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How Much Feedback is Required in MIMO
Broadcast Channels?

Alireza Bayesteh, and Amir K. Khandani

Dept. of Electrical Engineering
University of Waterloo
Waterloo, ON, N2L 3G1
alireza, khandani@shannon2.uwaterloo.ca

Abstract

In this paper, a downlink communication system, in which a Base Station (BS) equipped with M
antennas communicates with IV users each equipped with K receive antennas (K < M), is considered.
It is assumed that the receivers have perfect Channel State Information (CSI), while the BS only knows
the partial CSI, provided by the receivers via feedback. The minimum amount of feedback required at
the BS, to achieve the maximum sum-rate capacity in the asymptotic case of N — oo is studied. First,
the amount of feedback is defined as the average number of users who send information to the BS.
For fixed SNR values, it is shown that with finite amount of feedback it is not possible to achieve the
maximum sum-rate. Indeed, to reduce the gap between the achieved sum-rate and the optimum value
to zero, a minimum feedback of InInln N is asymptotically necessary. Next, the scenario in which the
amount of feedback is defined as the average number of bits sent to the BS is considered, assuming
different ranges of Signal to Noise Ratio (SNR). In the fixed and low SNR regimes, it is demonstrated
that to achieve the maximum sume-rate, an infinite amount of feedback is required. Moreover, in order
to reduce the gap to the optimum sum-rate to zero, in the fixed SNR regime, the minimum amount of
feedback scales as ©(In1nln N), which is achievable by the Random Beam-Forming scheme proposed
in [14]. In the high SNR regime, two cases are considered; in the case of K < M, it is proved that
the minimum amount of feedback bits to reduce the gap between the achievable sum-rate and the
maximum sum-rate to zero grows logaritmically with SNR, which is achievable by the “Generalized
Random Beam-Forming” scheme, proposed in [18]. In the case of K = M, it is shown that by using the
Random Beam-Forming scheme and the total amount of feedback not growing with SNR, the maximum

sum-rate capacity is achieved.
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I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) systems have proved their ability to achieve high bit
rates in a scattering wireless network. In a point-to-point scenario, it has been shown that the
capacity scales linearly with the minimum number of transmit and receive antennas, regardless of
the availability of Channel State Information (CSI) at the transmitter [1] [2]. This linear increase
is so-called multiplexing gain.

In a MIMO Broadcast Channel (MIMO-BC), a BS equipped with multiple antennas com-
municates with several multiple-antenna users. Recently, there has been a lot of interest in
characterizing the capacity region of this channel [3], [4], [5], [6]. In these works, it has been
shown that the sum-rate capacity of MIMO-BC grows linearly with the minimum number of
transmit and receive antennas, provided that both transmitter and receiver sides have perfect
CSI. Indeed, in a network with a large number of users, the BS can increase the throughput
by selecting the best set of users to communicate with. This results in the so-called multiuser
diversity gain [7], [8].

Unlike the point-to-point scenario, in MIMO-BC it is crucial for the transmitter to have CSI.
It has been shown that MIMO-BC without CSI at the BS is degraded [9]. Moreover, for the case
of single antenna users, multiplexing gain reduces to one, and multiuser diversity gain disappears
[107] [11].

Due to the weak performance of having no CSI at the BS, some authors have considered
MIMO-BC with partial CSI [10] [12] [13] [14] [15] [16] [17] [18]. In [12], the authors have
proposed a user selection strategy in a single-antenna broadcast channel, which exploits the
maximum sum-rate capacity with only one bit feedback per user. This idea has been generalized
for MIMO-BC in [13], using the idea of antenna selection.

Reference [14] proposes a downlink transmission scheme based on random beam-forming,
relying on partial CSI at the transmitter. In this scheme, the BS randomly constructs A/ orthogonal
beams and transmits data to the users with the maximum Signal to Interference plus Noise Ratio
(SINR) for each beam. Therefore, only the value of maximum SINR, and the index of the beam
for which the maximum SINR is achieved, are fed back to the BS for each user. This significantly
reduces the amount of feedback. Reference [14] shows that when the number of users tends to
infinity, the optimum sum-rate throughput can be achieved.

Reference [10] considers a downlink channel where a transmitter with A/ antennas commu-

nicates with M single-antenna receivers. It is assumed that receivers have perfect CSI, but the
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transmitter only has the quantized information regarding the channel instantiation. This reference
shows that assuming Zero-Forcing Beam-Forming (ZFBF) precoding at the transmitter, the full
multiplexing gain can be achieved with partial CSI, if the quality of the CSI is increased linearly
with the SNR. This result is generalized in [15] to the case of multiple-antenna receivers, when
the number of receive antennas is less than M. In [16], the authors consider a MIMO-BC when
a transmitter with two antennas transmits data to two single-antenna receivers. They show that if
the transmitter has the channel state with finite precision, the maximum achievable multiplexing
gain is % 1. In fact, references [10], [15], and [16] study the performance degradation of MIMO-
BC due to the imperfect CSI, at the high SNR regime. The size of the network (the number of
users) is assumed to be fixed in these references.

