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Abstract

In this paper, a downlink communication system, in which a Base Station (BS) equipped with M

antennas communicates with N users each equipped with K receive antennas (K ≤ M ), is considered.

It is assumed that the receivers have perfect Channel State Information (CSI), while the BS only knows

the partial CSI, provided by the receivers via feedback. The minimum amount of feedback required at

the BS, to achieve the maximum sum-rate capacity in the asymptotic case of N →∞ is studied. First,

the amount of feedback is defined as the average number of users who send information to the BS.

For fixed SNR values, it is shown that with finite amount of feedback it is not possible to achieve the

maximum sum-rate. Indeed, to reduce the gap between the achieved sum-rate and the optimum value

to zero, a minimum feedback of ln ln ln N is asymptotically necessary. Next, the scenario in which the

amount of feedback is defined as the average number of bits sent to the BS is considered, assuming

different ranges of Signal to Noise Ratio (SNR). In the fixed and low SNR regimes, it is demonstrated

that to achieve the maximum sum-rate, an infinite amount of feedback is required. Moreover, in order

to reduce the gap to the optimum sum-rate to zero, in the fixed SNR regime, the minimum amount of

feedback scales as Θ(ln ln ln N), which is achievable by the Random Beam-Forming scheme proposed

in [14]. In the high SNR regime, two cases are considered; in the case of K < M , it is proved that

the minimum amount of feedback bits to reduce the gap between the achievable sum-rate and the

maximum sum-rate to zero grows logaritmically with SNR, which is achievable by the “Generalized

Random Beam-Forming” scheme, proposed in [18]. In the case of K = M , it is shown that by using the

Random Beam-Forming scheme and the total amount of feedback not growing with SNR, the maximum

sum-rate capacity is achieved.
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I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) systems have proved their ability to achieve high bit

rates in a scattering wireless network. In a point-to-point scenario, it has been shown that the

capacity scales linearly with the minimum number of transmit and receive antennas, regardless of

the availability of Channel State Information (CSI) at the transmitter [1] [2]. This linear increase

is so-called multiplexing gain.

In a MIMO Broadcast Channel (MIMO-BC), a BS equipped with multiple antennas com-

municates with several multiple-antenna users. Recently, there has been a lot of interest in

characterizing the capacity region of this channel [3], [4], [5], [6]. In these works, it has been

shown that the sum-rate capacity of MIMO-BC grows linearly with the minimum number of

transmit and receive antennas, provided that both transmitter and receiver sides have perfect

CSI. Indeed, in a network with a large number of users, the BS can increase the throughput

by selecting the best set of users to communicate with. This results in the so-called multiuser

diversity gain [7], [8].

Unlike the point-to-point scenario, in MIMO-BC it is crucial for the transmitter to have CSI.

It has been shown that MIMO-BC without CSI at the BS is degraded [9]. Moreover, for the case

of single antenna users, multiplexing gain reduces to one, and multiuser diversity gain disappears

[10] [11].

Due to the weak performance of having no CSI at the BS, some authors have considered

MIMO-BC with partial CSI [10] [12] [13] [14] [15] [16] [17] [18]. In [12], the authors have

proposed a user selection strategy in a single-antenna broadcast channel, which exploits the

maximum sum-rate capacity with only one bit feedback per user. This idea has been generalized

for MIMO-BC in [13], using the idea of antenna selection.

Reference [14] proposes a downlink transmission scheme based on random beam-forming,

relying on partial CSI at the transmitter. In this scheme, the BS randomly constructs M orthogonal

beams and transmits data to the users with the maximum Signal to Interference plus Noise Ratio

(SINR) for each beam. Therefore, only the value of maximum SINR, and the index of the beam

for which the maximum SINR is achieved, are fed back to the BS for each user. This significantly

reduces the amount of feedback. Reference [14] shows that when the number of users tends to

infinity, the optimum sum-rate throughput can be achieved.

Reference [10] considers a downlink channel where a transmitter with M antennas commu-

nicates with M single-antenna receivers. It is assumed that receivers have perfect CSI, but the
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transmitter only has the quantized information regarding the channel instantiation. This reference

shows that assuming Zero-Forcing Beam-Forming (ZFBF) precoding at the transmitter, the full

multiplexing gain can be achieved with partial CSI, if the quality of the CSI is increased linearly

with the SNR. This result is generalized in [15] to the case of multiple-antenna receivers, when

the number of receive antennas is less than M . In [16], the authors consider a MIMO-BC when

a transmitter with two antennas transmits data to two single-antenna receivers. They show that if

the transmitter has the channel state with finite precision, the maximum achievable multiplexing

gain is 2
3

1. In fact, references [10], [15], and [16] study the performance degradation of MIMO-

BC due to the imperfect CSI, at the high SNR regime. The size of the network (the number of

users) is assumed to be fixed in these references.

In [17], we have considered a downlink scheme based on ZFBF and have proved that when

the number of users, N , tends to infinity, the maximum sum-rate capacity is achievable with the

amount of feedback scaling as [ln N ]M . In [18], the authors have considered a MIMO-BC with

large number of users at high SNR. They have shown that it is possible to achieve the maximum

multiplexing gain with the amount of feedback per user decreasing with N . However, it is still

required that the feedback load per user grows logaritmically with SNR. Two essential questions

arise here: i) Is it possible to achieve the maximum sum-rate capacity with finite feedback in

a large network (N → ∞)? ii) If not, what is the minimum feedback rate (in terms of N and

SNR) in order to achieve the sum-rate capacity of the system?

In this paper, we aim to answer the above questions. First, we define the amount of feedback

as the average number of users who send information to the BS. In the fixed and low SNR

regimes, our results show that it is not possible to achieve the maximum sum-rate with a finite

amount of feedback. Moreover, in the fixed SNR regime, in order to reduce the gap between the

achieved sum-rate and the optimum value to zero, the amount of feedback must be greater than

ln ln ln N . In the second part, we define the amount of feedback as the number of information

bits sent to the BS. In the fixed SNR regime, our analysis shows that the minimum amount of

feedback, in order to reduce the gap to the optimum sum-rate to zero, scales as Θ(ln ln ln N),

which can be achieved using the Random Beam-Forming scheme proposed in [14]. However,

the optimality of Random Beam-Forming only holds for the region ln P � Ω(ln N). In the

regime of ln P ∼ Ω(ln N), we consider two cases. In the case of K < M , we prove that

1It is assumed that the transmitted signal and the channel coefficients are real.
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the minimum amount of feedback bits to reduce the gap between the achievable sum-rate and

the maximum sum-rate to zero grows logaritmically with SNR, which is achievable by the

“Generalized Random Beam-Forming” scheme, proposed in [18]. In the case of K = M , we

show that by using the Random Beam-Forming scheme and the amount of feedback not growing

with SNR the maximum sum-rate capacity is achievable.

In section II of this paper, we introduce the system model, while section III is devoted to the

asymptotic analysis of the amount of feedback. Section IV concludes the paper.

Throughout this paper, the norm of the vectors and the Frobenius norm of the matrices are

denoted by ‖.‖. The Hermitian operation is denoted by (.)H and the determinant and the trace

operations are denoted by |.| and Tr(.), respectively. E{.} represents the expectation, notation

“ln” is used for the natural logarithm, and the rates are expressed in nats. RH(.) represents the

right hand side of the equations. Indeed, for any functions f(N) and g(N), f(N) = O(g(N))

is equivalent to limN→∞

∣∣∣f(N)
g(N)

∣∣∣ < ∞, f(N) = o(g(N)) is equivalent to limN→∞

∣∣∣f(N)
g(N)

∣∣∣ =

0, f(N) = Ω(g(N)) is equivalent to limN→∞
f(N)
g(N)

> 0, f(N) = ω(g(N)) is equivalent to

limN→∞
f(N)
g(N)

= ∞, f(N) = Θ(g(N)) is equivalent to limN→∞
f(N)
g(N)

= c, where 0 < c <

∞, f(N) ∼ g(N) is equivalent to limN→∞
f(N)
g(N)

= 1, and f(N) & g(N) is equivalent to

limN→∞
f(N)
g(N)

≥ 1.

