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Sum-Rate Maximization in Single-Hop

Wireless Networks with the On-Off Power

Scheme

Jamshid Abouei, Alireza Bayesteh, Masoud Ebrahimi, and Amir K.

Khandani

Abstract

A single-hop wireless network with K links is considered, where the links are parti-

tioned into M clusters, each operating in a subchannel with bandwidth W

M
. We assume

that the links in each cluster perform the on-off power allocation strategy proposed in [1].

The problem is to analyze the average sum-rate of the network in terms of M and under

the shadow-fading effect with probability α. It is demonstrated that for M ∼ o(K) and

0 < α ≤ 1, where α is fixed, the average sum-rate of the network scales as W

α
log K

M
. For

M ∼ Θ(K), we present an upper bound for the network throughput. It is proved that the

maximum average sum-rate of the network for every value of 1 ≤ M ≤ K and 0 < α ≤ 1

is achieved at M = 1. In fact, in the proposed model, partitioning the bandwidth W into

M subchannels has no gain in terms of enhancing the throughput.
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I. Introduction

The main challenge in multi-user wireless networks originates from the sharing

of a common transmission bandwidth by users such that the network throughput

is maximized. Since the throughput of the network is limited by the interference,

several techniques are proposed to mitigate the interference. Effective spectral usage

and power control in transmitters have long been regarded as efficient tools to reduce

the interference and improve the throughput of the network with limited bandwidth.

In recent years, various power control and spectrum sharing schemes have been

extensively studied in cellular and multihop wireless networks [2]–[6]. For example in

[3], the authors provide a comprehensive survey in the area of resource allocation, in

particular in the context of fixed, dynamic and hybrid channel assignments for various

wireless networks. Much of these works rely on centralized and cooperative algorithms.

Due to significant challenges in using the centralized approaches, the attention of the

researchers have drawn to the distributed resource allocation schemes [7]–[11]. Etkin

and Tse [8] develop power and spectrum allocation strategies in multiple wireless

systems. Under the assumptions of the omniscient nodes and strong interference,

they show that frequency division multiplexing (FDM) is the optimal scheme in the

sense of the throughput maximization.

In this paper, we study the performance of a single-hop wireless network, in

which K links are partitioned into M clusters, each operating in a subchannel with

bandwidth W
M

. The users utilize the decentralized on-off power allocation scheme

proposed in [1] and [7]. In [1] and [7], the authors study the performance of the

network only for M = 1 and under a Rayleigh-fading channel model. It is well-

known, however, that the wireless channel can be modeled in a more realistic manner.

Here, we consider the shadow-fading effect that are caused by obstacles. Shadowing

effect occurs when a node moves between obstructions and experiences fluctuations
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in its signal power. The main contribution of this work is to determine the maximum

throughput of the network in terms of different values of M and the probability

of the shadowing effect, α. Our strategy differs from the model studied in [9] and

[12]; primarily we use a decentralized on-off power allocation scheme for a single-hop

wireless network with M subchannels, while [9] and [12] present a model with random

connections for M = 1 and using relay nodes.

Under the assumption of Rayleigh fading, an asymptotic analysis is carried out

to show that for M ∼ o(K) and 0 < α ≤ 1, where α is a fixed value, the average sum-

rate of the network is of order W
α

log K
M

. It is shown that the maximum throughput

of the network for every value of M and 0 < α ≤ 1 is achieved at M = 1.

The rest of the paper is organized as follows. In Section II, the network model

and objectives are described. We analyze the average sum-rate of the network in

terms of M and α in Section III. Finally, in Section IV, an overview of the results and

conclusions is presented, and directions for ongoing and future research are mentioned.

Knuth’s notation [13]: For any functions f(n) and g(n):

• f(n) = O(g(n)) means that limn→∞ |f(n)/g(n)| <∞.

• f(n) = ω(g(n)) means that limn→∞ |f(n)/g(n)| = ∞.

• f(n) = o(g(n)) means that limn→∞ |f(n)/g(n)| = 0.