In [17], we have considered a downlink scheme based on ZFBF and have proved that when
the number of users, IV, tends to infinity, the maximum sum-rate capacity is achievable with the
amount of feedback scaling as [In N]*. In [18], the authors have considered a MIMO-BC with
large number of users at high SNR. They have shown that it is possible to achieve the maximum
multiplexing gain with the amount of feedback per user decreasing with N. However, it is still
required that the feedback load per user grows logaritmically with SNR. Two essential questions
arise here: i) Is it possible to achieve the maximum sum-rate capacity with finite feedback in
a large network (N — o0)? ii) If not, what is the minimum feedback rate (in terms of N and
SNR) in order to achieve the sum-rate capacity of the system?

In this paper, we aim to answer the above questions. First, we define the amount of feedback
as the average number of users who send information to the BS. In the fixed and low SNR
regimes, our results show that it is not possible to achieve the maximum sum-rate with a finite
amount of feedback. Moreover, in the fixed SNR regime, in order to reduce the gap between the
achieved sum-rate and the optimum value to zero, the amount of feedback must be greater than
Inlnln N. In the second part, we define the amount of feedback as the number of information
bits sent to the BS. In the fixed SNR regime, our analysis shows that the minimum amount of
feedback, in order to reduce the gap to the optimum sum-rate to zero, scales as ©(Inlnln N),
which can be achieved using the Random Beam-Forming scheme proposed in [14]. However,
the optimality of Random Beam-Forming only holds for the region In P ~ Q(In N). In the
regime of In P ~ Q(In N), we consider two cases. In the case of X' < M, we prove that

1t is assumed that the transmitted signal and the channel coefficients are real.
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the minimum amount of feedback bits to reduce the gap between the achievable sum-rate and
the maximum sum-rate to zero grows logaritmically with SNR, which is achievable by the
“Generalized Random Beam-Forming” scheme, proposed in [18]. In the case of K = M, we
show that by using the Random Beam-Forming scheme and the amount of feedback not growing
with SNR the maximum sum-rate capacity is achievable.

In section Il of this paper, we introduce the system model, while section Il is devoted to the
asymptotic analysis of the amount of feedback. Section IV concludes the paper.

Throughout this paper, the norm of the vectors and the Frobenius norm of the matrices are
denoted by ||.||. The Hermitian operation is denoted by (.)¥ and the determinant and the trace
operations are denoted by |.| and Tr(.), respectively. E{.} represents the expectation, notation
“In” is used for the natural logarithm, and the rates are expressed in nats. RH(.) represents the

right hand side of the equations. Indeed, for any functions f(N) and g(V), f(N) = O(g(N))

fv)
g(N)

0, f(N) = Q(g(N)) is equivalent to limy_... L5 > 0, f(N) = w(g(N)) is equivalent to

g(N)
lim o f(_N = o0, f(N) = ©(g(NN)) is equivalent to limy ’;EN))

o0, f(N) ~ g(N) is equivalent to limy . {5 = 1, and f(N) 2 g(N) is equivalent to
(V)

lim oo I69) > 1.

IS equivalent to th_,oo‘f ‘ < oo, f(N) = o(g(N)) is equivalent to th_,oo)

= ¢, where 0 < ¢ <

m\\—/ta

N

Il. SYSTEM MODEL

In this work, we consider a MIMO-BC in which a BS equipped with M antennas communi-
cates with N users, each equipped with K antennas, where we assume that X < M. The channel
between each user and the BS is modeled as a zero-mean circularly symmetric Gaussian matrix

(Rayleigh fading). The received vector by user k can be written as
yir = Hyx +ny, 1)

where x € CM*! is the transmitted signal, H;, € CX*M js the channel matrix from the transmitter
to the kth user, which is assumed to be perfectly known at the receiver side and partially known
(or completely unknown) at the transmitter side, and n, € CX*! ~ CA(0,1Ix) is the noise
vector at this receiver. We assume that the transmitter has an average power constraint P, i.e.
E {Tr(xx")} < P. We consider a block fading model in which each Hy is constant for the
duration of a frame. The frame itself is assumed to be long enough to allow communication at

rates close to the capacity.
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[1l. ASYMPTOTIC ANALYSIS
A. The average number of users send feedback to the BS

In this section, we define the amount of feedback as the average number of users who send
feedback to the BS. It is assumed that the SNR (P) is fixed. In the following theorems, we provide
the necessary and sufficient conditions in order to achieve limy_, ., 72725 = land imy_ o Ropt—

pt

Rs = 0, where Ro, denotes the maximum achievable sum-rate in MIMO-BC, for any user

selection strategy S, respectively:

Theorem 1 Consider a MIMO-BC with N users (N — oo), which utilizes a fixed user selection
strategy S. Let N5 be the number of users who send information to the BS in this strategy. Then,

the necessary and sufficient condition to achieve limy_. . % = 1 is having
P

E{Ns} ~w(1). @)

Proof- Necessary Condition- Let us denote Gg as the set of users who send information to the
BS using strategy S. Define ps(k) as the probability that user & belongs to Ggs. Since we consider
a homogenous network, this probability is independent of k, and we denote it by pg. Therefore,
Ns = |Gs] is a Binomial random variable with parameters (N, ps), and we have E{Ns} = Nps.
Let us define
N
Ri=Eq max In|Ty +y HIQ.H,| [As
> Tr(Qn)=P n=1
and

N
R, =E max In|Ty + Y HYQH,| | A§ ¢,
> Tr(an):P n=1
where Aj is the event that |Gs| = 0, and A§ is the complement of As. We have

