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. SYSTEM MODEL

The system , as in [1], [2], and [3], consists Af relays assisting the transmitter and the
receiver in the half-duplex mode, i.e. in each time, they®laan either transmit or receive.
The channels between each two node is assumed to be quasiiateRayleigh-fading, i.e. the
channel gains remain constant during a block of transmmsama changes independently from
one block to another. However, we assume that there is notdirk between the transmitter
and the receiver. This assumption is reasonable when thentitter and the receiver are far
from each other or when the receiver is supposed to have cbonevith just the relay nodes to
avoid the complexity of the network. As in [2] and [4], eachdeds assumed to know the state
of its backward channel and, moreover, the receiver is ssgrpto know the equivalent channel
gain from the transmitter to the receiver. No feedback to tthasmitting node is permitted.
All nodes have the same power constraint. Also, we assunteatbapacity achieving gaussian
random codebook can be generated at each node of the netdearke, the code design problem

is not considered in this paper.
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Il. PROPOSEDK-SLOT SWITCHING N-SUB-BLOCK MARKOVIAN SCHEME (SM)

In the proposed scheme, the entire block of transmissioivided! into N sub-blocks. Each
sub-block consists of< slots. Each slot ha%” symbols. Hence, the entire block consists of
T = NKT’" symbols. In order to transmit a messagethe transmitter selects the corresponding
codeword of a gaussian random codebook consistingéf"" codewords of IengtH%T
and transmits the codeword during the filslX — 1 slots. In each sub-block, each relay receives
the signal in one of the slots and transmits the receivedatignthe next slot. So, each relay
is off in % of time. More precisely, in thé’ slot of the n'the sub-block { < n < N,1 <
k < K,nk # NK), the k'th relay receives the signals the transmitter is sending, amplifies
and forwards it to the receiver in the next slot. The recestarts receiving the signal from the
second slot. After receiving the last slat {{"'th slot) signal, the receiver decodes the transmitted
message by using the signal 8fK — 1 slot received fromK relays. It will be shown in the
next section that the equivalent point-to-point channeinfithe transmitter to the receiver would
act as a lower-triangular MIMO channel.

[Il. DIVERSITY-MULTIPLEXING TRADEOFF

In this section, we show that the proposed method achieeesgtimum achievable diversity-
multiplexing curve. First, according to the cut-set bouineldrem [5], the point-to-point capacity
of the uplink channel (the channel from the transmitter ® tdlays) is an upper-bound for the
capacity of this system. Accordingly, the diversity-mpiiéixing curve of al x K SIMO system
which is a straight line from multiplexing gaihto the diversity gaink is an upper-bound for
the diversity-multiplexing curve of our system. In this e, we prove that the tradeoff curve
of the proposed method achieves the upper-bound and thigspfttimum. First, we prove the
statement for the case that there is no link between thegeligxt, we prove the statement for

the general case.

A. No Interfering Relays

Assume, the link gain between tléh relay and the transmitter and theth relay and the
receiver areh, andg,, respectively. Furthermore, assume that there is no libkdsn the relays.
Accordingly, at thek’'th relay we have

r, = hpX + ny, (1)
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wherer,, is the received signal vector of theth relay, x is the transmitter signal vector and

n; ~ N (0,1I7) is the noise vector of the channel. At the receiver side, we ha

K
y = ngtk + 2, 2)
k=1

wheret,, is the transmitted signal vector of théh relay, y is the received signal vector at the
receiver side and ~ N(0,1I7) is the noise vector of the downlink channel. The output power
constraintE {||x|*} ,E {||t]*} < TP holds at the transmitter and relays side. To obtain the
DM tradeoff curve of the proposed scheme, we are looking lier énd-to-end probability of

outage from the ratelog (P), as P goes to infinity.

Diversity gain
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Multiplexing gain

Fig. 1. DM Tradeoff for the proposed Switching Markovian 8ete and various values of (K,N), No interfering relays case

Theorem 1 Assume a half-duplex parallel relay scenario with K no interfering relays. The

proposed SM scheme achieves the diversity gain

dsarni(r) :max{O,K(l—r)—%,K(l—r)— NKfl}, (3)

which achieves the optimum achievable DM tradeoff curve d,,:(r) = K(1 —r) as N — oo.
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Proof: Let us definex,, ., 0, i, T ks tnks Znk, Yni @S the signal/noise transmitted/received
by the transmitter/relay/receiver to tké&h relay/receiver in thé’th slot of then’th sub-block.
Also, let us defingk) =k —2 mod K +1 and(n) =n— [ |. Thus, we have

Yok = Gkbak + Znk
= gk (P X)) + D)) + Znks 4)

where o, = is the amplification coefficient performed in tiéh relay. Defining the

