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On the Delay-Throughput Tradeoff in

Multi-User Wireless Networks

Jamshid Abouei, Alireza Bayesteh, Masoud Ebrahimi and Amir K. Khandani

Abstract

An asymptotic analysis for the delay-throughput of a single-hop wireless network

with K links, operating in bandwidth W , is considered. The links are assumed to be

partitioned into M clusters, each operating in a subchannel with bandwidth W

M
. The

analysis relies basically on the distributed on-off power allocation strategy proposed in [1]

and [2]. Our analysis consists of two parts. The first part deals with the throughput of

the network in terms of M and under the shadowing effect with probability α. Assuming

the Rayleigh fading channel model, it is proved that the maximum achievable throughput

of the network for every value of 1 ≤ M ≤ K and 0 ≤ α ≤ 1 is obtained at M = 1.

In the second part, we present the delay characteristics of the underlying network. It is

proved that for M ∼ o(K) and 0 < α ≤ 1, where α is fixed, the delay threshold that

makes the dropping probability of the link tend to zero, while achieving the maximum

throughput, scales as ω( n

log2 n
), where n = K

M
. We also present the similar arguments

for the minimum delays in each cluster and the whole network. An asymptotic analysis

shows that the delay improves without any significant impact on the the throughput.

Index Terms

Sum-rate maximization, delay-throughput tradeoff, dropping probability, shadow-fading.
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I. Introduction

The main challenge in multi-user wireless networks originates from sharing a

common transmission bandwidth by users such that the network throughput is max-

imized. Effective resource allocation schemes such as spectral sharing and power

allocation have long been regarded as efficient tools to mitigate the interference

and improve the throughput of the network with limited bandwidth [3]–[10]. In [9],

the authors provide a comprehensive survey in the area of resource allocation, in

particular in the context of channel assignments for various wireless networks. Etkin

and Tse [4] develop power and spectrum allocation strategies in multiple wireless

systems. Under strong interference, they show that frequency division multiplexing

(FDM) is the optimal scheme in the sense of the throughput maximization. Effective

resource allocation schemes should also satisfy quality of service (QoS) requirements

such as low transmission delay in buffer-limited networks and fairness for the users.

Particularly, for backlogged users with real-time services (e.g., interactive games,

live sport videos, etc), too much delay results in dropping some packets. Therefore,

the main challenge in wireless networks with real-time services is to utilize efficient

resource allocation schemes such that the delay is minimized while achieving a high

throughput.

The throughput maximization of cellular and multihop wireless networks has

been extensively studied in [11]–[15]. In these works, no delay analysis is performed.

However, it is shown that the high throughput is achieved at the cost of a high amount

of delay. This problem has motivated the researchers to study the relation between

the delay characteristics and the throughput. Particularly, in most recent literature

[16]–[23], the tradeoffs between delay and throughput have been investigated as a

key measure of the network performance. Sharif and Hassibi [21] analyze the delay

characteristics and the throughput in a broadcast channel. They propose an algorithm

to reduce the delay without too much degradation in the throughput. The first studies

on achieving a high throughput and low delay in ad-hoc wireless networks are framed
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in [16] and [17]. This line of work is further expanded in [18]–[20] by using different

mobility models. El Gamal et al. [18] analyze the optimal delay-throughput scaling

for some wireless network topologies. In the static random network with n nodes,

they prove that the optimal tradeoff between throughput Tn and delay Dn is given

by Dn = Θ(nTn). They also show that the same result is achieved in random mobile

networks, when Tn = O(1/
√
n logn). Neely and Modiano [20] consider the delay-

throughput tradeoff only for mobile ad-hoc networks and under the assumption of

the redundant packets transmission through multiple paths.

In this paper, we address the delay-throughput analysis of a single-hop wireless

network, in which K links operating in bandwidth W are partitioned into M clusters.

Each cluster operates in a subchannel with bandwidth W
M

. The analysis relies basically

on the distributed on-off power allocation strategy proposed in [1] and [2], in which the

transmission policy for link i is to compare its own channel gain with the prespecified

threshold level τn. In [1] and [2], the authors study the performance of the network

only for M = 1 and under a Rayleigh-fading channel model. Also in these works, no

delay analysis is considered. It is well-known, however, that the wireless channel can

be modeled in a more realistic manner. Here, we consider the shadowing effect that

are caused by obstacles. This paper consists of two parts. The main contribution of

the first part is to determine the maximum achievable throughput of the network in

terms of different values of M and the probability of the shadowing effect denoted

by α. Our strategy differs from the model studied in [15] and [24]; primarily we

use a distributed on-off power allocation scheme for a single-hop wireless network

with M disjoint subchannels, while [15] and [24] present an ad-hoc network model

with random connections for M = 1 and using relay nodes. Under a Rayleigh fading

channel condition, an asymptotic analysis is carried out to show that the maximum

throughput of the network for every value of 1 ≤M ≤ K and 0 ≤ α ≤ 1 is achieved

at M = 1.

To study the delay-throughput tradeoff, we further provide a definition of the

transmission delay. We show that the delay depends on the number of clusters, M ,
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and is critical for M ∼ o(K). Also, we present the delay characteristics from the link,

cluster and the whole network points of view. Our method is different from the delay

analysis with the ON/OFF Bernoulli scheme in [25]; primarily we utilize a distributed

approach with local information, while [25] considers a central controller to study the

channel conditions of all the links in the system. We use a homogeneous network with

quasi-static block fading without path loss. This differs from the geometric models

proposed in [18]–[20] that are based on the distance between the source and the

destination.

For M ∼ o(K), it is shown that increasing the number of links gives rise to

increasing the network throughput, at the cost of increasing the delay. This results

in higher packet droppings in real-time applications with limited buffer sizes. We

derive the minimum delays in order to make the dropping probabilities of the link,

cluster and the whole network tend to zero. Also, we address the question: How can

we achieve a better delay performance without sacrificing too much the throughput?

It is demonstrated that the tradeoff between the delay and the network throughput

is strongly influenced by the threshold level τn that depends on the channel model.

We show that by relaxing the value of τn, the delay is improved without changing

the order of the throughput. We further present a new definition of the throughput

for any buffer size. Preliminary results of this paper appear in [26] and [27].

The rest of the paper is organized as follows. In Section II, the network model

and objectives are described. We analyze the throughput of the network in terms of

M and α in Section III. The delay characteristics in terms of the dropping probability

are analyzed in Section IV. In Section V, we establish the delay-throughput tradeoff

for the network. Finally, in Section VI, an overview of the results and conclusions is

presented, and directions for ongoing and future research are mentioned.

Knuth’s order notation [28]: For any functions f(n) and g(n):

• f(n) = O(g(n)) means that limn→∞ |f(n)/g(n)| <∞.

• f(n) = o(g(n)) means that limn→∞ |f(n)/g(n)| = 0.