Rs < Pr{As}RLS + Pr{A{IR,
= (1—ps)" "R + [1— (1 —ps)™] Ra, (3)

where R denotes the achievable sum-rate by the strategy S and RﬁSSI stands for the sum-rate
of MIMO-BC when no CSI is available at the BS, conditioned on Ag. The above equation
comes from the fact that with probability Pr{As} = (1 — ps)"¥ no users send feedback to the
BS and hence, the resulting sum-rate is upper-bounded by RﬁSSI. Using (3) and having

Ropt = Pr{As}R; + Pr{AS IR, (4)

DRAFT



we can write
Ropt —Rs = (1—ps)¥(R1 — RED. (5)
It can also be shown that
R > E {111 <1 + Pn}%x HHMH?) ‘ Ag} : (6)
where H, ;. denotes the jth row of H,. The right hand side of (6) can be lower-bounded as,

RH(6) > E{ln (1+Pm%XHHj,k”2>
J

As, %} Pr {%]As} @

where ¢ is the event that max; ., ||H, || > ¢, for some chosen ¢. Hence,
Pr{As, 6}
Pr{As}
1 —Pr{A§} — Pr{€"}
Pr{As}

_ Pr{¢}
— In(1+ Pt) (1 - W) : 8

where € is the complement of &;. Pr{€ "} can be computed as

Pr{%tc} = Pr{rr;z}cXHHj,kHzSt}

Mo NK
@ (1o e
= (1 e ) : 9)

where (a) comes from the fact that ||H;x||* has chi-square distribution with 21/ degrees of

RH(6) > In(1+ Pt)

> In(1+ Pt)

freedom [19]. Now, assume that
E{Ns} = Nps = w(1), (10)
i.e., Nps ~ O(1). Choosing t = 22X, from (9), we obtain
PE{6CY ~ ¢ S Ty o] (12)
Indeed, noting Pr{As} = (1 — ps)" and Npgs ~ O(1), we have
Pr{As} ~ ©(1). (12)
Substituting (11) and (12) in (8) yields
RH(6) 2 In (1 + glnN) (1 -0 (e%[lﬂ(l)}))
~ Inln N+ O(1). (13)
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Indeed, using the fact that in a homogenous MIMO-BC (when the users’ channels have the
same statistical behavior) with no CSI at the transmitter, the maximum sum-rate is achieved by

time-sharing between the users [9], we can write

P
RESSI = Epyja {111 I+ MHkaH AS}
P 2
< KEg,j4sIn 1+M||Hk|| As
(a) P
< Kln (1 + MEHklAs { \|HkH2’ AS})
(b) P B, {IIH|*}
< Khn(l+4+——%t—"—"—-
= “( M Pr{As)
PK
n< + PI’{As})
2 e, (14)

where (a) comes from the concavity of In function and (b) comes from the fact that E, {||Hy||*} >
B, 45 { [|[Hk|?| As} Pr{As}. Combining (6), (13), and (14), and substituting in (5), under the
assumption of (10), we get

om\"
ROpt - Rs Z (1 - %) [hlth + O(l)]
~ ¢ %DnlnN.
Rs e %Wlnln N
= < 1-—. 15
ROpt - ROpt ( )
As a result, noting that Rope ~ M Inln N [14], we obtain
E{Ng} » w(l) = lim Rs £1. (16)
N—o0 ROpt

Sufficient Condition- Let us define the strategy S as selecting M users randomly among the
following set:

gS = {k|)\max(Hk:) > t}, (17)

where Ap.x(Hy) is the maximum singular value of HkH}?, and ¢ is a threshold value. After
selecting the users, the BS performs ZFBF, where the coordinates are chosen as the eigenvectors,
corresponding to the maximum singular values of the selected users. In [20], it has been shown

that for a K x M matrix A, whose elements are i.i.d Gaussian, we have
M2 (1 4 O(e7'tY))
L(M)I'(K)

ps = Pr{max(A) >t} = (18)
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Hence,

E{Ns} = Npsg
tM+K726—t(1+O(e—tt—1))

= N 19
C(MT(E) 49
Having E{Ns} ~ w(1), yields,
t~InN+(M+K—-2)Inln N —w(1). (20)
Utilizing ZFBF at the BS, and defining
* A P
R*=MEx< In|1+ — |Gs| > M » |
Tr { ['HH'H} }
we can write
Rs > R'P{|Gs| = M}, (21)
Where H = |:g£7max|gz;,max| o '|gsT7,L,max:|T in WhICh gsi,max = V )\maX(HSi)Vg,max’ Z =
1,---,m (m < M), and V, max IS the eigenvector corresponding to maximum singular value
of the ith selected user (s;), and m = min(M, |Gg|).
ns = Pr{|Gs| > M} can be computed as follows:
Ns = 1-— Pr{|gs| < M}
M—-1
N —m
= 1-) ( )p?(l —ps)"
m=0 m
(a) M-1 Npg)™
> 1 Z %6—(1\7—771);)37 (22)
m=0

where (a) results from the facts that () < 2% and (1 — ps)V ™ < e=N=™Ps, Since Npg ~
w(1), we have ng ~ 1 — o(1).
Indeed, we can lower-bound R* as

R* = MhhP - MEx{X(H)||Gs| = M}, (23)

where X (H) = In (Tr { [HHH}_I}) In [21], Appendix E, it has been shown that

By {X(H)| |Gs| > M} < In % (M — 1) In(2M?). (24)
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Using the above equation and (23) and selecting ¢ > In NV, yields,