II. SYSTEM MODEL

In this work, we consider a MIMO-BC in which a BS equipped with M antennas communi-

cates with N users, each equipped with K antennas, where we assume that K ≤ M . The channel

between each user and the BS is modeled as a zero-mean circularly symmetric Gaussian matrix

(Rayleigh fading). The received vector by user k can be written as

yk = Hkx + nk, (1)

where x ∈ C
M×1 is the transmitted signal, Hk ∈ C

K×M is the channel matrix from the transmitter

to the kth user, which is assumed to be perfectly known at the receiver side and partially known

(or completely unknown) at the transmitter side, and nk ∈ C
K×1 ∼ CN (0, IK) is the noise

vector at this receiver. We assume that the transmitter has an average power constraint P , i.e.

E
{
Tr(xxH)

}
≤ P . We consider a block fading model in which each Hk is constant for the

duration of a frame. The frame itself is assumed to be long enough to allow communication at

rates close to the capacity.
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III. ASYMPTOTIC ANALYSIS

A. The average number of users send feedback to the BS

In this section, we define the amount of feedback as the average number of users who send

feedback to the BS. It is assumed that the SNR (P ) is fixed. In the following theorems, we provide

the necessary and sufficient conditions in order to achieve limN→∞
RS

ROpt
= 1 and limN→∞ROpt−

RS = 0, where ROpt denotes the maximum achievable sum-rate in MIMO-BC, for any user

selection strategy S, respectively:

Theorem 1 Consider a MIMO-BC with N users (N →∞), which utilizes a fixed user selection

strategy S. Let NS be the number of users who send information to the BS in this strategy. Then,

the necessary and sufficient condition to achieve limN→∞
RS

ROpt
= 1 is having

E{NS} ∼ ω(1). (2)

Proof- Necessary Condition- Let us denote GS as the set of users who send information to the

BS using strategy S. Define pS(k) as the probability that user k belongs to GS . Since we consider

a homogenous network, this probability is independent of k, and we denote it by pS . Therefore,

NS = |GS| is a Binomial random variable with parameters (N, pS), and we have E{NS} = NpS .

Let us define

R1 = E



 max

Qn∑
Tr(Qn)=P

ln

∣∣∣∣∣IM +
N∑

n=1

HH
n QnHn

∣∣∣∣∣

∣∣∣∣∣AS



 ,

and

R2 = E



 max

Qn∑
Tr(Qn)=P

ln

∣∣∣∣∣IM +
N∑

n=1

HH
n QnHn

∣∣∣∣∣

∣∣∣∣∣A
C
S



 ,

where AS is the event that |GS| = 0, and AC
S is the complement of AS . We have

RS ≤ Pr{AS}RNCSI
AS

+ Pr{AC
S }R2

= (1− pS)NRNCSI
AS

+
[
1− (1− pS)N

]
R2, (3)

where RS denotes the achievable sum-rate by the strategy S and RNCSI
AS

stands for the sum-rate

of MIMO-BC when no CSI is available at the BS, conditioned on AS . The above equation

comes from the fact that with probability Pr{AS} = (1 − pS)N no users send feedback to the

BS and hence, the resulting sum-rate is upper-bounded by RNCSI
AS

. Using (3) and having

ROpt = Pr{AS}R1 + Pr{AC
S }R2, (4)
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we can write

ROpt −RS ≥ (1− pS)N(R1 −RNCSI
AS

). (5)

It can also be shown that

R1 ≥ E

{
ln

(
1 + P max

j,k
‖Hj,k‖2

)∣∣∣∣AS

}
, (6)

where Hj,k denotes the jth row of Hk. The right hand side of (6) can be lower-bounded as,

RH(6) ≥ E

{
ln

(
1 + P max

j,k
‖Hj,k‖2

)∣∣∣∣AS,Ct

}
Pr {Ct|AS} , (7)

where Ct is the event that maxj,k ‖Hj,k‖2 > t, for some chosen t. Hence,

RH(6) ≥ ln(1 + Pt)
Pr{AS,Ct}

Pr{AS}

≥ ln(1 + Pt)
1− Pr{AC

S } − Pr{C C
t }

Pr{AS}

= ln(1 + Pt)

(
1− Pr{C C

t }
Pr{AS}

)
, (8)

where C C
t is the complement of Ct. Pr{C C

t } can be computed as

Pr{C C
t } = Pr

{
max

j,k
‖Hj,k‖2 ≤ t

}

(a)
=

(
1−

M−1∑

m=0

tm

m!
e−t

)NK

, (9)

where (a) comes from the fact that ‖Hj,k‖2 has chi-square distribution with 2M degrees of

freedom [19]. Now, assume that

E{NS} = NpS � ω(1), (10)

i.e., NpS ∼ O(1). Choosing t = ln N
2

, from (9), we obtain

Pr{C C
t } ∼ e

−K
√

N(ln N)M−1

2M−1(M−1)!
[1+o(1)]

. (11)

Indeed, noting Pr{AS} = (1− pS)N and NpS ∼ O(1), we have

Pr{AS} ∼ Θ(1). (12)

Substituting (11) and (12) in (8) yields

RH(6) & ln

(
1 +

P

2
ln N

)(
1−Θ

(
e
−K

√
N(ln N)M−1

2M−1(M−1)!
[1+o(1)]

))

∼ ln ln N + O(1). (13)
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Indeed, using the fact that in a homogenous MIMO-BC (when the users’ channels have the

same statistical behavior) with no CSI at the transmitter, the maximum sum-rate is achieved by

time-sharing between the users [9], we can write

RNCSI
AS

= EHk|AS

{
ln

∣∣∣∣I +
P

M
HkH

H
k

∣∣∣∣
∣∣∣∣AS

}

≤ KEHk|AS

{
ln

(
1 +

P

M
‖Hk‖2

)∣∣∣∣AS

}

(a)

≤ K ln

(
1 +

P

M
EHk|AS

{
‖Hk‖2

∣∣AS

})

(b)

≤ K ln

(
1 +

P

M

EHk
{‖Hk‖2}

Pr{AS}

)

= K ln

(
1 +

PK

Pr{AS}

)

(12)∼ Θ(1), (14)

where (a) comes from the concavity of ln function and (b) comes from the fact that EHk
{‖Hk‖2} ≥

EHk|AS
{‖Hk‖2| AS} Pr{AS}. Combining (6), (13), and (14), and substituting in (5), under the

assumption of (10), we get

ROpt −RS ≥
(

1− O(1)

N

)N

[ln ln N + O(1)]

∼ e−O(1) ln ln N.