• f(n) = ω(g(n)) means that limn→∞ |f(n)/g(n)| = ∞.
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• f(n) = Ω(g(n)) means that limn→∞ |f(n)/g(n)| > 0.

• f(n) = Θ(g(n)) means that limn→∞ |f(n)/g(n)| = c, where 0 < c <∞.

• f(n) ∼ g(n) means that limn→∞ f(n)/g(n) = 1.

Also throughout the paper, we use Nn for representing the set {1, 2, ..., n} and

log(.) as the natural logarithm function.

II. Network Model and Objectives

A. Network Model

In this work, we consider a single-hop wireless network consisting of K pairs of

nodes1, operating in bandwidth W . The links are assumed to be partitioned into M

clusters such that the number of links in each cluster is the same. Also, the links are

randomly divided among the clusters. The bandwidth W is divided into M disjoint

subchannels, each with bandwidth W
M

. Letting Cj denote cluster j, the links in Cj

operate in subchannel j. In this work, we assume that M is a variable parameter in

the range of 1 to K. We also assume the number of links in each cluster, n = K
M

, is a

known information for the users. All the nodes in the network are assumed to have

a single antenna.

The channel model considered in this paper includes Rayleigh fading along with

the shadowing effect. The channel gain between transmitter k and receiver i in Cj

is represented by the random variable L(j)
ki . Under a Rayleigh fading channel model,

L(j)
ki = h

(j)
ii , for k = i. Also for k 6= i, the cross-channel gains are defined based on the

shadowing model as follows2

L(j)
ki =







βh
(j)
ki , with probability α

0, with probability 1 − α.
(1)

1The term “pair” is used to describe the transmitter and the related receiver, and “user” only for the

transmitter.
2It is worth to mention that the superscript j means that the channel gains belong to cluster j, and it

does not mean that the fading channel model is frequency-selective.



6

where 0 ≤ α ≤ 1 is a fixed parameter, and β is a random variable with E[β] , $ ≤ 1

and E[β2] = κ. This definition is a general model of a shadow fading environment. The

channel is supposed to be quasi-static block fading, where the channel strength h
(j)
ki ,

|g(j)
ki |2 remains constant while transmitting one block and changes independently from

block to block. Under a Rayleigh fading channel, h
(j)
ki ’s are exponentially distributed

with unit mean. We also assume that the channel is flat fading. In other words,

all the subchannels are assumed to be constant over the whole bandwidth W . We

also assume that each receiver knows only its direct channel gain. This channel-state

information (CSI) is fed back to the corresponding transmitter without any error.

In the network model of interest, we assume that all the links utilize the on-off

power allocation strategy. Based on this scheme, the average transmit power of user i

is assumed to be pi ∈ {0, 1}. The power of additive white Gaussian noise (AWGN) at

each receiver is assumed to be N0W
M

. Since the maximum transmit power is one, the

quantity N0W
M

is equivalent to 1
SNR

, where SNR is the signal-to-noise ratio. Assuming

Gaussian signal transmission, the interference term in each cluster will be Gaussian

with power

I
(j)
i =

n
∑

k 6=i
k=1

L(j)
ki pk, i, k ∈ Cj.

Due to the orthogonality of the allocated subchannels, no interference is imposed

from links in Ck on links in Cj, k 6= j. Under these assumptions, the achievable data

rate of each link is expressed as

R
(j)
i =

W

M
log

(

1 +
h

(j)
ii pi

I
(j)
i + N0W

M

)

, i ∈ Nn. (2)

Definition 1 (Network Throughput): In order to analyze the performance of the

network, we define the network throughput as the average sum-rate. Letting R̄sum

denote the average sum-rate of the network, we have

R̄sum =

M
∑

j=1

R̄(j)
sum, (3)
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where R̄
(j)
sum is the average sum-rate of the links in cluster Cj and is given by

R̄(j)
sum = E

[

n
∑

i=1

R
(j)
i

]

=
n
∑

i=1

E

[

W

M
log

(

1 +
h

(j)
ii pi

I
(j)
i + N0W

M

)]

,

where the expectation is computed with respect to h
(j)
ii and I

(j)
i .

B. On-Off Power Allocation Strategy

We consider a homogeneous network in the sense that all the links have the same

configurations and use the same protocols. Thus, the transmission strategy for all the

users are agreed in advance. In this paper, we assume that all the links perform the

on-off power allocation strategy proposed in [1] and [2]. Based on this scheme, all

users in each cluster perform the following steps during each block:

1- Based on the direct channel gain, the transmission policy is

pi =







1, if h
(j)
ii > τn

0, Otherwise,

where τn is a prespecified threshold level that is a function of n and also depends on

the channel model.

2- After adjusting the powers, each active user in Cj transmits a pilot signal with

full power. All the receivers in Cj measure the interference and compute the rate using

(2). Then, each receiver feedbacks the rate to its corresponding transmitter.

3- The active user transmits data with the computed rate and with full power.

According to the above scheme, we define the probability of the link activation

in each cluster as qn , Pr
{

h
(j)
ii > τn

}

which is a function of n.

C. Delay Concepts

We assume that the time axis is divided into slots with the duration of one block.

The slot duration is supposed to be equal for all the links. In this work, we assume
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each link has the buffer size equal to one packet. We also assume that the packets

arrive uniformly with the constant rate
1

λ
packets per block length. This parameter

is assumed to be the same for all the links.

Definition 2 (Delay): We define the random variable Di for link i as the latency

between two successive transmissions, expressed as the number of blocks (see Fig. 1).

We consider the packet dropping probability as a performance criterion in the

delay sensitive applications. Dropping occurs when the latency between two successive

transmissions in each link exceeds a prespecified level. In fact, since the buffer size is

one and the packets are arrived with a constant rate
1

λ
, it follows that the dropping

occurs when Di > λ. In order to analyze the dropping probability of the packets, we

define the delay threshold levels for the link, cluster and the whole network. In this

case, we have the following definition.

Definition 3 (Packet Dropping Probability): Let Bi represents the event that the

dropping occurs in link i. Then, the packet dropping probability in the link is defined

as

P (Bi) , Pr(Di > λ), ∀i ∈ Nn. (4)

In a similar manner, we define

P (BC) , Pr

(

n
⋃

i=1

(Di > λ)

)

, (5)

P (BN ) , Pr

(

K
⋃

i=1

(Di > λ)

)

, (6)

where P (BC) and P (BN ) are the packet dropping probabilities in the cluster and

the network, respectively.

III. Throughput Maximization

To study the delay-throughput tradeoff of the proposed model, it is essential to

analyze the throughput of the network in terms of M and K, where 1 ≤M ≤ K. In

this section, we prove that the maximum throughput of the network for every value
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Fig. 1. Queueing model for the on-off power allocation strategy.

of M and 0 ≤ α ≤ 1 is obtained at M = 1. Following the same approach as in [1]

and [2] with M = 1 and α = 1, we first prove the following lemmas.