R* > M (PlnN) — M(M — 1) In(2M?). (25)
Substituting R* and ng in (21), and having the fact that Rop ~ M Inln N [14], yields
. Rs
lim = 1. 26
N—o0 ROpt ( )
[

Theorem 2 For any user selection strategy S, the necessary condition to achieve lim y_.o, Ropt—
Rs = 0 is having

E{Ns} ~Inlnln N + w(1). (27)

Proof - Assume that
E{Ns} » Inlnln N + w(1). (28)
In other words, E{Ns} ~ Inlnln N+O(1), or E{Ns} < Inlnln N. Similar to (5), we can write
Ropt —Rs = (1—ps)V[R1 — RIS (29)

Following the same approach as in Theorem 1, under the assumption of (28), we can show that
Ry 2 Inln N + O(1), and RS ~ O(Inlnln N). Hence,
Ropt —Rs > (1—pg)Y [InIn N + O(Inlnln N))
(@ e BWNs}1+00s) 1y In N + O(Inlnln N)]
R e BWs) i N) (1 g (1)) (30)

(a) comes from the facts that E{Ns} = Npg and In(1 — ps) ~ ps + O(p%), and (b) results
from writing Inln N as e~ noting that e*Vs}0®s) ~ 1 4 o(1). In the case of E{Ns} ~
InInIn N + O(1), we have RH(30) ~ e 9W [1 + o(1)]. In the case of E{Ns} < Inlnln N, we
have RH(30) ~ Y [1 + o(1)], where T > 1. As a result,

E{Ns} = Inlnln N +w(1) = lim Rop — Rs # 0. (31)
[

Theorem 3 The sufficient condition to achieve limy_.., Ropt — Rs = 0 is having
E{Ns} ~ MInlnln N + w(1). (32)
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Proof - Consider the Random Beam-Forming strategy, introduced in [14]. In this strategy, the
BS randomly constructs M orthogonal beams and transmits data to the users with the maximum
SINR for each beam. Assuming each user’s antenna as a separate user, we define the following

set:
Gume = {k|3i, SINR{” >1}, m=1,--- M, (33)

where SINRESZ) is the received SINR over the ith antenna of the kth user, for the mth transmitted
beam. Grpr = U, gf{gF is the set of users who send feedback to the BS. The achievable sum-

rate by this scheme, denoted by Rggr, is lower-bounded as

Rrer > M1n1+t {ﬂ@}
> Mn(1+ (1 - Z Pr{@c}) (34)

where %, is the event that \QRBF| > 1, and Z2¢ is the complement of Z,,,.

For a randomly chosen user &, we define

Plgm) =S Pr{k € gRBF

= Pr{U,%’,E:?)}

< an : (35)

where %, is the event that SINR|") > ¢ and 5"}’ £ Pr{£,"}, which is independent of ,
17, m, and we denote it by ». Indeed, pfj”’ is independent of k£, m, and is denoted by p. Hence,
p < Kn.

To evaluate the right hand side of (34), first we compute Pr{Z¢} as follows:

Pr{ZC} = (1)~

P KN
< (1-%) (36)
Therefore,
RH(34) > Mln(1+1) {1 M (1 . %)KN}
> Min(14t)[1 — Me™7). (37)
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Under the condition of (32), which implies that E{Nggr} ~ MNp ~ M Inlnln N + w(1), and
e—Mt/P

that 1 < 7T < K, we can write

knowing the fact that n = [14] and writing p as p = Tn, where T is a constant such

o—Mt/P
P P
=1 ~ M[lnN—(M—l)ln(MlnN>—
1
Inlnlnln N +In7T —w | —— | | . 38
nmimin AT w(lnlnlnN)] (38)

Substituting ¢ in (37) yields
Rrpr > MlIn (1 + %lnN%— O(lnlnN)) X
(1— Me 7). (39)

Using the above equation and having the facts that Rop, ~ M In(1+ £ In N + O(Inln N))
[14], and E{Nggr} ~ M Inlnln N + w(1), we have

Inln N) Mge,(%ﬁi}qnlnlnm[l +o(1)]

Ropt — Rrer < O < N
~ o(l). (40)

Consequently, limy_..c Ropt — Rrer = 0.

B. Amount of bits fed back to the BS

In this section, we study the minimum amount of feedback required at the BS, in terms of
number of bits 2, in order to achieve the maximum sum-rate capacity. It is assumed that the
SNR (P) is fixed and the number of bits fed back by each user is an integer.

Theorem 4 The necessary and sufficient condition to achieve limy_, % = 1 for any user
P

selection strategy S is having
E{Fs} ~w(1), (41)

where Fs is the total number of bits fed back to the BS.

%In fact, it is more precise to express the amount of feedback in terms of binits, as it is assumed that the users who do not
send any information to the BS do not contribute to the total amount of feedback.
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Proof- Necessary condition- The proof of the necessary condition easily follows from Theorem
1, and the fact that the number of bits fed back by each user is an integer.