⇒ RS

ROpt

≤ 1− e−O(1) ln ln N

ROpt

. (15)

As a result, noting that ROpt ∼ M ln ln N [14], we obtain

E{NS} � ω(1) ⇒ lim
N→∞

RS

ROpt

6= 1. (16)

Sufficient Condition- Let us define the strategy S as selecting M users randomly among the

following set:

GS = {k|λmax(Hk) > t}, (17)

where λmax(Hk) is the maximum singular value of HkH
H
k , and t is a threshold value. After

selecting the users, the BS performs ZFBF, where the coordinates are chosen as the eigenvectors,

corresponding to the maximum singular values of the selected users. In [20], it has been shown

that for a K ×M matrix A, whose elements are i.i.d Gaussian, we have

pS , Pr{λmax(A) > t} =
tM+K−2e−t(1 + O(e−tt−1))

Γ(M)Γ(K)
. (18)
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Hence,

E{NS} = NpS

= N
tM+K−2e−t(1 + O(e−tt−1))

Γ(M)Γ(K)
. (19)

Having E{NS} ∼ ω(1), yields,

t ∼ ln N + (M + K − 2) ln ln N − ω(1). (20)

Utilizing ZFBF at the BS, and defining

R∗ , MEH



 ln


1 +

P

Tr
{[

H
H
H
]−1
}



∣∣∣∣∣∣
|GS| ≥ M



 ,

we can write

RS ≥ R∗Pr{|GS| ≥ M}, (21)

where H =
[
gT

s1,max|gT
s2,max| · · · |gT

sm,max

]T
in which gsi,max =

√
λmax(Hsi

)VH
si,max, i =

1, · · · ,m (m ≤ M), and Vsi,max is the eigenvector corresponding to maximum singular value

of the ith selected user (si), and m = min(M, |GS|).
ηS , Pr{|GS| ≥ M} can be computed as follows:

ηS = 1− Pr{|GS| < M}

= 1−
M−1∑

m=0

(
N

m

)
pm

S (1− pS)N−m

(a)

≥ 1−
M−1∑

m=0

(NpS)m

m!
e−(N−m)pS , (22)

where (a) results from the facts that
(

N
m

)
≤ Nm

m!
and (1 − pS)N−m ≤ e−(N−m)pS . Since NpS ∼

ω(1), we have ηS ∼ 1− o(1).

Indeed, we can lower-bound R∗ as

R∗ ≥ M ln P −MEH {X(H)| |GS| ≥ M} , (23)

where X(H) , ln
(
Tr
{[

H
H
H
]−1
})

. In [21], Appendix E, it has been shown that

EH {X(H)| |GS| ≥ M} ≤ ln
M

t
+ (M − 1) ln(2M 2). (24)
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Using the above equation and (23) and selecting t > ln N , yields,

R∗ ≥ M ln

(
P ln N

M

)
−M(M − 1) ln(2M 2). (25)

Substituting R∗ and ηS in (21), and having the fact that ROpt ∼ M ln ln N [14], yields

lim
N→∞

RS

ROpt

= 1. (26)

�

Theorem 2 For any user selection strategy S, the necessary condition to achieve limN→∞ROpt−
RS = 0 is having

E{NS} ∼ ln ln ln N + ω(1). (27)

Proof - Assume that

E{NS} � ln ln ln N + ω(1). (28)

In other words, E{NS} ∼ ln ln ln N +O(1), or E{NS} < ln ln ln N . Similar to (5), we can write

ROpt −RS ≥ (1− pS)N [R1 −RNCSI
AS

]. (29)

Following the same approach as in Theorem 1, under the assumption of (28), we can show that

R1 & ln ln N + O(1), and RNCSI
AS

∼ O(ln ln ln N). Hence,

ROpt −RS ≥ (1− pS)N [ln ln N + O(ln ln ln N)]

(a)∼ e−E{NS}[1+O(pS)] [ln ln N + O(ln ln ln N)]

(b)∼ e−(E{NS}−ln ln ln N) [1 + o(1)] . (30)

(a) comes from the facts that E{NS} = NpS and ln(1 − pS) ∼ pS + O(p2
S), and (b) results

from writing ln ln N as eln ln ln N , noting that eE{NS}O(pS) ∼ 1 + o(1). In the case of E{NS} ∼
ln ln ln N + O(1), we have RH(30) ∼ e−O(1) [1 + o(1)]. In the case of E{NS} < ln ln ln N , we

have RH(30) ∼ Υ [1 + o(1)], where Υ > 1. As a result,

E{NS} � ln ln ln N + ω(1) ⇒ lim
N→∞

ROpt −RS 6= 0. (31)

�

Theorem 3 The sufficient condition to achieve limN→∞Ropt −RS = 0 is having

E{NS} ∼ M ln ln ln N + ω(1). (32)
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Proof - Consider the Random Beam-Forming strategy, introduced in [14]. In this strategy, the

BS randomly constructs M orthogonal beams and transmits data to the users with the maximum

SINR for each beam. Assuming each user’s antenna as a separate user, we define the following

set:

G(m)
RBF = {k|∃i, SINR(m)

k,i > t}, m = 1, · · · ,M, (33)

where SINR(m)
k,i is the received SINR over the ith antenna of the kth user, for the mth transmitted

beam. GRBF =
⋃M

m=1 G
(m)
RBF is the set of users who send feedback to the BS. The achievable sum-

rate by this scheme, denoted by RRBF, is lower-bounded as

RRBF ≥ M ln(1 + t)Pr

{
M⋂

m=1

Dm

}

≥ M ln(1 + t)

(
1−

M∑

m=1

Pr{DC
m}
)

, (34)

where Dm is the event that |G(m)
RBF| ≥ 1, and DC

m is the complement of Dm.

For a randomly chosen user k, we define

p
(m)
k , Pr{k ∈ G(m)

RBF}

= Pr

{
K⋃

i=1

B
(m)
k,i

}

≤
K∑

i=1

η
(m)
k,i , (35)

where B
(m)
k,i is the event that SINR(m)

k,i > t and η
(m)
k,i , Pr{B(m)

k,i }, which is independent of k,

i, m, and we denote it by η. Indeed, p
(m)
k is independent of k, m, and is denoted by p. Hence,

p ≤ Kη.

To evaluate the right hand side of (34), first we compute Pr{DC
m} as follows:

Pr{DC
m} = (1− η)KN

≤
(
1− p

K

)KN

. (36)

Therefore,

RH(34) ≥ M ln(1 + t)

[
1−M

(
1− p

K

)KN
]

≥ M ln(1 + t)[1−Me−Np]. (37)

DRAFT



12

Under the condition of (32), which implies that E{NRBF} ∼ MNp ∼ M ln ln ln N + ω(1), and

knowing the fact that η = e−Mt/P

(1+t)M−1 [14] and writing p as p = Tη, where T is a constant such

that 1 ≤ T ≤ K, we can write

NT
e−Mt/P

(1 + t)M−1
∼ ln ln ln N + ω(1).

⇒ t ∼ P

M

[
ln N − (M − 1) ln

(
P

M
ln N

)
−

ln ln ln ln N + ln T − ω

(
1

ln ln ln N

)]
. (38)

Substituting t in (37) yields

RRBF ≥ M ln

(
1 +

P

M
ln N + O(ln ln N)

)
×

(
1−Me−Np

)
. (39)

Using the above equation and having the facts that ROpt ∼ M ln
(
1 + P

M
ln N + O(ln ln N)

)

[14], and E{NRBF} ∼ M ln ln ln N + ω(1), we have

ROpt −RRBF ≤ O

(
ln ln N

ln N

)
+ M2e−(

E{NRBF}
M

−ln ln ln N)[1 + o(1)]

∼ o(1). (40)

Consequently, limN→∞ROpt −RRBF = 0.

�

B. Amount of bits fed back to the BS

In this section, we study the minimum amount of feedback required at the BS, in terms of

number of bits 2, in order to achieve the maximum sum-rate capacity. It is assumed that the

SNR (P ) is fixed and the number of bits fed back by each user is an integer.

Theorem 4 The necessary and sufficient condition to achieve limN→∞
RS

ROpt
= 1 for any user

selection strategy S is having

E{FS} ∼ ω(1), (41)

where FS is the total number of bits fed back to the BS.

2In fact, it is more precise to express the amount of feedback in terms of binits, as it is assumed that the users who do not

send any information to the BS do not contribute to the total amount of feedback.
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Proof- Necessary condition- The proof of the necessary condition easily follows from Theorem

1, and the fact that the number of bits fed back by each user is an integer.

Sufficient Condition- Consider the Random Beam-Forming scheme. Given any function

f(N) , E{NS} ∼ ω(1), we set the threshold t as the solution to the following equation:

e−Mt/P

(1 + t)M−1
=

f(N)

MNT
, (42)

where T is a constant between 1 and K. By selecting t as the above equation, using the same

approach as in the proof of Theorem 3, it can be shown that limN→∞
RS

ROpt
= 1. Since the users

in G(m)
RBF only need to send the index m to the BS, the total amount of feedback bits is equal

to dlog2(M)ef(N) ∼ ω(1). Consequently, it is possible to achieve limN→∞
RS

ROpt
= 1, with the

average number of feedback bits scaling as ω(1).