Lemma 1: Assuming 0 < α ≤ 1 is fixed, with probability one (w. p. 1), we have

I
(j)
i ∼ α̂(n− 1)qn,

as n→ ∞, where α̂ = α$.

Proof: See Appendix I.

Lemma 2: Let M ∼ o(K) and 0 < α ≤ 1 is a fixed parameter. Then for large

values of K, the optimum threshold level that maximizes the average sum-rate of

each cluster is obtained as

τ ∗n = log α̂n− 2 log log α̂n+O(1). (7)

Proof: See Appendix II.

Lemma 3: Considering the setting of Lemma 2, the probability of the link acti-

vation in each cluster is given by

qn = δ
log2 α̂n

α̂n
, (8)

where δ is a constant.

Proof: Under a Rayleigh fading channel condition, we have

qn = Pr
{

h
(j)
ii > τn

}

= e−τn .
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Using (7), it is concluded

qn =
log2 α̂n

α̂n
× e−O(1).

Setting δ = e−O(1), we obtain (8).

Corollary 1: In the proposed model, if mj is the number of active links in cluster

Cj, then E[mj] = nqn ∼ Θ
(

log2 n
)

.

Lemma 4: Assuming M ∼ o(K) and 0 < α ≤ 1 is fixed, the maximum achiev-

able throughput of the network is given by

R̄sum ≈ W

α̂
(− log qn +O(1)) (9)

=
W

α̂

(

log
K

M
+ o

(

log
K

M

)

+O(1)

)

. (10)

Proof: See Appendix III.

Lemma 4 states that the throughput of the network for M ∼ o(K) depends

on the value of 0 < α̂ ≤ 1 and scales as W
α̂

log K
M

. We use this result to analyze the

packet dropping probability in the next sections.

Corollary 2: For values of M such that logM ∼ o(logK), the throughput of

the network scales as W
α̂

logK.

Theorem 1: Assuming 0 ≤ α ≤ 1 is fixed, the maximum achievable throughput

of the network with M clusters is obtained at M = 1.

Proof: We prove the theorem in the following cases:

Case 1: M ∼ o(K) and 0 < α ≤ 1 is fixed:

From (9), the throughput of the network for M ∼ o(K) is obtained as

R̄sum ≈ W

α̂
(− log qn +O(1)) . (11)

Taking the first-order derivative of (11) with respect to M yields,

∂R̄sum

∂M
= −W

α̂

∂qn
∂M

1

qn
.

Noting that n = K
M

, the probability of the link activation is obtained in terms of M

by using (8), i.e.,

qn =
δM

α̂K
×
(

log
α̂K

M

)2

. (12)
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Since,
∂qn
∂M

=
δ

α̂K
log

α̂K

M
×
(

log
α̂K

M
− 2

)

> 0,

it is concluded that (11) is a monotically decreasing function of M . Thus, the max-

imum throughput of the network for M ∼ o(K) and 0 < α ≤ 1 is obtained at

M = 1.

Case 2: M ∼ Θ(K) and 0 < α ≤ 1 is fixed:

Recall mj denote the number of active links in cluster Cj and noting that for

M ∼ Θ(K), limK→∞
M
K

is constant, it is concluded that n and mj ∈ [1, n] do not

grow with K. To obtain the network throughput, we assume that among M clusters,

Γ clusters have mj = 1 and the rest have mj > 1. We first obtain an upper bound of

the throughput in each cluster when mj = 1, 1 ≤ j ≤M . Clearly, since only one user

in each cluster activates its transmitter, I
(j)
i = 0. Hence, the maximum achievable

throughput of cluster Cj is obtained as

R̄(j)
sum =

W

M
E

[

log

(

1 +
M

N0W
h(j)

max

)]

, (13)

where h
(j)
max = maxi=1,...,n h

(j)
ii is a random variable. Since log x is a concave function

of x, an upper bound of (13) is obtained through Jensen’s inequality, E [log x] ≤
log(E [x]), x > 0. Thus,

R̄(j)
sum ≤ W

M
log

(

1 +
M

N0W
E [Y ]

)

, (14)

where Y , h
(j)
max. Under a Rayleigh fading channel condition and noting that {h(j)

ii }
is a set of i.i.d. random variables over i ∈ Nn, we have

FY (y) = Pr{Y ≤ y}, y > 0

=

n
∏

i=1

Pr{h(j)
ii ≤ y}

=
(

1 − e−y
)n
,

where FY (.) is the cumulative distribution function (cdf) of Y . Hence,

E [Y ] =

∫ ∞

0

nye−y
(

1 − e−y
)n−1

dy.
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Since (1 − e−y)
n−1 ≤ 1, we arrive at the following inequality

E [Y ] ≤
∫ ∞

0

nye−ydy = n. (15)

Consequently, the upper bound of (14) can be simplified as

R̄(j)
sum ≤ W

M
log

(

1 +
K

N0W

)

. (16)

For mj > 1 and due to the shadowing effect with probability α, the average

sum-rate of cluster Cj can be written as

R̄(j)
sum =

mj
∑

i=1

W

M
E

[

log

(

1 +
h

(j)
ii

∑mj

k 6=i υk$h
(j)
ki + N0W

M

)]

, k ∈ Cj, (17)

where υk’s are Bernoulli random variables with parameter α. Thus,

R̄(j)
sum =

W

M

mj
∑

i=1

mj
∑

l=0

(

mj

l

)

αl(1 − α)mj−l
E

[

log

(

1 +
h

(j)
ii

Σl + N0W
M

)]

=
W

M

mj
∑

i=1

(1 − α)mj E

[

log

(

1 +
h

(j)
ii

N0W
M

)]

+

W

M

mj
∑

i=1

mj
∑

l=1

(

mj

l

)

αl(1 − α)mj−l
E

[

log

(

1 +
h

(j)
ii

Σl + N0W
M

)]

, (18)

where Σl is the sum of l i.i.d random variables with χ2(2) distribution. For mj > 1, Σl

is greater than the interference term caused by one interfering link. Thus, an upper

bound for the throughput of cluster j is given by

R̄(j)
sum ≤ W

M
mj(1 − α)mj E

[

log

(

1 +
Y

N0W
M

)]

+
W

M

mj
∑

i=1

mj
∑

l=1

(

mj

l

)

αl(1 − α)mj−l
E

[

log

(

1 +
Y

Z

)]

, (19)

where Y , h
(j)
max = maxi=1,...,n h

(j)
ii and Z , $h

(j)
ki , k 6= i. According to binomial

formula, we have
mj
∑

l=1

(

mj

l

)

αl(1 − α)mj−l = 1 − (1 − α)mj .
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Thus,