• f(n) = Θ(g(n)) means that limn→∞ |f(n)/g(n)| = c, where 0 < c <∞.

Also, log(.) is the natural logarithm function and N = {1, 2, ..., n}.

II. Network Model and Objectives

In this work, we consider a single-hop wireless network consisting of K pairs of

nodes1, operating in a bandwidth W . The links are assumed to be partitioned into M

clusters such that the number of links in each cluster is the same. Also, the links are

randomly divided among the clusters. The bandwidth W is divided into M disjoint

subchannels, each with bandwidth W
M

. Letting Cj denote cluster j, the links in Cj

1The term “pair” is used to describe the transmitter and the related receiver, and “user” only for the

transmitter.
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operate in subchannel j. In this work, we assume that M is a variable parameter in

the range of 1 to K. We also assume the number of links in each cluster, n = K
M

, is a

known information for the users. The link between transmitter k and receiver i in Cj

is represented by the random variable L(j)
ki . Under a Rayleigh fading channel model,

L(j)
ki = h

(j)
ii , for k = i. Also for k 6= i, the cross-channel gains are defined based on the

shadow-fading model as follows2

L(j)
ki =







h
(j)
ki , with probability α

0, with probability 1 − α.
(1)

We consider a quasi-static block fading channel model, where the channel strength

denoted by h
(j)
ki = |g(j)

ki |
2 remains constant while transmitting one block and changes

independently from block to block. Under a Rayleigh fading channel, h
(j)
ki ’s are expo-

nentially distributed with unit mean. We also assume that the channel is flat fading. In

other words, all the channels are assumed to be constant over the whole bandwidth W .

We also assume that each receiver knows only its direct channel gain. This channel-

state information (CSI) is fed back to the corresponding transmitter without any

error.

In this work, we assume that all the links utilize the on-off power allocation

strategy. Based on this scheme, the average transmit power of user i is assumed to

be pi ∈ {0, 1}. The power of additive white Gaussian noise (AWGN) at each receiver

is assumed to be N0W
M

. Since the maximum transmit power is one, N0W
M

is equivalent to

1
SNR

, where SNR is the signal to noise ratio. Assuming Gaussian signal transmission,

the interference term will be Gaussian with power

I
(j)
i =

n
∑

k 6=i
k=1

L(j)
ki pk, i, k ∈ Cj.

Due to the orthogonality of the allocated subchannels, no interference is imposed

from links in Ck on links in Cj, k 6= j. Under these assumptions, the achievable data

2It is worth to mention that the superscript j means that the channel gains belong to cluster j, and it

does not mean that the fading channel model is frequency-selective.
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rate of each link is expressed as

R
(j)
i =

W

M
log

(

1 +
h

(j)
ii pi

I
(j)
i + N0W

M

)

, i ∈ N . (2)

We consider a homogeneous network in the sense that all the links have the

same configurations and use the same protocols. Thus, the transmission strategy for

all the nodes are agreed in advance. Next, we summarize the on-off power allocation

strategy in a single-hop wireless network proposed in [1] and [7].

On-Off Power Allocation Strategy: In each cluster, all users perform the

following steps during each block:

1- Based on the direct channel gain, the transmission policy is

pi =







1, if h
(j)
ii > τn

0, Otherwise,

where τn is a prespecified threshold level.

2- After adjusting the powers, each active user in Cj transmits a pilot signal with

full power. All the receivers measure the interference and compute the rate using (2).

Then, each receiver feedbacks the rate to its corresponding transmitter.

3- The active user transmits data with the computed rate and with full power.

In order to analyze the performance of the network, we define the network

throughput as the average sum-rate. Letting R̄sum denote the average sum-rate of

the network, we have

R̄sum =
M
∑

j=1

R̄(j)
sum, (3)

where R̄
(j)
sum is the average sum-rate of cluster Cj and is given by

R̄(j)
sum = E

[

n
∑

i=1

R
(j)
i

]

=
n
∑

i=1

E

[

W

M
log

(

1 +
h

(j)
ii pi

I
(j)
i + N0W

M

)]

,
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where the expectation is computed with respect to h
(j)
ii and I

(j)
i . We also define the

probability of the link activation in each cluster as qn , Pr
{

h
(j)
ii > τn

}

that is a

function of n. Following the same approach as in [1] and [7] with M = 1 and α = 1,

we can easily prove the following lemmas.