�

Theorem 5 The necessary and sufficient condition to achieve limN→∞ROpt−RS = 0 is having

E{FS} ∼ Θ(ln ln ln N) + ω(1). (43)

Proof- The proof follows from Theorems 2 and 3, with the same approach as that of Theo-

rem 4.

�

Remark 1- From the above theorems, it follows that the Random Beam-forming scheme is

optimum in the fixed SNR regime, in the sense of achieving the maximum sum-rate with the

minimum required amount of feedback.

Remark 2- Using the conventional ZFBF (with the user selection algorithm as in the proof of

the sufficient condition in Theorem 1), assuming that the selected users quantize the eigenvectors

corresponding to their maximum singular values and feed back the quantization indices to the

BS, from [22], it can be shown that

RZF −RQ
ZF ≤ M ln

(
1 + Pγ(ln N)2−

B
M−1

)
, (44)

where RZF denotes the achievable sum-rate of ZFBF when the BS has perfect CSI from all the

selected users, RQ
ZF is the achievable sum-rate when the BS only has the quantization indices of

the selected users’ channels, B is the number of quantized bits for each selected user, and γ is

a constant depending on the quantization method, which is shown to be lower-bounded by M−1
M

[22]. From the above equation, it follows that in order to achieve limN→∞
RQ

ZF

ROpt
= 1, we must
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have B & (M − 1) ln ln N + o(ln ln N), and in order to achieve limN→∞ROpt −RQ
ZF = 0, the

condition B ∼ (M − 1) ln ln N + ω(1) must be satisfied. In other words, the minimum required

amount of feedback to achieve the maximum sum-rate must scale at least as ln ln N . This implies

that although the proposed user selection algorithm in Theorem 1, along with utilizing ZFBF, is

shown to be optimal in terms of the average number of users who send feedback to the BS, in

terms of the average number of feedback bits, it is not optimal.

C. Variable SNR Scenario

In the previous section, the SNR (P ) is assumed to be fixed. In this section, we study the

scaling law of the minimum amount of feedback in order to achieve the maximum sum-rate,

when the SNR itself is a function of N . To this end, we consider two special regimes of low

SNR and high SNR. Since achieving the optimum sum-rate requires the square magnitudes of

the selected coordinates to behave as ln N , the effective SNR of the selected links scales as

P ln N . Hence, low SNR and high SNR regimes are defined by the regions of P ln N ∼ o(1)

and P ln N ∼ ω(1), respectively.

1) Low SNR Regime: In this regime, it can be shown that [23]

Ropt ∼ PE{ηmax}, (45)

where ηmax , maxk λmax(Hk). In other words, the optimum strategy requires the BS to perform

beam-forming on the eigenvector corresponding to the maximum largest eigenvalue. Having the

fact that E{ηmax} ∼ ln N [20], it follows that in the low SNR regime, as Ropt ∼ P ln N ∼ o(1),

the achievability of the optimum sum-rate for a given strategy S is defined by limN→∞
RS

Ropt
= 1.

Theorem 6 The necessary and sufficient condition in order to achieve the optimum sum-rate

throughput in the low SNR regime is:

E{NS} ∼ ω(1),

and

E{FS} ∼ ω(1).
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Proof - Following the approach of Theorem 1 and using the equations (5), (8), (9), and (14),

we have

ROpt −RS ≥ (1− pS)N
(
R1 −RNCSI

AS

)
, (46)

R1 ≥ ln(1 + Pt)


1−

(
1−∑M−1

m=0
tm

m!
e−t
)NK

(1− pS)N




(a)∼ Pt


1−

(
1−∑M−1

m=0
tm

m!
e−t
)NK

(1− pS)N


 , (47)

and

RNCSI
AS

≤ K ln

(
1 +

PK

(1− pS)N

)
. (48)

(a) comes from the low-SNR assumption and the fact that for x � 1, ln(1 + x) ≈ x. Under

the assumption of E{NS} = NpS ∼ O(1) and choosing t = ln N
2

, we have R1 ∼ P ln N
2

and

RNCSI
AS

∼ Θ(P ). Noting that ROpt ∼ P ln N , we can write

RS

ROpt

≤ 1− (1− pS)N
R1 −RNCSI

AS

ROpt

∼ 1−Θ(1). (49)

As a result,

E{NS} � ω(1) ⇒ lim
N→∞

RS

ROpt

< 1. (50)

The necessity of E{FS} ∼ ω(1) directly follows from the above equation.

Sufficient condition - In this part, we prove that for any given function f(N) ∼ ω(1), one can

achieve the maximum sum-rate such that E{NS} ≤ f(N) and E{FS} ≤ f(N). Assume that the

users in the following set:

GS , {k|λmax(Hk) > t}, (51)

where

t , max

(
ln N + (M + K − 2) ln ln N − 1

2
ln f(N), ln N

)
, (52)

quantize the eigenvector corresponding to their maximum singular value, using a quantization

code bookW , which consists of L = 2
√

f(N)

2 randomly selected unit vectors in the M -dimensional

space (Random Vector Quantization (RVQ)). The BS selects one of the users in GS at random
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and serves this user, performing beam-forming on the direction of its quantized eigenvector. The

achievable sum-rate of this scheme can be lower-bounded as

RS ≥ E

{
ln
(
1 + Pt|ΦHΦ̂|2

)} [
1− (1− pS)N

]

≈ Pt E

{
|ΦHΦ̂|2

} [
1− (1− pS)N

]

(a)

≥ Pt E

{
|ΦHΦ̂|2

} [
1− e−NpS

]
, (53)

where pS , Pr{k ∈ GS} for a randomly chosen k, Φ denotes the eigenvector corresponding to

the maximum singular value of the selected user, and Φ̂ denotes the quantized version of Φ. (a)

comes from the fact that (1− pS)N ≤ e−NpS . Using (18), we can write

pS ∼ tM+K−2e−t

Γ(M)Γ(K)

[
1 + O(e−tt−1)

]

(a)∼ min

(√
f(N)

N
,
(ln N)M+K−2

N

)

⇒ e−NpS ∼ e
−min

(√
f(N),(ln N)M+K−2

)

, (54)

where (a) comes from (52). We have

θ , |ΦHΦ̂|2

= max
cl

cl∈W
|ΦHcl|2. (55)

From [21], Appendix C, it follows that the pdf of θl , |ΦHcl|2 is obtained from

fθl
(θl) = (M − 1)(1− θl)

M−2, 0 ≤ θl ≤ 1. (56)

Hence,

Fθ(θ) = [Fθl
(θ)]L

=
[
1− (1− θ)M−1

]L
. (57)
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From the above equation, E{θ} can be lower-bounded as

E {θ} =

∫ 1

0

θfθ(θ)dθ

=

∫ 1

0

(1− Fθ(θ))dθ

=

∫ 1

0

(
1−

[
1− (1− θ)M−1

]L)
dθ

=

∫ 1

0

(
1−

[
1− µM−1

]L)
dµ

(a)

≥ 1−
∫ 1

0

e−LµM−1

dµ

(b)
= 1− L−

1
M−1

M − 1

∫ L

0

u
2−M
M−1 e−udu

(c)

≥ 1− L−
1

M−1

M − 1

[∫ 1

0

u
2−M
M−1 du +

∫ ∞

1

e−udu

]

= 1− L−
1

M−1

(
1 +

e−1

M − 1

)

(d)
= 1− 2−

√
f(N)

2(M−1)

(
1 +

e−1

M − 1

)
. (58)

In the above equation, (a) comes from the fact that
[
1− µM−1

]L ≤ e−LµM−1
, (b) results from

the change of variable u = LµM−1. (c) comes from the fact that as M ≥ 2, 2−M
M−1

≤ 0, and as a

result, for u ≥ 1, u
2−M
M−1 ≤ 1. (d) follows from the definition of L as 2

√
f(N)

2 . Combining (45),

(52), (53), (54), and (58), and the fact that E{ηmax} ∼ ln N + O(ln ln N) [20], yields,

lim
N→∞

RS

ROpt

= lim
N→∞

Pt

[
1− 2−

√
f(N)

2(M−1)

(
1 + e−1

M−1

)] [
1− e

−min
(√

f(N),(ln N)M+K−2
)]

PE{ηmax}
= 1. (59)

Moreover, we have

E{NS} = NpS

.
√

f(N)

< f(N), (60)
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and

E{FS} = E{NS} log2(L)

.
√

f(N)

√
f(N)

2

< f(N), (61)

which completes the proof of Theorem 6.