Sufficient Condition- Consider the Random Beam-Forming scheme. Given any function
f(N) 2 E{Ns} ~ w(1), we set the threshold ¢ as the solution to the following equation:

e—Mt/P B f(N)
(1+t)yM=1 — MNT’ (42)

where T is a constant between 1 and K. By selecting ¢ as the above equation, using the same

approach as in the proof of Theorem 3, it can be shown that lim y_. Rist = 1. Since the users
P

in Ql({E)F only need to send the index m to the BS, the total amount of feedback bits is equal

to [log,(M)]f(N) ~ w(1). Consequently, it is possible to achieve limy .., ==~ = 1, with the

7—\)fOpt

average number of feedback bits scaling as w(1).
|

Theorem 5 The necessary and sufficient condition to achieve lim y_.o, Ropt —Rs = 0 is having
E{Fs} ~O(Inlnln N) + w(1). (43)

Proof- The proof follows from Theorems 2 and 3, with the same approach as that of Theo-
rem 4.

[

Remark 1- From the above theorems, it follows that the Random Beam-forming scheme is
optimum in the fixed SNR regime, in the sense of achieving the maximum sum-rate with the
minimum required amount of feedback.

Remark 2- Using the conventional ZFBF (with the user selection algorithm as in the proof of
the sufficient condition in Theorem 1), assuming that the selected users quantize the eigenvectors
corresponding to their maximum singular values and feed back the quantization indices to the
BS, from [22], it can be shown that

Rop — R% < MIn <1 + Py(In N)Q_%> : (44)

where Ry denotes the achievable sum-rate of ZFBF when the BS has perfect CSI from all the
selected users, R, is the achievable sum-rate when the BS only has the quantization indices of
the selected users’ channels, B is the number of quantized bits for each selected user, and ~ is

a constant depending on the quantization method, which is shown to be lower-bounded by #-1

RE
ZE. — 1, we must

[22]. From the above equation, it follows that in order to achieve limy_. -
P
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have B > (M —1)InIn N + o(Inln N), and in order to achieve limy_... Roy — RS = 0, the
condition B ~ (M —1)InIln N + w(1) must be satisfied. In other words, the minimum required
amount of feedback to achieve the maximum sum-rate must scale at least as In In V. This implies
that although the proposed user selection algorithm in Theorem 1, along with utilizing ZFBF, is
shown to be optimal in terms of the average number of users who send feedback to the BS, in

terms of the average number of feedback bits, it is not optimal.

C. Variable SNR Scenario

In the previous section, the SNR (P) is assumed to be fixed. In this section, we study the
scaling law of the minimum amount of feedback in order to achieve the maximum sum-rate,
when the SNR itself is a function of N. To this end, we consider two special regimes of low
SNR and high SNR. Since achieving the optimum sum-rate requires the square magnitudes of
the selected coordinates to behave as In N, the effective SNR of the selected links scales as
PlIn N. Hence, low SNR and high SNR regimes are defined by the regions of PIn N ~ o(1)
and PIn N ~ w(1), respectively.

1) Low SNR Regime: In this regime, it can be shown that [23]

7?fopt; ~ PE{nmax}a (45)

Where npax = maxy, Amax(Hy). In other words, the optimum strategy requires the BS to perform
beam-forming on the eigenvector corresponding to the maximum largest eigenvalue. Having the
fact that E{nax} ~ In NV [20], it follows that in the low SNR regime, as R, ~ Pln N ~ o(1),

Rs _
Ropt

the achievability of the optimum sum-rate for a given strategy .S is defined by limy .

Theorem 6 The necessary and sufficient condition in order to achieve the optimum sum-rate
throughput in the low SNR regime is:

E{Ns} ~ w(1),

and
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Proof - Following the approach of Theorem 1 and using the equations (5), (8), (9), and (14),

we have
Ropt —Rs > (1—ps)V (Ri — RS, (46)
NK
( kg )
NK
N M-t
@ pi|1- (1 Zm=0 nr® ) (47)
(1 —ps)V ’
and
RIS < Kn (1 + %) . (48)
—Ps

(a) comes from the low-SNR assumption and the fact that for z < 1, In(1 + z) = z. Under
the assumption of E{Ns} = Nps ~ O(1) and choosing ¢ = X, we have R; ~ £2X and
RO ~ ©(P). Noting that Rope ~ PIn N, we can write

RS Rl RNCSI
< 1-(1—pg)N_HAs
7?/Opt - ( pS)

~ 1-0(1). (49)

As a result,

E{Ns} = w(l) = lim

N—o0 Opt

< 1. (50)

The necessity of E{Fs} ~ w(1) directly follows from the above equation.

Sufficient condition - In this part, we prove that for any given function f(/N) ~ w(1), one can
achieve the maximum sum-rate such that E{Ns} < f(N) and E{Fs} < f(NV). Assume that the
users in the following set:

gS £ {k’)\maX(Hk> > t}? (51)
where
témax<lnN+(M+K—2)lnlnN—%lnf(N),lnN), (52)

quantize the eigenvector corresponding to their maximum singular value, using a quantization
code book W, which consists of L =272 randomly selected unit vectors in the M -dimensional

space (Random Vector Quantization (RVQ)). The BS selects one of the users in Gg at random
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and serves this user, performing beam-forming on the direction of its quantized eigenvector. The

achievable sum-rate of this scheme can be lower-bounded as
Rs > E {m (1 + Pt]‘I>H<f>|2)} [1—(1—ps)V]
~ PLE {|¢H<i>|2} [1—(1—ps)™]

Q -
> PUE{|9/B2| [1 e V],

(53)

where pg = Pr{k € G5} for a randomly chosen &k, ® denotes the eigenvector corresponding to

the maximum singular value of the selected user, and @ denotes the quantized version of ®. (a)

comes from the fact that (1 — pg)" < e="Ps. Using (18), we can write

tM-i—K—Q —t

T(M)D(K)

o (VI 252

Ps [1 + O(G_tt_l)]

. MA4K—2
:>67Nps -~ e—mln( F(N),(In N)M+ )

Y

where (a) comes from (52). We have
0 2 |B7)?