Lemma 1: Assuming 0 < α ≤ 1 is fixed, with probability one (w. p. 1), we have

I
(j)
i ∼ α(n− 1)qn,

as n→ ∞.

Proof: See Appendix I.

Lemma 2: Let M ∼ o(K) and 0 < α ≤ 1 is a fixed parameter. Then for large

values of K, the optimum threshold level that maximizes the average sum-rate of

each cluster is obtained as

τ ∗n = logαn− 2 log logαn+O(1). (4)

Proof: See Appendix II.

Lemma 3: Under the assumptions in Lemma 2, the probability of the link acti-

vation in each cluster is given by

qn = c
(logαn)2

αn
, (5)

where c is a constant.

Proof: Under a Rayleigh fading channel condition, we have

qn = Pr
{

h
(j)
ii > τn

}

= e−τn .

Using (4), it is concluded

qn =
(logαn)2

αn
× e−O(1).

Setting c = e−O(1), we obtain (5).

Lemma 4: Assuming M ∼ o(K) and 0 < α ≤ 1 is fixed, the maximum achiev-

able throughput of the network is given by

R̄sum ≈
W

α
(− log qn +O(1)) (6)

=
W

α

(

log
K

M
+ o(logK) +O(1)

)

. (7)
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Proof: See Appendix III.

Lemma 4 states that the average sum-rate of the network for M ∼ o(K) depends

on the value of 0 < α ≤ 1 and scales as W
α

log K
M

.

Corollary 1: For values of M such that logM ∼ o(logK), the average sum-rate

of the network scales as W
α

logK.

III. Network Analysis with On-Off Power Allocation Strategy

In this section, we analyze the average sum-rate of the network in terms of M ,

1 ≤ M ≤ K. We prove that the maximum throughput of the network for every value

of 0 < α ≤ 1 is obtained at M = 1.

Theorem 1: Assuming 0 < α ≤ 1 is fixed, the maximum average sum-rate of

the network is achieved at M = 1.

Proof: We prove the theorem in the following two cases:

Case 1: M ∼ o(K)

From (6), the average sum-rate of the network for M ∼ o(K) is obtained as

R̄sum ≈
W

α
(− log qn +O(1)) . (8)

Taking the first-order derivative of (8) with respect to M yields,

∂R̄sum

∂M
= −

W

α

∂qn
∂M

1

qn
.

Noting that n = K
M

, the probability of the link activation is obtained in terms

of M by using (5), i.e.,

qn =
c

αK
M

(

log
αK

M

)2

. (9)

Since,
∂qn
∂M

=
c

αK
log

αK

M
× (log

αK

M
− 2) > 0,

it is concluded that (8) is a monotically decreasing function of M . Thus, the maximum

throughput of the network for M ∼ o(K) is obtained at M = 1.

Case 2: M ∼ Θ(K)
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Letting mj denote the number of active links in cluster Cj, it is concluded that

mj ∈ [1, n] does not grow with K. In this case, the average sum-rate of the network

is given by

R̄sum =

M
∑

j=1

mj
∑

i=1

W

M
E

[

log

(

1 +
h

(j)
ii

I
(j)
i + N0W

M

)]

. (10)

We first obtain an upper bound for the average sum-rate of the network when

mj = 1, 1 ≤ j ≤ M . Clearly, since only one user in each cluster activates its

transmitter, I
(j)
i = 0. Hence, the maximum achievable throughput of cluster Cj is

obtained as

R̄(j)
sum =

W

M
E

[

log

(

1 +
M

N0W
h(j)

max

)]