�

2) High SNR Regime: The sum-rate capacity in this regime can be written as [14],

ROpt ∼ M ln

(
P

M
ln N + O(P ln ln N)

)
. (62)

Theorem 7 i) The necessary condition to achieve limN→∞
RS

ROpt
= 1 in the case of K < M , and

also K = M and SNR regime of ln P ∼ O(ln ln N), is having E{NS} ∼ ω(1). ii) in the case

of K = M , and the regime of ln P ∼ ω(ln ln N), it is possible to achieve limN→∞
RS

ROpt
= 1

without any CSI at the BS.

Proof - Proof of i): Similar to the proof of Theorem 1, we can write

ROpt −RS ≥ (1− pS)N(R1 −RNCSI
AS

). (63)

From [20], R1 can be lower bounded as

R1 ≥ E

{
M∑

j=1

log(1 +
P

M
σ2

j )

∣∣∣∣∣AS

}
, (64)

where

σ2
j = max

k
max

x
xHHH

k Hkx

s.t. xHx = 1

ΞH
j x = 0, (65)

and Ξj , [v1| · · · |vj−1], in which vi, i = 1, · · · , j − 1, is the optimizing parameter x, in the

maximization of σ2
i . In other words, the maximizing parameter x is found in the null space

of the previously selected coordinates. Defining Ct ,
{⋂M

j=1

(
σ2

j > t
)}

, similar to (8), we can

write

R1 ≥ M ln(1 +
P

M
t)

(
1− Pr{C C

t }
Pr{AS}

)

(a)

≥ M ln(1 +
P

M
t)

(
1−

∑M
j=1 Pr{σ2

j ≤ t}
Pr{AS}

)
, (66)
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where (a) comes from the union bound for the probability. From [20], Lemma 3, we have

Pr{σ2
j ≤ t} ≤

N∑

i=N−j+1

(
N

i

)
GK,M−j+1(t)

i [1−GK,M−j+1(t)]
N−i

, (67)

where Gn,m(t) is defined in [20], Lemma 1.

Setting t = ln N
2

, and using the result of [20], Appendix IV, on the asymptotic behavior of Gn,m(t)

for large t, we have

Pr

{
σ2

j ≤
ln N

2

}
≤

N∑

i=N−j+1

(
N

i

)[
1−Θ

(
(ln N)M+K−j−1

√
N

)]i [
Θ

(
(ln N)M+K−j−1

√
N

)]N−i

≤ N j−1e−Θ(
√

N(ln N)M+K−j−1)

∼ o
(
N j−1e−

√
N
)

. (68)

Substituting in (66), we obtain

R1 ≥ M ln

(
1 +

P ln N

2M

)(
1− o(NM−1e−

√
N)

Pr{AS}

)
. (69)

Assuming NpS � ω(1), noting that Pr{AS} = (1− pS)N , incurs Pr{AS} ∼ Θ(1), which yields

R1 ≥ M ln

(
1 +

P ln N

2M

)(
1− o(NM−1e−

√
N)
)

. (70)

Moreover, using (14), under the condition of NpS � ω(1), we have

RNCSI
AS

. K ln

(
P

M

)
+ Θ(1). (71)

Substituting in (63), yields

ROpt −RS & (1− pS)N

[
(M −K) ln

(
P

M
ln N

)
+ K ln ln N

]
. (72)

In the case of K < M , from the above equation and noting ROpt ∼ M ln
(

P
M

ln N
)
, it follows

that

RS

ROpt

. 1− (1− pS)N(M −K)

M
. (73)

Hence, having NpS � ω(1) results in

lim
N,P→∞

RS

ROpt

6= 1. (74)

Indeed, in the case of K = M , similar to (73), we can write

RS

ROpt

. 1− (1− pS)N ln ln N

ln P + ln ln N
. (75)
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Therefore, for the regime of ln P ∼ O(ln ln N), having NpS � ω(1) incurs limN→∞
RS

ROpt
6= 1.

Proof of ii): In the case of K = M and ln P ∼ ω(ln ln N), assume that no CSI is available at

the BS. In this case, the best strategy, as mentioned earlier, is time-sharing between the users.

The achievable sum-rate in this case can be written as

RS = E

{
ln

∣∣∣∣I +
P

M
HkH

H
k

∣∣∣∣
}

≈ M ln(
P

M
) + E

{
ln
∣∣HkH

H
k

∣∣}

∼ M ln P + Θ(1). (76)

As a result,

lim
N→∞

RS

ROpt

= lim
N→∞

M ln P

M ln P + M ln ln N

= 1. (77)

�

Theorem 8 The necessary condition to achieve limN→∞ROpt−RS = 0 in the case of K = M

is having

E{NS} ∼ ln ln ln N + ω(1), (78)

and in the case of K < M is having

E{NS} ∼ ln ln(P ln N) + ω(1), (79)

for the values of P satisfying ln ln(P ln N) ∼ o(N).

Proof - The proof easily follows from (72) and the approach used in the proof of Theorem 2.

�

Theorem 8 implies that in the case of K = M , the average number of users sending feedback

to the BS does not need to grow with the SNR 3. In the case of K < M , writing ln ln(P ln N)

as ln ln ln N + ln
(
1 + ln P

ln ln N

)
, it turns out that for the values of P such that ln P ∼ O(ln ln N),

the condition E{NS} ∼ ln ln(P ln N)+ω(1) is equivalent to E{NS} ∼ ln ln ln N +ω(1), which

implies that E{NS} does not need to grow with SNR. Moreover, for the values of P satisfying

ln P ∼ ω(ln ln N), the condition (79) reduces to E{NS} ∼ ln ln P + ω(1), which incurs that

3This statement will be made rigorous in the proof of Theorem 11.
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the average number of users sending feedback to the BS must grow at least double logarithmic

with SNR.

In the previous section, we have observed that the Random Beam-forming scheme introduced

in [14] is asymptotically optimal in the sense of achieving the maximum sum-rate with the

minimum order of the required amount of feedback, in the fixed SNR regime. The question here

is for what ranges of SNR this optimality holds. The following theorem answers this question:

Theorem 9 The necessary and sufficient condition to achieve limN→∞ROpt − RRBF = 0 is

having 4

ln P � Ω(ln N). (80)

Proof - Necessary condition - The sum-rate throughput of Random Beam-forming scheme can

be upper-bounded as

RRBF = E

{
M∑

m=1

ln
(
1 + SINR(m)

max

)}

≤ M ln
(
1 + E{SINR(m)

max}
)

, (81)

where SINR(m)
max denotes the maximum received SINR over the mth transmitted beam. Defining

Xmax , SINR(m)
max, for all values of t, we can write

E{Xmax} =

∫ ∞

0

xfXmax(x)dx

=

∫ ∞

0

[1− FXmax(x)] dx

≤ t +

∫ ∞

t

[1− FXmax(x)] dx, t ≥ 0. (82)

Having the fact that FX(x) = 1− e−
Mx
P

(1+x)M−1 [14], where X , SINR(m)
i,k , we can write

E{Xmax} ≤ t +

∫ ∞

t


1−

(
1− e−

Mx
P

(1 + x)M−1

)NK

 dx. (83)