P
[hi|>P+1
eventE, as the event of outage from the rateyg(P) in the k’th sub-channel consisting of the

transmitter, thet’'th relay, and the receiver, we have
Pleeh = P{log [1+ Plgsfanflhnl® (1+ |gelarf?) '] < rlog(P)]
= min {sign(r), P { gs el (1 + gi L) < P}
min { sign(r), P4 |gePlaePhu2min 4 & — L < pra1
’ 27 2|grl?lax* )
min {sign(r), P {|h|* < 2P} + P {|gu*|ax|*|he]* < 2P} }

: 1 |he)*P
min {&gn(r),P‘“"" +P{|gk\2min {5, | k2| } < QPT_I}}

min {sign(r), P~ + P{|g|> < 4P} + P {|gp|*|hi|* < 4P} }

—
RS
~

—
- o
=

—
e
~

(d

=

(i min {sigr‘(r), P_(l_r)} , (5)

~

where sigifr) is the sign function, i.e. sign) = 1, > 0,sign(r) = 0, < 0. Here, (a) follows

27 2|gi|2|ay|?

from the fact thatm = min{1 é} (b) and (d) follow from the union bound
inequality, (c) follows from the fact thdtv.|?|h.|? = min{l "““‘2’3} and the pdf distribution

27 2
of the rayleigh-fading parameter near zero, and (e) folloeen the fact that the product of

two independent rayleigh-fading parameters behave as laighyfading parameter near zero.
(5) shows that each sub-channel’s tradeoff curve perforsna aingle-antenna point-to-point
channel.

Defining Ry (P) as the random variable showing the rate of tft sub-channel consisting

of the transmitter, thé’th relay, and the receiver in terms @&f, the outage event of the entire
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channel from the-log(P), the event, is equal to

P{&} :P{N[SRk(P)+(N—1)RK(P) < NKrlog(P)} (6)
AssumingRy(P) = ri log(P), vczlhave
P{g}iP{N§rk+(N—1)rK§NKr} 7)
P{Ry(P) < r;log(P)} is known by (Sl;.zii)efining the regio® as
R = {(7»1’7% )0 <y < 1,NKZ_1rk + (N -1)rg < NK’I“} (8)
it is easy to check that all the vectofs,, o, - - - ,kr:;) that result in the outage event almost

surely lie in R. In fact, according to (5), for alk we know r, > 0. Also, for r, > 1,
P{R;(P) > rylog(P)} < e F which is exponential in terms of. Hence,r, > 1 can
be disregarded for the outage region. As a re®{i€} =P {r € R}.

On the other hand, by (5) and the fact thak are independent, we have

P{r <1dmy <19, g <o} = PR 9)

Now, we show thal? {£} = p~mimer K-17 First of all, by taking derivative of (9) with respect
tory,r, - ,rg, it iS easy to see that the probability density functionrdfehaves the same as
the probability function in (9), i.ef.(r) = P~X~17) Hence, the outage probability is equal to

/re +(r)dr

f,
R
’UOZ(R)P_ min,cg K—1-r

P{&}

—_
JORAN

P~ minger K—1-r (10)

Here, (a) follows from the fact thaR is a fixed bounded region whose volume is independent
of P. On the other hand, by continuity d?~(*—1*) overr, we haveP {£} > P~ minrer K17
which combining with (10), results intB {£} = P~ minrer K=17 Definingl(r) = K —1-r, we
have to solve the following linear programming optimizatiproblemmin,. {(r). Notice that

the regionR is defined by a set of linear inequality constraints. To soheproblem, we have

(@) NK NKr— S5t
I(r) > maX{O,K— %,K— TN le Tk}
®) 1 Kr
> Kl-r)—= K1-r)— . 11
2 {050 =) - KO- - 5 (1)
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Here, (a) follows from the inequality constraint in (8) gavieag R, and (b) follows from the
fact thatry < 1 andVk < K : r, > 0. Now, we partition the rangé < r < 1 into three

intervals. First, in the case that> 1 — the feasible point = 1 achieves the lower bound

NK”
0. Second, in the case that< - — W’ the feasible pomr = (O 0,---,0, %K;‘) achieves the
lower boundK (1 —r) — 3 FlnaIIy, in the case that — 7= < r < 1— =, The lower bound

Kl-r)—+is achievable by the feasible pointvk < K : r, = S50, e = 1. Hence,

we havemin,er [(r) = max {0, K(1 —r) — +, K(1 —r) — 22 }. This completes the proof

Remark - It is worth noting that as long as the graptiV, £') whose vertices are the relay nodes
and edges are the non interfering relay node pairs includeanltonian cycle!, the result of

this subsection remains valid.
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By hamiltonian cycle, we mean a simple cyalevs - - - vxv1 that goes exactly one time through each vertex of the graph.
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