, (11)

where h
(j)
max = maxi=1,...,n h

(j)
ii is a random variable. Since log x is a concave function

of x, an upper bound of (11) is obtained through Jensen’s inequality, E [log x] ≤

log(E [x]), x > 0. Thus,

R̄(j)
sum ≤

W

M
log

(

1 +
M

N0W
E [Y ]

)

, (12)

where Y , h
(j)
max. Noting that h

(j)
ii ’s are i.i.d. over i ∈ N , we have

FY (y) = Pr{Y ≤ y}, y > 0

=

n
∏

i=1

Pr{h(j)
ii ≤ y}

=
(

1 − e−y
)n
,

where FY (.) is the cumulative distribution function (cdf) of Y . Hence,

E [Y ] =

∫ ∞

0

nye−y
(

1 − e−y
)n−1

dy.

Since (1 − e−y)
n−1 ≤ 1, we arrive at the following inequality

E [Y ] ≤

∫ ∞

0

nye−ydy = n. (13)

Consequently, the upper bound of R̄
(j)
sum obtained in (12) can be simplified as

R̄(j)
sum ≤

W

M
log

(

1 +
K

N0W

)

. (14)
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For mj > 1 and due to the shadowing effect with probability α, the average

sum-rate of cluster Cj can be written as

R̄(j)
sum =

mj
∑

i=1

W

M
E

[

log

(

1 +
h

(j)
ii

∑mj

k 6=i υkh
(j)
ki + N0W

M

)]

, k ∈ Cj, (15)

where υk’s are binomial random variables with parameters (mj, α). Thus,

R̄(j)
sum =

W

M

mj
∑

i=1

mj
∑

l=0

(

mj

l

)

αl(1 − α)mj−l
E

[

log

(

1 +
h

(j)
ii

Υl + N0W
M

)]

=
W

M

mj
∑

i=1

(1 − α)mj E

[

log

(

1 +
h

(j)
ii

N0W
M

)]

+
W

M

mj
∑

i=1

mj
∑

l=1

(

mj

l

)

αl(1 − α)mj−l
E

[

log

(

1 +
h

(j)
ii

Υl + N0W
M

)]

, (16)

where Υl is the sum of l i.i.d random variables with χ2(2) distribution. Noting

that M ∼ Θ(K), we ignore the term N0W
M

. Also for mj > 1, Υl is greater than

the interference term caused by one interfering link. Thus, an upper bound for the

throughput of cluster j is given by

R̄(j)
sum ≤

W

M
mj(1 − α)mj E

[

log

(

1 +
Y

N0W
M

)]

+
W

M

mj
∑

i=1

mj
∑

l=1

(

mj

l

)

αl(1 − α)mj−l
E

[

log

(

1 +
Y

Z

)]

, (17)

where Y , h
(j)
max = maxi=1,...,n h

(j)
ii and Z , h

(j)
ki . According to binomial formula, we

have
mj
∑

l=1

(

mj

l

)

αl(1 − α)mj−l = 1 − (1 − α)mj .

Thus,

R̄(j)
sum ≤

W

M
mj(1 − α)mj E

[

log

(

1 +
Y

N0W
M

)]

+
W

M
mj (1 − (1 − α)mj ) E

[

log

(

1 +
Y

Z

)]

. (18)
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Letting X =
Y

Z
, the cdf of X is obtained as

FX(x) = Pr{X ≤ x}, x > 0

= Pr{Y ≤ Zx}

=

∫ ∞

0

Pr{Y ≤ Zx|Z}fZ(z)dz

=

∫ ∞

0

(

1 − e−zx
)n
e−zdz.