Assuming that ln P ∼ Ω(ln N), i.e., limN→∞
ln P
ln N

= c, where c > 0, we define

t ,





P
M

[ln N − 1
2
ln P ], c < 1;

P
2M

ln N, c ≥ 1.
(84)

4It is assumed that each received antenna is treated as a separate user.
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Substituting t in (83) yields,

E{Xmax} . t +

∫ ∞

t

(
1− exp

{
− NKe−

Mx
P

(1 + x)M−1

[
1 + O

(
e−

Mx
P

(1 + x)M−1

)]})
dx

(a)

≤ t +

∫ ∞

t

NKe−
Mx
P

(1 + x)M−1

[
1 + O

(
e−

Mx
P

(1 + x)M−1

)]
dx

≤ t +

∫ ∞

t

NKe−
Mx
P

(1 + x)M−1
dx

[
1 + O

(
e−

Mt
P

(1 + t)M−1

)]

(b)∼ t +

∫ ∞

t

NKe−
Mx
P

(1 + x)M−1
dx

[
1 + O

(
1√
N

)]

(c)

≤ t +

∫ ∞

t

NKe−
Mx
P

( P
M

)M−1
dx

[
1 + O

(
1√
N

)]

≤ t +

(
P

M

)2−M

NKe−
Mt
P

[
1 + O

(
1√
N

)]

(d)∼ t + NKe−
Mt
P

[
1 + O

(
1√
N

)]

≤





P
M

[ln N − 1
2
ln P ]

[
1 + O

(
1√
P

)]
, c < 1;

P
2M

ln N
[
1 + O

(√
N

P

)]
, c ≥ 1,

(85)

where (a) comes from the fact that 1− e−x ≤ x, ∀x, (b) comes from the fact that t ≥ P
2M

ln N

(from (84)), which incurs e−
Mt
P

(1+t)M−1 ≤ 1√
N

, (c) comes from the fact that since t ≥ P
2M

ln N , for

x > t, we have 1+x > P
M

, and (d) comes from the fact that M ≥ 2 and as a result
(

P
M

)2−M ≤ 1.

Noting that ROpt ∼ M ln
(

P ln N
M

)
, and using (81), (83), (84), and (85), we can write

ROpt −RRBF ≥




− ln

(
1− ln P

2 ln N

)
+ O

(
1√
P

)
, c < 1;

ln(2)− ln
[
1 + O

(√
N

P

)]
, c ≥ 1.

(86)

Noting that in the case of c ≥ 1,
√

N
P
∼ o(1), it follows from the above equation that

ln P ∼ Ω(ln N) ⇒ lim
N→∞

ROpt −RRBF 6= 0. (87)

Sufficient condition - Assume that ln P � Ω(ln N). RRBF can be lower-bounded as

RRBF ≥ M ln(1 + t)Pr
{

SINR(1)
max > t, · · · , SINR(M)

max > t
}

≥ M ln(1 + t)

[
1−

M∑

m=1

Pr
{

SINR(m)
max ≤ t

}]

= M ln(1 + t)
[
1−M(1− η)NK

]

≥ M ln(1 + t)
[
1−Me−NKη

]
, (88)
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where η , Pr{SINR(m)
i,k ≤ t} = e−

Mt
P

(1+t)M−1 [14]. Setting t = P
M

[
ln N − (M − 1) ln P

M
−M ln ln N

]
,

it is easy to show that η ≥ ln N
N

and hence,

RRBF ≥ M ln

(
1 +

P

M

[
ln N − (M − 1) ln

P

M
−M ln ln N

])(
1− M

NK

)
. (89)

Since ln P � Ω(ln N), it follows from the above equation that limN→∞ROpt − RRBF = 0.

�

Theorem 9 implies that the Random Beam-forming scheme is not capable of achieving the

maximum sum-rate when ln P ∼ Ω(ln N). In other words, the Random Beam-forming scheme

is not efficient in the high SNR regime. In fact, it is easy to show that the multiplexing gain of

this scheme is zero. In the region of ln P ∼ o(ln N), following the approach of Theorem 3, it

can be shown that with the number of feedback bits scaling as Mdlog2 Me ln ln(P ln N)+ω(1),

the maximum sum-rate capacity can be achieved.

The weak performance of Random Beam-Forming in the high SNR regime is due to the fact

that the interference from the other users dominates the noise term. It can be shown that in

order to achieve the maximum sum-rate, we must have limP→∞ I(P ) = 0, where I denotes

the interference term. In other words, the interference term must be negligible compared to the

noise. The Random Beam-Forming scheme can be considered as the quantization of the users’

channel vectors by M orthogonal code words. Since the number of code words is fixed, the

quantization error, which is translated to the interference, grows with the SNR. This suggests

that at high SNRs the channel of the users must be known at the BS with higher precision.

This can be performed by increasing the size of the quantization code book and more efficient

methods of channel quantization. Some efficient algorithms for channel quantization have been

proposed in [24] [25] [26] [27].

Theorem 10 Consider a MIMO-BC with N users (N → ∞), each equipped with K receive

antennas, in which the base station communicates with M of them with the total power constraint

P (P → ∞). Assume that each user quantizes its channel matrix and sends the quantization

index to the transmitter. Then, for any quantization method chosen by the users, any user selection

strategy and any known precoding scheme chosen by the transmitter, the necessary condition to

achieve limN→∞ROpt −RQ
Opt = 0, in the case of K < M , is having

E{FQ} & ln ln(P ln N) + ω(1) +
M−K∑

i=1

[(M − i) ln(P ln N)− ln N + ω(1)]+ , (90)
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and in the case of K = M is having

E{FQ} & ln ln ln N + ω(1), (91)

where FQ and RQ
Opt are the total number of bits fed back to the BS, and the maximum achievable

sum-rate, when the BS only has the quantized CSI, respectively, and a+ , max(0, a).

Proof - In order to prove the theorem, we assume that the BS selects M users, and transmits

Gaussian signals x1, · · · ,xM , with covariance matrices Q1, · · · ,QM , respectively. Since for a

fixed set of transmit covariance matrices, Dirty-Paper Coding is proved to achieve the Marton’s

region [5] (which is proved to be the highest known achievable region in BC), we consider this

coding scheme for the proof of this theorem. In Lemmas 1-3, we state the necessary conditions

for the transmit covariance matrices and the selected users, in order to achieve the maximum

sum-rate capacity. Then, in Lemma 4, we associate those conditions with the size of quantization

codebooks, utilized for the quantization of the selected users’ channel matrices. Combining the

results of the lemmas, the theorem is proved.

Lemma 1 The transmit covariance matrices maximizing the sum-rate capacity, in a MIMO-BC

with N →∞ users, are rank one, with probability one.