R̄(j)
sum ≤ W

M
mj(1 − α)mj E

[

log

(

1 +
Y

N0W
M

)]

+
W

M
mj (1 − (1 − α)mj ) E

[

log

(

1 +
Y

Z

)]

. (20)

Letting X =
Y

Z
, the cdf of X can be evaluated as

FX(x) = Pr{X ≤ x}, x > 0

= Pr{Y ≤ Zx}

=

∫ ∞

0

Pr{Y ≤ Zx|Z}fZ(z)dz

=

∫ ∞

0

(

1 − e−
z
$

x
)n
e−

z
$ dz

= $

∫ ∞

0

(

1 − e−tx
)n
e−tdt

(21)

Thus, the probability distribution function (pdf) of X can be written as

fX(x) =
dFX(x)

dx

= $

∫ ∞

0

nte−t(1+x)
(

1 − e−tx
)n−1

dt

≤ $

∫ ∞

0

nte−t(1+x)dt =
n$

(1 + x)2
. (22)

Using (13)-(16) and (22), the inequality (20) is simplified as

R̄(j)
sum ≤ W

M
mj(1 − α)mj log

(

1 +
K

N0W

)

+
W

M
mj(1 − (1 − α)mj )

∫ ∞

0

log (1 + x) fX(x)dx

≤ W

M
mj(1 − α)mj log

(

1 +
K

N0W

)

+
W

M
n$mj(1 − (1 − α)mj )

∫ ∞

0

log (1 + x)

(1 + x)2
dx.
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Since
∫ ∞

0

log (1 + x)

(1 + x)2
dx = 1,

we arrive at the following inequality

R̄(j)
sum ≤ W

M
mj(1 − α)mj log

(

1 +
K

N0W

)

+
W

M
n$mj(1 − (1 − α)mj ). (23)

It is worth mentioning that the second term in (23) does not grow with K. Let

assume that among M clusters, Γ clusters have mj = 1 and for the M − Γ of the

rest, the number of active links in each cluster is greater than one. Hence by using

(16) and (23), an upper bound for the network throughput is obtained as

R̄sum ≤ Γ
W

M
log

(

1 +
K

N0W

)

+ (M − Γ)
W

M
mj(1 − α)mj log

(

1 +
K

N0W

)

+ (M − Γ)
W

M
n$mj(1 − (1 − α)mj ). (24)

As mentioned earlier, for M ∼ Θ(K), n and mj ∈ [1, n] do not grow with K.

Consequently, the third term of (24) does not scale with K. Since 0 < α ≤ 1, it is

clear that
ΓW

M
log

(

1 +
K

N0W

)

≤ ΓW

Mα
log

(

1 +
K

N0W

)

.

Hence, in order to show that the maximum achievable throughput obtained in (24)

is less than that of M = 1 in (10), it is sufficient to prove

(M − Γ)
W

M
mj(1 − α)mj log

(

1 +
K

N0W

)

< (M − Γ)
W

Mα
log

(

1 +
K

N0W

)

,

or

mj(1 − α)mj <
1

α
.

Letting f(α) = αmj(1 − α)mj , we have

∂f(α)

∂α
= mj(1 − α)mj−1(1 − α− αmj).

Thus, the extremum points of f(α) are located at α = 1 and α = 1
mj+1

. It is

seen that

f(1) = 0 < 1,
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and

f(
1

mj + 1
) =

(

mj

mj + 1

)mj+1

< 1.

Since f(α) < 1, we can conclude that the maximum achievable network through-

put for M ∼ Θ(K) is less than that of M = 1.

Case 3: 1 ≤M ≤ K and α = 0:

According to the shadow fading model proposed in (1), it is seen that for α = 0

and with probability one, L(j)
ki = 0, k 6= i. This implies that no interference exist in

each cluster and all the user can transmit with full power. Thus for every value of

1 ≤ M ≤ K, the average sum-rate of cluster j for α = 0 is simplified as

R̄(j)
sum =

W

M

n
∑

i=1

E

[

log

(

1 +
h

(j)
ii

N0W
M

)]

. (25)

where the expectation is computed with respect to h
(j)
ii . Under a Rayleigh fading

channel model, we have

R̄(j)
sum =

W

M

n
∑

i=1

∫ ∞

0

e−x log(1 + Υx)dx,

where Υ , M
N0W

. Thus,

R̄(j)
sum =

W

M
n

∫ ∞

0

e−x log(1 + Υx)dx

=
W

M
ne

1
Υ

∫ ∞

1/Υ

e−x

x
dx

=
W

M
ne

1
Υ E1

(

1

Υ

)

, (26)

where E1(x) is obtained by the exponential-integral function defined as [29]

En(x) ,
∫ ∞

1

e−tx

tn
dt.

Hence, the network throughput is obtained as

R̄sum =

M
∑

j=1

R̄(j)
sum =

KW

M
e

1
Υ E1

(

1

Υ

)

=
KW

M
e

N0W

M

∫ ∞

1

e−t
N0W

M

t
dt. (27)
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Taking the first-order derivative of (27) with respect to M yields,

∂R̄sum

∂M
= −KW

M2
e

N0W

M

(

1 +
N0W

M

)

E1

(

N0W

M

)

+
KW

M2
.

Since for every value of N0W ,
∂R̄sum

∂M
is negative, it is concluded that the network

throughput is a monotically decreasing function of M . Consequently for α = 0, the

network throughput for every value of 1 ≤M ≤ K is achieved at M = 1.

Note that for M ∼ Θ(K), which includes M = K, we obtained an upper bound

for R̄sum. In the next corollary, we derive an exact explicit expression for the network

throughput when M = K.

Corollary 3: Assuming M = K, the average sum-rate of the network for every

value of 0 ≤ α ≤ 1 is obtained by

R̄sum ≈ W (logK − logN0W − γ), (28)

where γ is Euler’s constant.

Proof: See Appendix IV.

Corollary 4: For M = K, the network throughput is of order logK. Through

comparing (28) with (10), it is concluded that the throughput of the network with

M = K is less than or equal to that of M = 1.

So far, we presented an asymptotic analysis for the network throughput in terms

of M and α. In the following, we evaluate the throughput of the network versus the

number of clusters for finite values of K through simulation results. Fig. 2 illustrates

the maximum throughput of the network versus M for K = 20, K = 40, α = 0.1

and $ = 1. From the figure, we can see that the network throughput is a decreasing

function of M . In this case, the maximum value of R̄sum is achieved at M = 1.

Corollary 5: In the network with the on-off power allocation strategy, partition-

ing the bandwidth W into M disjoint subchannels has no gain in terms of enhancing

the network throughput.
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Fig. 2. Network throughput vs. M for K = 20, K = 40, α = 0.1 and $ = 1.