Thus, the probability distribution function (pdf) of X can be written as

fX(x) =
dFX(x)

dx

=

∫ ∞

0

nze−z(1+x)
(

1 − e−zx
)n−1

dz

≤

∫ ∞

0

nze−z(1+x)dz =
n

(1 + x)2
. (19)

Using (12)-(14) and (19), the inequality (18) is simplified as

R̄(j)
sum ≤

W

M
mj(1 − α)mj log

(

1 +
K

N0W

)

+
W

M
mj(1 − (1 − α)mj )

∫ ∞

0

log (1 + x) fX(x)dx

≤
W

M
mj(1 − α)mj log

(

1 +
K

N0W

)

+
W

M
nmj(1 − (1 − α)mj)

∫ ∞

0

log (1 + x)

(1 + x)2
dx

=
W

M
mj(1 − α)mj log

(

1 +
K

N0W

)

+ Λ. (20)

where Λ = W
M
nmj(1 − (1 − α)mj) and it does not grows with K. Let’s assume that

among M clusters, Γ clusters have mj = 1 and for the M −Γ of the rest, the number

of active links in each cluster is greater than one. Hence by using (14) and (20), an

upper bound for the network throughput is obtained as

R̄sum ≤ Γ
W

M
log

(

1 +
K

N0W

)

+ (M − Γ)
W

M
mj(1 − α)mj log

(

1 +
K

N0W

)

+ (M − Γ)
W

M
nmj(1 − (1 − α)mj ). (21)
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Since 0 < α ≤ 1, it is clear that

ΓW

M
log

(

1 +
K

N0W

)

≤
ΓW

Mα
log

(

1 +
K

N0W

)

.

In order to show that the achievable average sum-rate obtained in (21) is less

than that of M = 1 in (7), it is sufficient to prove

(M − Γ)
W

M
mj(1 − α)mj log

(

1 +
K

N0W

)

< (M − Γ)
W

Mα
log

(

1 +
K

N0W

)

,

or

mj(1 − α)mj <
1

α
.

Letting f(α) = αmj(1 − α)mj , we have

∂f(α)

∂α
= mj(1 − α)mj−1(1 − α− αmj) = 0.

Thus, the extremum points of f(α) are located at α = 1 and α = 1
mj+1

. It is

seen that

f(1) = 0 < 1,

and

f(
1

mj + 1
) =

(

mj

mj + 1

)mj+1

< 1.

Since f(α) < 1, we can conclude that the network throughput for M ∼ Θ(K)

is less than that of M = 1.

Corollary 2: Although in the proof of Theorem 1, it is assumed that α is fixed,

in the case of M ∼ Θ(K) and following the same proof steps , it can be shown that

for α → 0 the throughput of the network is less than that of M = 1.

Note that for M ∼ Θ(K), which includes M = K, we obtained an upper bound

for R̄sum. In the next corollary, we derive the exact achievable throughput of the

network for M = K.

Corollary 3: Assuming M = K, the average sum-rate of the network is obtained

by

R̄sum ≈ W (logK − logN0W − γ),
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where γ is Euler’s constant.

Proof: Noting that for M = K, only one user exists in each cluster, all the users

can transmit with full power over the orthogonal subchannels. Hence, since I
(j)
i = 0,

for i = 1, ..., K, the average sum-rate of the network is given by

R̄sum = E

[

K
∑

i=1

R
(j)
i

]

=
W

K

K
∑

i=1

E

[

log

(

1 +
h

(j)
ii

N0W
K

)]

,

where the expectation is computed with respect to h
(j)
ii . Under a Rayleigh fading

channel model, we have

R̄sum =
W

K

K
∑

i=1

∫ ∞

0

e−x log(1 + λx)dx,

where λ , K
N0W

. Thus,

R̄sum = W

∫ ∞

0

e−x log(1 + λx)dx

= We
1

λ

∫ ∞

1/λ

e−x

x
dx

= We
1

λ E1

(

1

λ

)

, (22)

where E1(x) is obtained by the exponential-integral function defined as [14]

En(x) ,

∫ ∞

1

e−tx

tn
dt.

To simplify (22), we use the following series representation for E1(x),

E1(x) = −γ − log x +

∞
∑

s=1

(−1)s+1xs

s.s!
, (23)

where γ is Euler’s constant and is defined by the limit [14]

γ = lim
s→∞

(

s
∑

k=1

1

k
− log s

)

= 0.577215665...
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Thus, the average sum-rate of the network is obtained as

R̄sum = We
1

λ

(

−γ + log λ+
∞
∑

s=1

(−1)s+1

s.s!