Proof - Assume that the selected users are indexed by 1 to M . Then, the sum-rate capacity can

be written as [3]

ROpt = E





max
Qi,π∑Tr{Qi}≤P

M∑

i=1

ln

∣∣∣∣∣∣
I + Hπ(i)Qπ(i)H

H
π(i)

(
I + Hπ(i)

(
∑

j>i

Qπ(i)

)
HH

π(i)

)−1
∣∣∣∣∣∣





,

(92)

where the expectation is taken over the channel matrices H1, · · · ,HM . Using the duality between

the MIMO-BC and MIMO Multiple Access Channel (MIMO-MAC), expressed in [3], the sum-

rate capacity can be written as follows:

ROpt = EH1,··· ,HM
max
Pi∑Tr{Pi}≤P

ln

∣∣∣∣∣I +
M∑

i=1

HH
i PiHi

∣∣∣∣∣ , (93)

where Pi’s are the corresponding covariance matrices in the dual MIMO-MAC. We first prove

that to achieve the maximum sum-rate capacity, Pi’s must be rank one, with probability one.
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Since Pi’s are positive semi-definite, we can write them as UH
i ΛiUi, for some unitary matrix

Ui and diagonal matrix Λi. Defining Zi , UiHi and writing Λi = Diag(ρi1, · · · , ρiK), we have

ln

∣∣∣∣∣I +
M∑

i=1

HH
i PiHi

∣∣∣∣∣ = ln

∣∣∣∣∣I +
M∑

i=1

ZH
i ΛiZi

∣∣∣∣∣

= ln

∣∣∣∣∣I +
M∑

i=1

K∑

l=1

ρilZi(l)
H
Zi(l)

∣∣∣∣∣ , (94)

where Zi(l) denotes the lth row of Zi. Having the fact that |A| ≤
(

Tr(A)
M

)M

for any positive

semi-definite matrix A, the right hand side of the above equation can be upper-bounded as

ln

∣∣∣∣∣I +
M∑

i=1

K∑

l=1

ρilZi(l)
H
Zi(l)

∣∣∣∣∣ ≤ M ln

(
1 +

∑M
i=1

∑K
l=1 ρil‖Zi(l)‖2

M

)
. (95)

Now, assume that there exists a user k, such that ρkl ∼ Θ(P ) and ρkj ∼ Θ(P ), for some

1 ≤ l, j ≤ K. In other words, this matrix is asymptotically of rank at least 2. We have

‖Zk(l)‖2 + ‖Zk(j)‖2 ≤ ‖Zk‖2

= ‖Hk‖2. (96)

In [14], it has been shown that ‖Hk‖2
max < ln N + MK ln ln N , with probability one. This

incurs that at least one of ‖Zk(l)‖2 and ‖Zk(j)‖2 must be less than ln N+MK ln ln N
2

. Without loss

of generality, assume that ‖Zk(j)‖2 < ln N+MK ln ln N
2

. Having ρkj allocated to the coordinate

(k, j) and using (95), yields

max
ρil

(i,l)6=(k,j)∑
ρil=P−ρkj

ln

∣∣∣∣∣I +
M∑

i=1

K∑

l=1

ρilZi(l)
H
Zi(l)

∣∣∣∣∣ ≤ max
ρil

(i,l)6=(k,j)∑
ρil=P−ρkj

M ln

(
1 +

∑M
i=1

∑K
l=1 ρil‖Zi(l)‖2

M

)

= M ln


1 +

max ρil
(i,l)6=(k,j)∑
ρil=P−ρkj

∑M
i=1

∑K
l=1 ρil‖Zi(l)‖2

M




(a)

≤ M ln

(
1 +

ρkj

2M
ln N + O(ln ln N) +

P − ρkj

M
‖Z‖2

max

)
,(97)

where ‖Z‖2
max , maxi,l ‖Zi(l)‖2. (a) comes from the fact that the solution to the maximization

problem in the second line is to allocate the rest of the available power (P−ρkj) to the coordinate

with the highest norm. By a similar argument as before, we can show that ‖Z‖2
max < ln N +
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MK ln ln N , with probability one. Hence, using the above equation,

RH (97) ≤ M ln

(
1 +

P − ρkj

2

M
[ln N + O(ln ln N)]

)
. (98)

Having the fact that ROpt ∼ M ln
(

P
M

ln N + O(ln ln N)
)
, and using the above equation, we

have

ROpt − RH (97) ≥ M ln
(
1− ρkj

2P

)
+ O

(
ln ln N

ln N

)
. (99)

Hence, having ρkj ∼ Θ(P ), incurs limN→∞ROpt − RH (97) > 0. In other words, in order to

have limN→∞ROpt − RH (97) = 0, for each user k, there must be at most one ρkm scaling as

Θ(P ), and the rest must scale as o(P ). In the following, we will show that with probability one,

for each user exactly one ρkm is non-zero, and the rest are zero.

Using (95) and having the fact that
∑K

i=1 ‖Zk(i)‖2 < ln N + MK ln ln N with probability

one, it follows that the right hand side of (95) is upper-bounded by M ln
(

P
M

ln N
)
, which is

proved to be the maximum achievable sum-rate throughput in MIMO-MAC. Hence, in order to

achieve the maximum sum-rate, the inequality in (95) must be turned into the equality, which

means that
∑M

i=1

∑K
l=1 ρilZi(l)

H
Zi(l) must behave like P

M
ln N(I+o(I))5. Moreover, since from

each user at most one singular value can scale as fast as ln N [21], it follows that the maximum

singular values of the selected users must scale as ln N , and their corresponding powers must

scale as P
M

+ o(P ).

Now, assume that there exists i, l such that limN→∞
‖Zi(l)‖2

ln N
< 1, but ρil 6= 0. In the above,

we have seen that ρil ∼ o(P ). The sum-rate can be upper-bounded as

R ≤ ROpt(P − ρil) + ln

∣∣∣∣∣∣∣∣
I + ρil‖Zi(l)‖2φi(l)

Hφi(l)


I +

∑

(j,m)
(j,m)6=(i,l)

ρjmZj(m)H
Zj(m)




−1∣∣∣∣∣∣∣∣

(a)∼ ROpt(P − ρil) + ln

∣∣∣∣∣I +
ρil‖Zi(l)‖2

P−ρil

M
ln N(1 + o(1))

φi(l)
Hφi(l)

∣∣∣∣∣

(b)∼ M ln

(
P − ρil

M
ln N(1 + o(1))

)
+ ln

(
1 +

ρil‖Zi(l)‖2

P−ρil

M
ln N(1 + o(1))

)

(c)∼ M ln

(
P

M
ln N(1 + o(1))

)
− Mρil

P

(
1− ‖Zi(l)‖2

ln N

)
+ o(

ρil

P
), (100)

5
A ∼ o(I) means that all the singular values of A are o(1).
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where φi(l) , Zi(l)
‖Zi(l)‖ , and ROpt(P − ρil) denotes the maximum sum-rate when the power

constraint is P−ρil. (a) comes from the fact that achieving the maximum throughput ofROpt(P−
ρil) requires that

(
I +

∑
(j,m)

(j,m)6=(i,l)

ρjmZj(m)H
Zj(m)

)
∼ P−ρil

M
ln N (I + o(I)). (b) comes from

the fact that ROpt(P − ρil) ∼ M ln
(

P−ρil

M
ln N(1 + o(1))

)
, and finally (c) results from the fact

that ρil ∼ o(P ), and using the approximation ln(1 + x) ≈ x, for x � 1. Suppose that instead

of allocating ρil to the coordinate (i, l), it is allocated to the coordinate corresponding to the

maximum eigenvalue of any of the selected users. Let us denote the achievable sum-rate of the

system in this case by R∗. Since the maximum singular values of the selected users scale as

ln N , the second term in the last line of the above equation scales as o( ρil

P
) and we have

R∗ −R ∼ Mρil

P

(
1− ‖Zi(l)‖2

ln N

)
+ o(

ρil

P
). (101)

As a result, if ρil > 0, R∗ > R, which incurs that in order to achieve the maximum sum-rate

ρil must be zero with probability one. Having this and the fact that from each user at most

one coordinate has the gain scaling as fast as ln N with probability one [21], it follows that

to achieve the maximum sum-rate in the dual MIMO-MAC, the transmit covariance matrices

must be rank one with probability one. Using the result of [3], the following equation holds

between the covariance matrix of the user with the encoding order j in the MIMO-BC, denoted

by Qπ(j), and the covariance matrix of the user with the reverse decoding order j in the dual

MIMO-MAC, denoted by Pπ(j):

Qπ(j) = Mπ(j)Pπ(j)M
H
π(j), (102)

where Mπ(j) is an M×K matrix. Since Pπ(j) is proved to be a rank one matrix with probability

one, it follows from the above equation that Qπ(j) is also rank one with probability one, which

completes the proof of Lemma 1.

�

Lemma 1 implies that the transmit covariance matrix for the jth user can be written as

Qj = ρjΦjΦ
H
j , (103)

where Φj is a unit vector and ρj is the allocated power to the jth user.