IV. Delay Analysis

In this section, we analyze the delay characteristics of the underlying network

based on the number of clusters, M . First, we obtain the packet dropping probabilities

for the link, cluster and the whole network, when M ∼ o(K), and under the on-off

power allocation strategy. Next, the delay characteristics of the network are obtained

for M ∼ Θ(K) with M 6= K. Under condition 1 − e−1/e ≤ α ≤ 1, where α is fixed,

we prove that the round robin (RR) policy in each cluster is the optimum scheme

from the throughput-delay point of view. We also investigate the throughput-delay of

the network for M = K. To compare the results, we further present throughput-delay

ratio as a performance metric for the proposed model.

A. Delay Characteristics for M ∼ o(K)

Under the on-off power allocation strategy, the latency Di is a Geometric random

variable with the probability mass function Pr{Di = d} = qn(1 − qn)d−1, where

d = 1, 2, ... . In the following, we derive the delay characteristics of the link, cluster

and the whole network based on the arrival rate.
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Lemma 5: For the proposed model, the packet dropping probabilities in the link,

cluster and the network are obtained as

P (Bi) = (1 − qn)1+λ, i ∈ Nn, (29)

P (BC) = 1 − (1 − P (Bi))
n, (30)

P (BN ) = 1 − (1 − P (Bi))
K, (31)

respectively.

Proof: Using (4) and by taking account of the Geometric distribution of Di, the

packet dropping probability in link i is obtained as

P (Bi) = 1 − Pr(Di ≤ λ)

= 1 −
λ
∑

y=0

qn(1 − qn)y. (32)

It should be noted that (32) is valid only for qn < 1. In the case of qn = 1, i.e.,

all the links transmit with full power, no delay exists in each link and consequently

P (Bi) = 0. Considering the following expression

L
∑

k=0

xk =
1 − xL+1

1 − x
, |x| < 1,

the dropping probability of link i is obtained as

P (Bi) = (1 − qn)1+λ, i = 1, ..., n. (33)

and this completes the proof of the first part of the lemma.

To derive P (BC), let EC denote the occurrence of no dropping event in the

cluster. Thus,

P (EC) = Pr{Bc
1 ∩ B

c
2 ∩ .... ∩ B

c
n}. (34)
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Noting that the events B
c
i and B

c
j are independent of each other for all i, j ∈ Nn,

we have

P (EC) =

n
∏

k=1

Pr{Bc
k}

=
n
∏

k=1

(1 − P (Bk))

= (1 − P (Bi))
n.

Hence, the packet dropping probability of each cluster is obtained as

P (BC) = 1 − (1 − P (Bi))
n. (35)

With a similar argument, the dropping probability of the packet in the whole

network is computed as

P (BN ) = 1 − (1 − P (Bi))
K. (36)

We are now ready to prove the main result of this section. In the next theorem,

we derive the parameters λ`, λC and λN as the delay threshold levels for the link,

cluster and the whole network, respectively, such that the corresponding dropping

probabilities tend to zero, while achieving the maximum throughput of the network.

Theorem 2: Let M ∼ o(K) and 0 < α ≤ 1 is fixed. Then, for the optimum qn

given in (8),

i) limK→∞ P (Bi) = 0, if λ` ∼ ω
(

n
log2 n

)

.

ii) limK→∞ P (BC) = 0, if λC ∼ α̂n
log α̂n

+ ω
(

n
log2 n

)

.

iii) limK→∞ P (BN ) = 0, if λN ∼ α̂n log K
log2 α̂n

+ ω
(

n
log2 n

)

.

Proof: i) From (29) and using the Taylor series expansion

log(1 − z) = −
∞
∑

k=1

zk

k
, |z| < 1,

we have

P (Bi) = e(1+λ`) log(1−qn)

= e−(1+λ`)
P∞

k=1 qk
n/k, (37)
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where qn < 1. Since for M ∼ o(K), the number of links in each cluster is large,

qn � 1. Thus, we can approximate (37) as

P (Bi) ≈ e−qn(1+λ`). (38)

Setting qnλ` = ω(1) makes e−qnλ` → 0. By using the optimum qn in Lemma 3,

if λ` ∼ ω
(

n
log2 n

)

, then P (Bi) = o(1), i.e., limK→∞ P (Bi) = 0.

ii) From (35) and considering the following binomial series

(1 − x)k = 1 − kx+
k(k − 1)

2!
x2 − ...,

the packet dropping probability in each cluster will be

P (BC) = nP (Bi) −
n(n− 1)

2!
P 2(Bi) + .... (39)

If λC is the optimum threshold such that limK→∞ P (BC) = 0, it guarantees a

sufficiently small value for P (Bi) as well. Hence, (39) can be approximated by

P (BC) ≈ nP (Bi).

Similar to the proof of part (i), the dropping probability of packets in each

cluster can be written as

P (BC) ≈ n(1 − qn)1+λC

≈ e−qn(1+λC)+log n.

Setting qnλC − log n = ω(1) makes e−qn(1+λC)+log n → 0. Thus, for the network

with the optimum qn, choosing

λC ∼ α̂n

log α̂n
+ ω

(

n

log2 n

)

(40)

yields limK→∞ P (BC) = 0.

iii) From (36) and with a similar argument, the dropping probability of the whole

network can be written as

P (BN ) ≈ KP (Bi)

≈ K(1 − qn)1+λN

≈ e−qn(1+λN )+log K .
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Similar to the proof of part (ii), choosing λN ∼ α̂n log K
log2 α̂n

+ ω
(

n
log2 n

)

yields

limK→∞ P (BN ) = 0.

B. Delay Characteristics for M ∼ Θ(K), M 6= K

In the previous subsection, we derived some asymptotic results for the delay

based on the on-off power allocation strategy. We showed that for M ∼ o(K), the

delay is a monotically increasing function of n. However, noting that for every value

of n = K
M

, the number of active links in each cluster is in the range of 1 ≤ mj < n, it

is concluded that for M ∼ Θ(K) with M 6= K, the number of active links does not

grow with K. As a result, the latency Di does not increase with K as well. Thus, the

distributed on-off power allocation strategy proposed in [1] and [2] is not an optimum

policy, as n does not scale as ω(1). To get a better intuition about the latency, it is

essential to investigate the optimum scheduling policy for M ∼ Θ(K), M 6= K.

Lemma 6: Let assume M ∼ Θ(K), where M 6= K. Then for 1 − e−1/e ≤ α ≤ 1,

where α is fixed, the maximum throughput of the network is achieved by time sharing

policy, i.e., mj = 1.