(

1

λ

)s
)

.

For sufficiently large values of K, we have λ = K
N0W

� 1, which results in e
1

λ ≈ 1

and
∞
∑

s=1

(−1)s+1

s.s!

(

1

λ

)s

≈ 0.

Consequently for M = K, the average sum-rate of the network is asymptotically

obtained by

R̄sum ≈ W (logK − logN0W − γ). (24)

Corollary 4: For M = K, the average sum-rate of the network is of order logK.

Through comparing (24) with (7), it is concluded that the throughput of the network

with M = K is less than or equal to that of M = 1.

We finally evaluate the throughput of the network versus the number of clusters

for finite values of K through simulation results. Fig. 1 illustrates the maximum

average sum-rate of the network versus M for K = 20, K = 40 and α = 0.1. From

the figure, we can see that the average sum-rate is a decreasing function of M . So,

the maximum value of R̄sum is achieved at M = 1.

IV. Conclusion

We have analyzed the average sum-rate of a single-hop wireless network in terms

of the number of clusters, M , and under the shadowing effect with probability α. It

has been demonstrated that for M ∼ o(K) and 0 < α ≤ 1, where α is fixed, the

average sum-rate of the network is of order W
α

log K
M

. Also, it has been proved that

the maximum average sum-rate of the network for every value of 0 < α ≤ 1 and

1 ≤ M ≤ K is achieved at M = 1. In fact, in the proposed model, partitioning the

bandwidth W into M subchannels has no gain in terms of enhancing the throughput.
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Fig. 1. Average sum-rate of the network vs. M for K = 20 and K = 40.

Throughout this work, it is assumed that all the links use a single antenna.

A possible future extension of this work would be to analyze the performance of

the network with multiple antenna transmitters/receivers. Also, we showed that the

maximum throughput is achieved at M = 1 without considering the fairness issues.

An interesting problem for future research is to analyze the tradeoff between the

maximum throughput of the network and the fairness between the users in terms of

M .

Appendix I

Proof of Lemma 1

Let define χk , L(j)
ki pk, where L(j)

ki is independent of pk, for k 6= i. Under a

quasi-static Rayleigh fading channel condition, it is concluded that χk’s are the i.i.d.

random variables with

E [χk] = E

[

L(j)
ki pk

]

= αqn,

V ar [χk] = E
[

χ2
k

]

− E
2 [χk] = 2αqn − (αqn)2,
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where E

[

(h
(j)
ki )2

]

= 2 and E [pk] = qn. Also, the interference I
(j)
i is a random variable

with mean µn and variance ϑ2
n, where

µn = E







n
∑

k 6=i
k=1

χk






= α(n− 1)qn,

ϑ2
n = (n− 1)

(

2αqn − (αqn)2
)

.

By using the Chebyshev inequality, we obtain

Pr{|I (j)
i − µn| < ψn} ≥ 1 −

ϑ2
n

ψ2
n

,

for all ψn > 0. Thus, we have

Pr{|I (j)
i − α(n− 1)qn| < ψn} ≥ 1 −

(n− 1) (2αqn − (αqn)2)

ψ2
n

.

It is seen that for

ψn = ω
(

√

(n− 1) (2αqn − (αqn)2)
)

,

we have

lim
n→∞

1 −
(n− 1) (2αqn − (αqn)2)

ψ2
n

= 1.

Thus,

α(n− 1)qn − ψn < I
(j)
i < α(n− 1)qn + ψn, w. p. 1.

By choosing ψn = o(α(n− 1)qn), we can obtain I
(j)
i ∼ α(n− 1)qn, w. p. 1.