= max|P ¢
c
c eEW

From [21], Appendix C, it follows that the pdf of 9, = |®c;|? is obtained from
fo.(0) = (M —1)(1—-0)M2 0<6 <1
Hence,
Fy(0) = [Fa ()"

- [1-(1-0M1".

(54)

(55)

(56)

(57)
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From the above equation, E{#} can be lower-bounded as
1
E{0) — / 01,(0)d0
0
1
~ [ a-F)as
0

_ /01 (1-[-a-0"1")aw

(a) 1 LMt
> 1- e du
0
1
-1 L
© 1_]\/[—1/0 uiT e du
© L w1 / 2 +/°° g
— M—-1
=1 |/, u U 1 e "du
1 e !
= 1—-—L™3|1
(+57=1)
VI -1
@ 1 92t <1+ MG_ 1). (58)

the change of variable v = Lp*~". (c) comes from the fact that as M > 2, 2= <, and as a
result, for u > 1, W T < 1. (d) follows from the definition of L as 2 S Combining (45),

(52), (53), (54), and (58), and the fact that E{ny.x} ~ In N + O(In1n N) [20], yields,
Pt |:1 — 272(1517@ (1 + e~ 1 )} |:1 _ e—min(\/m7(1nN)Ai+K72>

In the above equation, (a) comes from the fact that [1 — MM—l}L < e~ L™ (b) results from
-M
-1

RS M-1
lim —— = lim
N—oo ROpt N—oo P]E{?”max}

~ 1. (59)

Moreover, we have

E{Ns} = Nps

A
=
2

< f(N), (60)

DRAFT



18

and

E{Fs} = E{Ns}logy(L)

f(N
< v Y
< f(N), (61)
which completes the proof of Theorem 6.
[
2) High SNR Regime: The sum-rate capacity in this regime can be written as [14],
Ropt ~ M In (% InN + O(Plnln N)> . (62)

Theorem 7 1) The necessary condition to achieve lim . %it = 1in the case of K < M, and
also K = M and SNR regime of In P ~ O(Inln N), is having E{Ns} ~ w(1). ii) in the case
of K = M, and the regime of In P ~ w(Inln N), it is possible to achieve limy_, Rﬁit =1
without any CSI at the BS.

Proof - Proof of i): Similar to the proof of Theorem 1, we can write
Ropt —Rs > (1—ps)V(R1 — RIS™). (63)

From [20], R, can be lower bounded as

R >E { ilog(l + %0]2-) As} , (64)
where "~
aj2- = max max x"THH,x
s.t. xfAx =1
Efx =0, (65)
and E; £ [vy|--+|v;_1], in which v;, i = 1,--- ,j — 1, is the optimizing parameter x, in the

maximization of 2. In other words, the maximizing parameter x is found in the null space

M

of the previously selected coordinates. Defining %, = {ﬂ (0]2 > t)} similar to (8), we can

j=1
write
P Pr{€‘}
(@ P S Pr{o? <t}
> Mln(1+ Mt) (1 — Pr{As] , (66)
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where (a) comes from the union bound for the probability. From [20], Lemma 3, we have

Pr{a? <t} < Z <]j) Gra—j(t)' [l — GK,M—j+1(t)]N_i, (67)

i=N—j+1
where G, ,,(t) is defined in [20], Lemma 1.
Setting t = % and using the result of [20], Appendix IV, on the asymptotic behavior of G,, ., ()
for large ¢, we have

Pr{af < mTN} < i:Nin (7) {1 e (“nN)j%K‘j‘l)r {@ ((lnN)\]j%K—J—l)}N—i

< Nj—le—G(\/N(ln N)M+E=j=1)

~ 0 (Nj’le"/ﬁ) . (68)
Substituting in (66), we obtain
PInN o( NM—1e=VN)
> - :
R, > Mln(1+ Wi ) <1 Pr{As] (69)
Assuming Npg ~ w(1), noting that Pr{As} = (1 — ps)", incurs Pr{As} ~ ©(1), which yields
Pln N
> . M-1_-vN
Ry > Mln(1+ 7 >(1 o( NM-1¢ )). (70)
Moreover, using (14), under the condition of Npg ~ w(1), we have
P
(O}
R < Kn (M) +0(1). (71)
Substituting in (63), yields
Ropt — Rs = (1 —pg)™ {(M — K)In (% lnN) + KlnlnN} . (72)

In the case of K < M, from the above equation and noting Rop: ~ M In (£ In N), it follows
that

Rs (1—p5)N(M—K)'

< 1= 73
Ron S i (73)
Hence, having Npg ~ w(1) results in
. Rs
1 1. 74
Indeed, in the case of K = M, similar to (73), we can write
. N
Rs < 1- (1 —ps) lnln]\/" (75)
Ropt InP+Inln N
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Therefore, for the regime of In P ~ O(Inln N), having Npg ~ w(1) incurs limy ., == # 1.