Proof: Recall from (23), an upper bound of R̄
(j)
sum for mj > 1 is given by

R̄(j)
sum ≤ W

M
mj(1 − α)mj log

(

1 +
K

N0W

)

+
W

M
n$mj(1 − (1 − α)mj ). (41)

It should be noted that the second term of (41) does not grow with K. Defining

ζ(mj, α) , mj(1 − α)mj and for a fixed value of α, we have

∂ζ(mj, α)

∂mj
= mj(1 − α)mj log(1 − α) + (1 − α)mj . (42)

Since the second-order derivative of (42) is negative, the maximum value of

ζ(mj, α) is obtained by setting (42) equal to zero. So, we have

mj,opt =
−1

log(1 − α)
. (43)

On the other hand from (16), an upper bound of the throughput in each cluster

for mj = 1 is obtained as

R̄(j)
sum ≤ W

M
log

(

1 +
K

N0W

)

. (44)
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Using (41)-(44), it is concluded that the maximum achievable throughput of

network is obtained for mj = 1, if ζ(mj,opt, α) < 1. Noting that

(1 − α)
−1

log(1−α) = e−1,

we arrive at the following inequality

α > 1 − e−1/e. (45)

Thus for 1 − e−1/e < α ≤ 1, ζ(mj, α) ≤ 1, i.e., the maximum achievable

throughput is obtained by time sharing policy. This implicity indicates that only

one user in each cluster and in each time slot transmits with full power.

Among different types of time-sharing schemes, we consider the round robin

(RR) (as a delay optimal scheduling approach) and the best channel (BS) scheduling

schemes as two extreme scheduling policies.

Theorem 3: Suppose M ∼ Θ(K) with M 6= K and 1 − e−1/e < α ≤ 1 is a fixed

parameter. Then

lim
K→∞

R̄rr
L,sum

R̄BS
U,sum

= 1.

where R̄rr
L,sum is the lower bound of the network throughput for the RR scheme and

R̄BS
U,sum is the upper bound of the network throughput for the BS scheme.

Proof: In the RR scheme, each link in a cluster takes an equal share of service

in turn. Since in each time slot, only one link is serviced, the average sum-rate of

each cluster is obtained as

R̄(j)
sum =

W

M
E

[

log

(

1 +
M

N0W
h

)]

≥ W

M
E

[

log

(

M

N0W
h

)]

=
W

M
E

[

log
M

N0W

]

+
W

M
E [log h] , (46)

where h ∈ {hii}n
i=1. Note that

E [log h] =

∫ ∞

0

e−x log xdx = −γ,
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where γ is Euler’s constant and is finite. Since M = K
n
, we arrive at the following

lower bound for R̄
(j)
sum

R̄(j)
sum ≥ W

M

{

log
K

N0W
− log

n

N0W
− γ

}

. (47)

Consequently, the lower bound of R̄sum for the RR scheme can be written as

R̄sum ≥ W log
K

N0W
−W log

n

N0W
−Wγ. (48)

Note that for M ∼ Θ(K), the second term of (48) does not grow with K. Thus, the

lower bound of the network throughput for the RR scheme, denoted by R̄rr
L,sum, scales

as Θ(logK).

In the best channel scheduling scheme and in each time slot, the link with the

best channel condition is allowed to transmit with full power. Thus, the average

sum-rate of each cluster is given by

R̄(j)
sum =

W

M
E

[

log

(

1 +
M

N0W
h(j)

max

)]

, (49)

where h
(j)
max = maxi=1,...,n h

(j)
ii is a random variable. Using (13)-(16), an upper bound

of the network throughput for the best channel scheduling is obtained as

R̄sum ≤ W log
K

N0W
. (50)

Thus, the upper bound of the network throughput for the best channel scheduling,

denoted by R̄BS
U,sum, is of order logK.

Through comparing (48) with (50), we come up with the following result:

lim
K→∞

R̄rr
L,sum

R̄BS
U,sum

= 1. (51)

It is worth to mention that for the best channel scheduling scheme, the delay

for each link is a random variable and scales as ω(1). In the next corollary, the

performance of two aforementioned scheduling schemes is compared from the delay-

throughput point of view.
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Corollary 6: Let assume 1 − e−1/e < α ≤ 1 and M ∼ Θ(K), where M 6= K.

Then, the round robin policy is a delay-optimal scheduling which guarantees a fixed

delay of n, while achieving the network throughput of order logK. In this case, the

throughput-delay ratio, denoted by ρ, scales as

ρrr ∼ Θ

(

logK

n

)

. (52)

Also, since for the best channel scheduling scheme,

ρBS ∼ Θ

(

logK

ω(1)

)

. (53)

it is concluded that ρrr > ρBS.

Corollary 7: Under the assumptions of Corollary 6, the quantities λ`, λC and

λN for the round robin policy are the deterministic parameters and are equal to n.

C. Delay Characteristics for M ∼ Θ(K), M = K

For M = K, each cluster consists of only one user. Also, due to orthogonality of

the allocated subchannels, no interference is imposed from the links in one cluster on

the links in the other clusters. Thus, it follows that all the links in the network can

transmit with full power. In this case, the blocking probabilities of each link, cluster

and the whole network tend to zero. Hence, the values of λ`, λC and λN are equal to

1. On the other hand from Corollary 3, the maximum achievable throughput of the

network scales as W logK. Thus for M = K, the maximum throughput-delay ratio

scales as W logK, that is more than what is obtained for M ∼ o(K) and M ∼ Θ(K)

with M 6= K. Also, from the fairness point of view, it is seen that M = K is the

global optimal fairness case.

V. A Study of Delay-Throughput Tradeoffs

Previously, we investigated the delay charactersitics based on a minimum drop-

ping probability, while achieving the maximum throughput of the network. Also,

we showed that the delay depends on the number of clusters, M . For the case of
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M ∼ Θ(K), the number of active links and delay does not grow with K. However,

the delay is critical for M ∼ o(K). In this section, we first study the scaling law

of the network throughput with the on-off power allocation strategy for M ∼ o(K).

Then, we present some results on improving the delay without any significant impact

on the network throughput.

Recall from Lemma 3, the optimum value of qn for M ∼ o(K) that achieves the

maximum network throughput scales as log2 α̂n
α̂n

. Clearly, increasing the number of the

links has the advantage of increasing R̄
(j)
sum. However, due to decreasing the value of qn,

delay increases. The problem is crucial in the static networks with immobile nodes.

Particularly, the links in the bad channels experience too much delay. Deploying

multiple antennas [30] can improve the delay. The other solution that we investigate

in this work is to relax the optimum threshold τ ∗n.