Appendix II

Proof of Lemma 2

Under the on-off power allocation strategy and using qn = Pr
{

h
(j)
ii > τn

}

, we

have

E

[

R
(j)
i

]

= E

[

R
(j)
i

∣

∣

∣
h

(j)
ii > τn

]

Pr
{

h
(j)
ii > τn

}

+ E

[

R
(j)
i

∣

∣

∣
h

(j)
ii ≤ τn

]

Pr
{

h
(j)
ii ≤ τn

}

= qnE

[

R
(j)
i

∣

∣

∣
h

(j)
ii > τn

]

+ (1 − qn)E
[

R
(j)
i

∣

∣

∣
h

(j)
ii ≤ τn

]

.
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Since for h
(j)
ii ≤ τn, pi = 0, it is concluded

E

[

R
(j)
i

]

=
qnW

M
E

[

log

(

1 +
h

(j)
ii

I
(j)
i + N0W

M

)
∣

∣

∣

∣

∣

h
(j)
ii > τn

]

. (B-1)

Under condition M ∼ o(K) and for large values of K, the number of links in

each cluster is sufficiently large. So, we can apply Lemma 1 to obtain

E

[

R
(j)
i

]

≈
qnW

M
E

[

log

(

1 +
h

(j)
ii

α(n− 1)qn + N0W
M

)
∣

∣

∣

∣

∣

h
(j)
ii > τn

]

, (B-2)

where the expectation is computed with respect to h
(j)
ii . For large values of n, we can

ignore the noise power N0W
M

. Hence, by using the approximation log(1 + z) ≈ z −
z2

2
for |z| � 1, we have

E

[

R
(j)
i

]

≈
qnW

M

{

1

αnqn
E

[

h
(j)
ii

∣

∣

∣
h

(j)
ii > τn

]

−
1

2

1

(αnqn)2
E

[

(h
(j)
ii )2

∣

∣

∣
h

(j)
ii > τn

]

}

.

Under a Rayleigh fading channel model,

E

[

h
(j)
ii

∣

∣

∣
h

(j)
ii > τn

]

= 1 + τn,

E

[

(h
(j)
ii )2

∣

∣

∣
h

(j)
ii > τn

]

= τ 2
n + 2τn + 2.

Using qn = Pr
{

h
(j)
ii > τn

}

= e−τn , the average sum-rate of the links in Cj is

given by

R̄(j)
sum =

n
∑

i=1

E

[

R
(j)
i

]

=
W

αM

[

1 + τn −
τ 2
n + 2τn + 2

2αne−τn

]

. (B-3)

Thus, the optimization problem is

τ ∗n = arg max
τn

R̄(j)
sum.

Taking the first-order derivative of (B-3) yields

∂R̄
(j)
sum

∂τn
=

W

αM

[

1 −
τ 2
n + 4τn + 4

2αne−τn

]

. (B-4)
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Since, the second-order derivative of (B-3) is negative, the maximum value of

R̄
(j)
sum is obtained by setting (B-4) equal to zero. So, we have

2αne−τn = τ 2
n + 4τn + 4,

or

τn = log 2αn− 2 log τn − log

(

1 +
4τn + 4

τ 2
n

)

. (B-5)

It can be verified that the solution for (B-5) is

τ ∗n = logαn− 2 log logαn+O(1). (B-6)

Appendix III

Proof of Lemma 4

Using (B-3), the network throughput is obtained as

R̄sum =

M
∑

j=1

R̄(j)
sum

=
W

α

[

1 + τn −
τ 2
n + 2τn + 2

2αne−τn

]

. (C-1)

Considering the optimum threshold level obtained in (B-5) and noting that

αne−τn = αnqn = c(logαn)2, it can be easily shown that for M ∼ o(K)

1 −
τ 2
n + 2τn + 2

2αne−τn
∼ O(1).

Hence by using τn = − log qn, we arrive at the following equation

R̄sum ≈
W

α
[− log qn +O(1)] . (C-2)

Through substituting (5) in (C-2) and using n =
K

M
, we finally obtain

R̄sum =
W

α

(

log
K

M
+ o(logK) +O(1)

)

.
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