ROpt

Proof of ii): In the case of K = M and In P ~ w(Inln V), assume that no CSI is available at

the BS. In this case, the best strategy, as mentioned earlier, is time-sharing between the users.

|

Mln(%) +E{In|H;H/|}

The achievable sum-rate in this case can be written as

P

Q

~ MInP+0O(1). (76)
As a result,
I Rs I MIn P
1m = 11m
N—oo ROpt N—oco M In P + MInln N
= 1. (77)
[ |

Theorem 8 The necessary condition to achieve limy_.o, Ropt — Rs = 0 in the case of K = M

is having
E{Ns} ~Inlnln N + w(1), (78)
and in the case of K < M is having
E{Ns} ~Inln(Pln N) + w(1), (79)
for the values of P satisfying Inln(P1In N) ~ o(N).

Proof - The proof easily follows from (72) and the approach used in the proof of Theorem 2.

[ |

Theorem 8 implies that in the case of K = M, the average number of users sending feedback
to the BS does not need to grow with the SNR 3. In the case of K < M, writing InIn(PIn N)
asInlnln N +1In (1 + 2E-), it turns out that for the values of P such that In P ~ O(Inln V),
the condition E{Ns} ~ Inln(PIln N)+w(1) is equivalent to E{Ns} ~ Inlnln N +w(1), which
implies that E{Ns} does not need to grow with SNR. Moreover, for the values of P satisfying

In P ~ w(lnln N), the condition (79) reduces to E{Ns} ~ Inln P + w(1), which incurs that

3This statement will be made rigorous in the proof of Theorem 11.
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the average number of users sending feedback to the BS must grow at least double logarithmic
with SNR.

In the previous section, we have observed that the Random Beam-forming scheme introduced
in [14] is asymptotically optimal in the sense of achieving the maximum sum-rate with the
minimum order of the required amount of feedback, in the fixed SNR regime. The question here

is for what ranges of SNR this optimality holds. The following theorem answers this question:

Theorem 9 The necessary and sufficient condition to achieve limy_.o Ropt — Rrsr = 0 IS
having *

InP = Q(lnN). (80)

Proof - Necessary condition - The sum-rate throughput of Random Beam-forming scheme can
be upper-bounded as

M
Repr = E{Zln (1+S|NR§;';;)}
m=1

< M (1 + E{SINR(™ }) , (81)

max

where SINR(™) denotes the maximum received SINR over the mth transmitted beam. Defining

max

Xmax 2 SINR™) | for all values of ¢, we can write
E{Xmax} = /000 Tfx,..(x)de
= /OO [1— Fx,.. (z)]dz
0
< it / - P (@)de, >0, (82)
t

_ Mz
Having the fact that Fix(z) =1 — ﬁ [14], where X £ SINRE?}Z), we can write

. e NK

(& P
F{ Xnax} <t 1—|1—-— dz. 83
(K} <+ ( (Hx)Ml) - 3

Assuming that In P ~ Q(In N), i.e., limy_.c 2£ = ¢, where ¢ > 0, we define

LInN -LilmP], c<1;

P
537 10V, c>1.

T

(84)

“1t is assumed that each received antenna is treated as a separate user.
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Substituting ¢ in (83) yields,
E{ X} < t+/ (1 _exp {—(NKL
t

1+ z)M-1

© NKe 7 e
t+ t 7(1%—1‘)1‘/[—1 1+0 7(1+$)M_1 dz
© NKe'# [ e
[ e +O((HtM—l
~ NKe'r [ 1
t e dz 140 —
| ar T ( N)
© NKe 'F 1
t+/ %dx{u()(— }
¢ (37) N
PN\*M e 1
t+ | — NKe 7 [1+0 | —
(57) o ()]

t+NKe 7 l1+0 <¢%)}

SN —3mP 140 (%], e<t;
P VN

AN [14+0 ()] c>1,
where (a) comes from the fact that 1 — e= < z, Vz, (b) comes from the fact that ¢ > ;- In N

Mt

(from (84)), which incurs (li_t)% < . (c) comes from the fact that since ¢ > - In N, for
x>, we have 1+ > £ and (d) comes from the fact that A/ > 2 and as a result (%)Q_M < 1.
Noting that Ry, ~ M In (£325), and using (81), (83), (84), and (85), we can write
—In (1 — ;ﬁﬁv) + O (#), c<1;
In(2) — In [1—1—0(‘/—5)], c>1.

Noting that in the case of ¢ > 1, \/—PN ~ o(1), it follows from the above equation that

,\
IN=

IA
+

—~
=
=~

2

INZ

IN

—
IS
=

2

IN

(85)

Ropt — Rrer >

(86)

InP ~ Q(ln N) = ]\}lm ROpt — RRBF 7£ 0. (87)
Sufficient condition - Assume that In P ~ Q(In N). Rrgr can be lower-bounded as

Repe > MIn(1+6Pr{SINRL, > ¢, SINRED) > ¢}

M
-3 pr {S|NR§;;;; < t}]
m=1

= MIn(1+t)[1—M(1-n"]

v

MIn(1 +t)

> MlIn(l+1t) [1 - Me_NK"} , (88)
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_ Mt
where ) £ Pr{SINR}) < t} = ;<5 [14]. Setting t = £ [In N — (M — 1) In £ — M InIn N],
it is easy to show that > "X and hence,

P P M
Rrer > Mln(l—i—M{lnN—(M—l)lnM—MlnlnN}) (1—W>. (89)

Since In P ~ Q(In N), it follows from the above equation that limy_... Ropt — Rrer = 0.