A. Delay Improvement for M ∼ o(K)

Noting that τn = − log qn, reducing τn will increase qn and the number of the

active links in each cluster. Clearly, this reduces the delay in the network, however

according to (9), the throughput of the network decreases as well. Therefore, the

threshold τn is interpreted as a compromise between delay and throughput. In the

following, we derive lower and upper bounds on τn such that the order of the network

throughput for M ∼ o(K) is preserved, i.e.,

lim
n→∞

R̄sum

W
α̂

logn
= 1. (54)

Theorem 4: Assuming M ∼ o(K), the throughput of the network is asymptot-

ically of order W
α̂

log n, if

Θ

(

log2 n

n

)

≤ qn ≤ Λ(n)

n
, (55)

where Λ(n) ∼ Ω(log2 n) and satisfies Λ(n) = eo(log n) .
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Proof: For the lower bound, the theorem is easily proved by using the Lemma

3. Substituting qn =
Λ(n)

n
in (9) yields

R̄sum =
W

α̂
(log n− log Λ(n) +O(1)) . (56)

To achieve R̄sum of order W
α̂

logn, the function Λ(n) must satisfy

log Λ(n) = o(log n),

and this completes the proof of the theorem.

Corollary 8: The lower and upper bounds on τn that result in R̄sum of order

Θ
(

W
α̂

log n
)

are

logn− log Λ(n) . τn . logn− 2 log log n+O(1). (57)

An interesting insight provided by the upper bound in (55) is the improvement

of the delay threshold levels λ`, λC and λN , without changing the order of the network

throughput.

Corollary 9: The optimum values of λ`, λC and λN that make P (Bi), P (BC) and

P (BN ) tend to zero, while achieving R̄sum of order W
α̂

logn scale as λ` ∼ ω

(

n

Λ(n)

)

,

λC =
n log n

Λ(n)
+ ω

(

n

Λ(n)

)

and λN =
n logK

Λ(n)
+ ω

(

n

Λ(n)

)

, respectively.

Fig. 3-a illustrates λ` versus the number of links in each cluster for Λ(n) = log n

and Λ(n) = e
√

log n, and for α̂ = W = 1. Also, Fig. 3-b shows the corresponding

network throughput given in (56) versus n. From these figures, it is observed that

the delay decreases without any significant impact on the throughput of the network.

B. Throughput Maximization for M ∼ o(K)

In this section, we present a new definition of the average throughput for the

backlogged users, when M ∼ o(K). Also, we derive the maximum average throughput

in two extreme cases of one and infinite buffer size. Under the on-off power allocation

strategy, the average throughput of link i is defined on a per-block basis as

Ti , lim
L→∞

1

L

L
∑

t=1

R
(j)
i,t I

(t)
i , (58)
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where I(t)
i is an indicator variable which is equal 1, if the user i transmits with full

power at block t, and 0 otherwise, and R
(j)
i,t is the instantaneous transmission rate of

link i at block t. In the next theorem, we obtain the maximum average throughput

for any buffer size.

Theorem 5: For the backlogged user with any buffer size, the optimum solution

for the optimization problem

q∗n = arg max
qn

Ti, (59)

is 1. Furthermore, the maximum average throughput asymptotically scales as
O(W )

α̂K
.

Proof: According to the definition of I (t)
i and for any buffer size, we have

I(t)
i =







1, qn,

0, 1 − qn.
(60)

Since I(t)
i is a Bernoulli random variable with parameter qn, we have E{I(t)

i } =

qn. Also, using Lemma 3 and (C-1) in Appendix III, we arrive at the following equation

E[R
(j)
i,t ] =

R̄sum

K
=

W

α̂K

(

1 + τn − τ 2
n + 2τn + 2

2α̂ne−τn

)

. (61)

Noting that qn = e−τn , the average throughput defined in (58) is obtained in terms

of τn as

Ti = E

[

R
(j)
i,t

]

E[I(t)
i ]

=
W

α̂K
e−τn

(

1 + τn − τ 2
n + 2τn + 2

2α̂ne−τn

)

. (62)

Since
∂Ti

∂τn
= − W

α̂K

[

τne
−τn +

2τn + 2

2α̂n

]

. (63)

is negative, it is concluded that Ti is a monotically decreasing function of τn. Thus,

the average throughput achieves the maximum value at τ = 0 or qn = 1. Hence, by

using (62), the maximum average throughput for any buffer size is

Ti,max ∼ O(W )

α̂K
. (64)
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Interestingly, Theorem 5 indicates the maximum average throughput for M ∼
o(K) and with the distributed on-off power allocation strategy is independent of the

buffer size. Therefore, we can reduce the hardware complexity while achieving the

maximum average throughput.

VI. Conclusion

We have analyzed the delay-throughput of a single-hop wireless network in terms

of the number of clusters, M , and under the shadowing effect with probability α. It

has been demonstrated that for M ∼ o(K) and 0 < α ≤ 1, where α is fixed, the

throughput of the network is of order W
α̂

log K
M

. Also, it has been proved that the

maximum network throughput for every value of 0 ≤ α ≤ 1 and 1 ≤ M ≤ K is

achieved at M = 1. In fact, in the proposed model, partitioning the bandwidth W

into M subchannels has no gain in terms of enhancing the network throughput.

In addition, we have proved that for M ∼ o(K) and 0 < α ≤ 1, where α

is fixed,the delay threshold level that results the dropping probability for each link

tends to zero, while achieving the maximum throughput scales as ω( n
log2 n

). Also, the

minimum delay in order to make the dropping probabilities for the cluster and for the

whole network approach zero scales as α̂n
log α̂n

+ω( n
log2 n

) and λN ∼ α̂n log K
log2 α̂n

+ω( n
log2 n

),

respectively. It was shown that the delay is critical for M ∼ o(K). We have also

shown that by relaxing the value of threshold τn, the delay is significantly improved

without changing the order of the network throughput. We have presented a new

definition for the throughput and derived the maximum throughput in the cases of

one and infinite buffer size. It has been proved that the maximum average throughput

of the link with the distributed on-off power allocation strategy is independent of the

buffer size.

Throughout this work, it is assumed that all the links use a single antenna. A

possible future extension of this work would be to analyze the performance of the

network with multiple antenna transmitters/receivers [30]. Also, we considered a quasi
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static block fading channel model, in which the channel changes independently from

block to block. It would be quite interesting to generalize the results by considering

correlation between two consecutive blocks of the channel.

Appendix I

Proof of Lemma 1

Let define χk , L(j)
ki pk, where L(j)

ki is independent of pk, for k 6= i. Under a

quasi-static Rayleigh fading channel condition, it is concluded that χk’s are the i.i.d.

random variables with

E [χk] = E

[

L(j)
ki pk

]

= α̂qn,

V ar [χk] = E
[

χ2
k

]

− E
2 [χk] = 2ακqn − (α̂qn)2,

where E

[

(h
(j)
ki )2

]

= 2 and E [pk] = qn. Also, the interference I
(j)
i is a random variable

with mean µn and variance ϑ2
n, where

µn = E







n
∑

k 6=i
k=1

χk






= α̂(n− 1)qn,

ϑ2
n = (n− 1)

(

2ακqn − (α̂qn)2
)

.

