaf(Ki”), =(K-1)(K—-2)---(K —n) < K", which

(K—1)!

leads to havmgm 1. (d) follows from upper-bounding the suf""'(n +1)[(D — 1 + 1)n]"

follows from writing (“ ') as

by an infinite sum_>° ,(n+ 1) [(D — [ + 1)5]" which equals tom, noting that sinceD — [ <

D — Dy < 9VEK (log K)* andn ~ ¢ ~ Mp < 15K 11 e have(D — I + 1)1 < 1. Finally, (¢) results

M(log K)?

from upper-bounding) ~ Mp by , which is explained in the footnote, and also approximating

YAs it is shown in the paper, sinc&: (log K — (M + 1)loglog K) < YT < £ (log K — (M +0.5)loglog K), we havep =
e~ MY/P (logK)2
<
(1+ NIT)JVI 1
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(1—4)" by e=3 ~ e %7 which is upper-bounded by~ (°=%)"*  which is due to the fact that as

M

T < ﬁ (logK — (M + 05) log log K), p= e*MT/;il > (log K)1-5 .
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