[ |
Theorem 9 implies that the Random Beam-forming scheme is not capable of achieving the
maximum sum-rate when In P ~ Q(In V). In other words, the Random Beam-forming scheme
is not efficient in the high SNR regime. In fact, it is easy to show that the multiplexing gain of
this scheme is zero. In the region of In P ~ o(Iln V), following the approach of Theorem 3, it
can be shown that with the number of feedback bits scaling as A [log, M| InIn(Pln N)+w(1),
the maximum sum-rate capacity can be achieved.

The weak performance of Random Beam-Forming in the high SNR regime is due to the fact
that the interference from the other users dominates the noise term. It can be shown that in
order to achieve the maximum sum-rate, we must have limp_ ., I(P) = 0, where I denotes
the interference term. In other words, the interference term must be negligible compared to the
noise. The Random Beam-Forming scheme can be considered as the quantization of the users’
channel vectors by M orthogonal code words. Since the number of code words is fixed, the
quantization error, which is translated to the interference, grows with the SNR. This suggests
that at high SNRs the channel of the users must be known at the BS with higher precision.
This can be performed by increasing the size of the quantization code book and more efficient
methods of channel guantization. Some efficient algorithms for channel quantization have been
proposed in [24] [25] [26] [27].

Theorem 10 Consider a MIMO-BC with N users (N — o0), each equipped with K receive
antennas, in which the base station communicates with M of them with the total power constraint
P (P — o0). Assume that each user quantizes its channel matrix and sends the quantization
index to the transmitter. Then, for any quantization method chosen by the users, any user selection
strategy and any known precoding scheme chosen by the transmitter, the necessary condition to
achieve limy_.o Rop — Ry = 0, in the case of K < M, is having

E{Fo} = Inln(PlnN)+w(l)+ 2_: (M —i)In(PInN) —InN +w(1)]*,  (90)

=1
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and in the case of K = M is having
E{Fg} Z InlnlnN +w(1), (91)

where Fq and Rgm are the total number of bits fed back to the BS, and the maximum achievable
sum-rate, when the BS only has the quantized CSI, respectively, and a* = max(0, a).

Proof - In order to prove the theorem, we assume that the BS selects M users, and transmits
Gaussian signals xq,--- ,x,s, With covariance matrices Qq, - -- , Qy,, respectively. Since for a
fixed set of transmit covariance matrices, Dirty-Paper Coding is proved to achieve the Marton’s
region [5] (which is proved to be the highest known achievable region in BC), we consider this
coding scheme for the proof of this theorem. In Lemmas 1-3, we state the necessary conditions
for the transmit covariance matrices and the selected users, in order to achieve the maximum
sum-rate capacity. Then, in Lemma 4, we associate those conditions with the size of quantization
codebooks, utilized for the quantization of the selected users’ channel matrices. Combining the

results of the lemmas, the theorem is proved.

Lemma 1 The transmit covariance matrices maximizing the sum-rate capacity, in a MIMO-BC

with NV — oo users, are rank one, with probability one.

Proof - Assume that the selected users are indexed by 1 to M. Then, the sum-rate capacity can

be written as [3]

M -1

Rop = E§  max > In T+ Hep QuHrly) (I + Hag (Z Qm)) Hf(i)) )
> TriQiy<p =1 g

(92)

where the expectation is taken over the channel matrices Hy, - - - , H,,. Using the duality between
the MIMO-BC and MIMO Multiple Access Channel (MIMO-MAC), expressed in [3], the sum-
rate capacity can be written as follows:

M
I+) HIPH,

i=1

, (93)

Ropt = Ewm, . Hy max In

s Trip,j<p
where P;’s are the corresponding covariance matrices in the dual MIMO-MAC. We first prove

that to achieve the maximum sum-rate capacity, P;’s must be rank one, with probability one.
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Since P;’s are positive semi-definite, we can write them as UX A, U;, for some unitary matrix
U; and diagonal matrix A;. Defining Z; = U;H; and writing A; = Diag(p;1, - - - , pixc), We have

M M
I+ HPH;| = In|I+) Z/AZ
i=1 1=1
M K
= In I+Zzpilzi(Z)HZi(l) , (94)
=1 [=1

M
where Z;(l) denotes the /th row of Z;. Having the fact that |A| < (M> for any positive

M
semi-definite matrix A, the right hand side of the above equation can be upper-bounded as
M K M K
> ic1 2o Pl Zi(D)]
In [T+ aZi(DV7Zs(1)| < Mn | 1 4 =i=l==L : 95
;;m (0)"2:(0)] < ( i (95)

Now, assume that there exists a user k, such that p,; ~ O(P) and p,; ~ O(P), for some

1 <1,j5 < K. In other words, this matrix is asymptotically of rank at least 2. We have

1ZK DI + 1 Ze(DI* < 11Zl?
= [H*. (96)

In [14], it has been shown that ||H||?.. < InN + MK Inln N, with probability one. This
incurs that at least one of [|Z(1)||* and || Zx(5)||* must be less than NEMEI Y Without loss
of generality, assume that ||Z.(j)[|? < RAHMERLN Having p,; allocated to the coordinate

(k,j) and using (95), yields

M K
max In I—{—Zz,oﬂzi(l)HZi(l)

< max MlIn (1 + St D P