By using the Chebyshev inequality, we obtain

Pr{|I (j)
i − µn| < ψn} ≥ 1 − ϑ2

n

ψ2
n

,

for all ψn > 0. Thus, we have

Pr{|I (j)
i − α̂(n− 1)qn| < ψn} ≥ 1 − (n− 1) (2ακqn − (α̂qn)2)

ψ2
n

.

It is seen that for

ψn = ω
(

√

(n− 1) (2ακqn − (α̂qn)2)
)

,

we have

lim
n→∞

1 − (n− 1) (2ακqn − (α̂qn)2)

ψ2
n

= 1.
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Thus,

α̂(n− 1)qn − ψn < I
(j)
i < α̂(n− 1)qn + ψn, w. p. 1.

By choosing ψn = o(α̂(n− 1)qn), we can obtain I
(j)
i ∼ α̂(n− 1)qn, w. p. 1.

Appendix II

Proof of Lemma 2

Under the on-off power allocation strategy and using qn = Pr
{

h
(j)
ii > τn

}

, we

have

E

[

R
(j)
i

]

= E

[

R
(j)
i

∣

∣

∣
h

(j)
ii > τn

]

Pr
{

h
(j)
ii > τn

}

+ E

[

R
(j)
i

∣

∣

∣
h

(j)
ii ≤ τn

]

Pr
{

h
(j)
ii ≤ τn

}

= qnE

[

R
(j)
i

∣

∣

∣
h

(j)
ii > τn

]

+ (1 − qn)E
[

R
(j)
i

∣

∣

∣
h

(j)
ii ≤ τn

]

.

Since for h
(j)
ii ≤ τn, pi = 0, it is concluded

E

[

R
(j)
i

]

=
qnW

M
E

[

log

(

1 +
h

(j)
ii

I
(j)
i + N0W

M

)
∣

∣

∣

∣

∣

h
(j)
ii > τn

]

. (B-1)

Under condition M ∼ o(K) and for large values of K, the number of links in

each cluster is sufficiently large. So, we can apply Lemma 1 to obtain

E

[

R
(j)
i

]

≈ qnW

M
E

[

log

(

1 +
h

(j)
ii

α̂(n− 1)qn + N0W
M

)
∣

∣

∣

∣

∣

h
(j)
ii > τn

]

, (B-2)

where the expectation is computed with respect to h
(j)
ii . For large values of n, we can

ignore the noise power N0W
M

. Hence, by using the approximation log(1 + z) ≈ z − z2

2
for |z| � 1, we have

E

[

R
(j)
i

]

≈ qnW

M

{

1

α̂nqn
E

[

h
(j)
ii

∣

∣

∣
h

(j)
ii > τn

]

− 1

2

1

(α̂nqn)2
E

[

(h
(j)
ii )2

∣

∣

∣
h

(j)
ii > τn

]

}

.

Under a Rayleigh fading channel model,

E

[

h
(j)
ii

∣

∣

∣
h

(j)
ii > τn

]

= 1 + τn,

E

[

(h
(j)
ii )2

∣

∣

∣
h

(j)
ii > τn

]

= τ 2
n + 2τn + 2.
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Using qn = Pr
{

h
(j)
ii > τn

}

= e−τn , the average sum-rate of the links in Cj is

given by

R̄(j)
sum =

n
∑

i=1

E

[

R
(j)
i

]

=
W

α̂M

[

1 + τn − τ 2
n + 2τn + 2

2α̂ne−τn

]

. (B-3)

Thus, the optimization problem is

τ ∗n = arg max
τn

R̄(j)
sum.

Taking the first-order derivative of (B-3) in terms of τn yields

∂R̄
(j)
sum

∂τn
=

W

α̂M

[

1 − τ 2
n + 4τn + 4

2α̂ne−τn

]

. (B-4)

Since, the second-order derivative of (B-3) is negative, the maximum value of

R̄
(j)
sum is obtained by setting (B-4) equal to zero. So, we have

2α̂ne−τn = τ 2
n + 4τn + 4,

or

τn = log 2α̂n− 2 log τn − log

(

1 +
4τn + 4

τ 2
n

)

. (B-5)

It can be verified that the solution for (B-5) is

τ ∗n = log α̂n− 2 log log α̂n+O(1). (B-6)

Appendix III

Proof of Lemma 4

Using (B-3), the network throughput is obtained as

R̄sum =

M
∑

j=1

R̄(j)
sum

=
W

α̂

[

1 + τn − τ 2
n + 2τn + 2

2α̂ne−τn

]

. (C-1)
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Considering the optimum threshold level obtained in (B-5) and α̂ne−τn = α̂nqn =

δ log2 α̂n, it can be easily shown that for M ∼ o(K)

1 − τ 2
n + 2τn + 2

2α̂ne−τn
∼ O(1).

Hence by using τn = − log qn, we arrive at the following equation

R̄sum ≈ W

α̂
[− log qn +O(1)] . (C-2)

Through substituting (8) in (C-2) and using n =
K

M
, we finally obtain

R̄sum =
W

α̂

(

log
K

M
+ o

(

log
K

M

)

+O(1)

)

.

Appendix IV

Proof of Corollary 3

Noting that for M = K, only one user exists in each cluster, all the users can

transmit with full power over the orthogonal subchannels. Hence, since I
(j)
i = 0, for

i = 1, ..., K, the average sum-rate of the network is given by

R̄sum = E

[

K
∑

i=1

R
(j)
i

]

=
W

K

K
∑

i=1

E

[

log

(

1 +
h

(j)
ii

N0W
K

)]

,

where the expectation is computed with respect to h
(j)
ii . Under a Rayleigh fading

channel model, we have

R̄sum =
W

K

K
∑

i=1

∫ ∞

0

e−x log(1 + Υ̃x)dx,

where Υ̃ , K
N0W

. Thus,

R̄sum = W

∫ ∞

0

e−x log(1 + Υ̃x)dx

= We
1
Υ̃

∫ ∞

1/Υ̃

e−x

x
dx

= We
1
Υ̃ E1

(

1

Υ̃

)

. (D-1)
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To simplify (D-1), we use the following series representation for E1(x),

E1(x) = −γ − log x +
∞
∑

s=1

(−1)s+1xs

s.s!
, (D-2)

where γ is Euler’s constant and is defined by the limit [29]

γ = lim
s→∞

(

s
∑

k=1

1

k
− log s

)

= 0.577215665...

Thus, the average sum-rate of the network is obtained as

R̄sum = We
1
Υ̃

(

−γ + log Υ̃ +

∞
∑

s=1

(−1)s+1

s.s!

(

1

Υ̃

)s
)

.

For sufficiently large values of K, we have Υ̃ = K
N0W

� 1, which results in e
1
Υ̃ ≈ 1

and ∞
∑

s=1

(−1)s+1

s.s!

(

1

Υ̃

)s

≈ 0.

Consequently for M = K, the average sum-rate of the network is asymptotically

obtained by

R̄sum ≈ W (logK − logN0W − γ).
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