Lemma 2 The necessary condition for achieving the maximum sum-rate is that {Φj}M
j=1, defined

in the above equation, form a semi-orthogonal basis for C
M , i.e, |ΦH

j Φi| ∼ o(1), i 6= j, with

probability one.
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Proof - The sum-rate can be upper-bounded as

R
(a)

≤ E

{
M∑

i=1

ln
∣∣I + HiQiH

H
i

∣∣
}

(103)
= E

{
M∑

i=1

ln
∣∣I + ρiHiΦiΦ

H
i HH

i

∣∣
}

= E

{
M∑

i=1

ln
(
1 + ρi‖HiΦi‖2

)
}

= E

{
M∑

i=1

ln

(
1 + ρi

K∑

l=1

λl(i)
∣∣vH

l (i)Φi

∣∣2
)}

= E

{
M∑

i=1

ln

(
1 + ρi

[
λ1(i)

∣∣vH
1 (i)Φi

∣∣2 +
K∑

l=2

λl(i)
∣∣vH

l (i)Φi

∣∣2
])}

, (104)

where (a) comes from ignoring the interference terms, λl(i) denotes the lth ordered singular value

of HiH
H
i , and vl(i) denotes its corresponding eigenvector. Having the facts that λ1(i) ∼ ln N +

o(ln N), which has been proved to be the necessary condition to achieve the maximum sum-rate

(in Lemma 1), and ‖Hi‖2 =
∑

l λl(i) ∼ ln N + o(ln N), with probability one [14], it follows

that
∑K

l=2 λl(i)
∣∣vH

l (i)Φi

∣∣2 ∼ o(ln N). Having this and ROpt ∼ M ln
(

P
M

ln N + o(ln N)
)

[14], it

follows that to achieve the maximum sum-rate we must have λ1(i)
∣∣vH

1 (i)Φi

∣∣2 ∼ ln N [1+ o(1)],

∀i, 1 ≤ i ≤ M . Noting λ1(i) ∼ ln N + O(ln ln N), we conclude
∣∣vH

1 (i)Φi

∣∣2 ∼ 1 + o(1),

∀1 ≤ i ≤ M . In other words, the coordinate of the transmit covariance matrix for each user is

almost in the direction of the eigenvector corresponding to the maximum singular value of that

user.

The rate of the ith encoded user can be upper-bounded as

Rπ(i) = E



ln

∣∣∣∣∣∣
I + Hπ(i)Qπ(i)H

H
π(i)

(
I + Hπ(i)

(
∑

j>i

Qπ(j)

)
HH

π(i)

)−1
∣∣∣∣∣∣





≤ 1

M − i

M∑

j=i+1

E

{
ln
∣∣∣I + Hπ(i)Qπ(i)H

H
π(i)

(
I + Hπ(i)Qπ(j)H

H
π(i)

)−1
∣∣∣
}

. (105)
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Substituting Qπ(i) and Qπ(j) from (103) yields

Rπ(i) ≤ 1

M − i

M∑

j=i+1

E

{
ln

∣∣∣∣I + ρπ(i)ηπ(i)Ψπ(i)Ψ
H
π(i)

(
I + ρπ(j)I

π(i)
π(j)Ωπ(j)Ω

H
π(j)

)−1
∣∣∣∣
}

(a)
=

1

M − i

M∑

j=i+1

E

{
ln

(
1 + ρπ(i)ηπ(i)Ψ

H
π(i)

[
I−

ρπ(j)I
π(i)
π(j)

1 + ρπ(j)I
π(i)
π(j)

Ωπ(j)Ω
H
π(j)

]
Ψπ(i)

)}

=
1

M − i

M∑

j=i+1

E
{
ln
(
1 + ρπ(i)ηπ(i)

)}
+

E

{
ln

(
1− ρπ(i)ηπ(i)

1 + ρπ(i)ηπ(i)

ρπ(j)I
π(i)
π(j)

1 + ρπ(j)I
π(i)
π(j)

|ΨH
π(i)Ωπ(j)|2

)}

(b)

≤ 1

M − i

M∑

j=i+1

E
{
ln
(
1 + ρπ(i)ηπ(i)

)}
+

ln

(
1− E

{
ρπ(i)ηπ(i)

1 + ρπ(i)ηπ(i)

ρπ(j)I
π(i)
π(j)

1 + ρπ(j)I
π(i)
π(j)

|ΨH
π(i)Ωπ(j)|2

})
, (106)

where ηπ(i) , ‖Hπ(i)Φπ(i)‖2, I
π(i)
π(j) , ‖Hπ(i)Φπ(j)‖2, Ψπ(i) ,

Hπ(i)Φπ(i)

‖Hπ(i)Φπ(i)‖ , Ωπ(j) ,
Hπ(i)Φπ(j)

‖Hπ(i)Φπ(j)‖ .

(a) comes from the facts |I + AB| = |I + BA| and
(
I + ρπ(j)I

π(i)
π(j)Ωπ(j)Ω

H
π(j)

)−1

= I −
ρπ(j)I

π(i)
π(j)

1+ρπ(j)I
π(i)
π(j)

Ωπ(j)Ω
H
π(j), and (b) comes from the concavity of ln function. From the above equa-

tion, and noting the facts that E
{
ln
(
1 + ρπ(i)ηπ(i)

)}
. ln

(
P
M

ln N + o(ln N)
)

and ROpt ∼
M ln

(
P
M

ln N + o(ln N)
)
, it follows that in order to achieve the maximum sum-rate, the term

ln

(
1− E

{
ρπ(i)ηπ(i)

1 + ρπ(i)ηπ(i)

ρπ(j)I
π(i)
π(j)

1 + ρπ(j)I
π(i)
π(j)

|ΨH
π(i)Ωπ(j)|2

})

must approach zero for all i and j > i, which incurs that E

{
ρπ(i)ηπ(i)

1+ρπ(i)ηπ(i)

ρπ(j)I
π(i)
π(j)

1+ρπ(j)I
π(i)
π(j)

|ΨH
π(i)Ωπ(j)|2

}
∼

o(1), ∀i, j > i. Since ρπ(i) → ∞ (as P → ∞), and ηπ(i) ∼ ln N , the term
ρπ(i)ηπ(i)

1+ρπ(i)ηπ(i)
≈ 1, with

probability one. Writing v1(π(i)) as απ(i)Φπ(i) + v1(π(i))⊥ and Φπ(i) as γπ(i)v1(π(i)) + Φ⊥
π(i)),

where απ(i) , ΦH
π(i)v1(π(i)), γπ(i) , v1(π(i))HΦπ(i), v1(π(i))⊥ denotes the projection of

v1(π(i)) over the null space of Φπ(i) and Φ⊥
π(i) denotes the projection of Φπ(i) over the null
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space of v1(π(i)), χ , E

{
ρπ(j)I

π(i)
π(j)

1+ρπ(j)I
π(i)
π(j)

|ΨH
π(i)Ωπ(j)|2

}
can be written as

χ = E





ρπ(j)I
π(i)
π(j)

1 + ρπ(j)I
π(i)
π(j)

∣∣∣ΦH
π(i)H

H
π(i)Hπ(i)Φπ(j)

∣∣∣
2

ηπ(i)I
π(i)
π(j)





= E





ρπ(j)

1 + ρπ(j)I
π(i)
π(j)

∣∣∣∣
[
γπ(i)v1(π(i)) + Φ⊥

π(i))

]H
HH

π(i)Hπ(i)Φπ(j)

∣∣∣∣
2

ηπ(i)





(a)

≥ E





ρπ(j)

1 + ρπ(j)I
π(i)
π(j)

(∣∣γπ(i)

∣∣
∣∣∣v1(π(i))HHH

π(i)Hπ(i)Φπ(j)

∣∣∣−
∣∣∣∣
(
Φ⊥

π(i)

)H

HH
π(i)Hπ(i)Φπ(j)

∣∣∣∣
)2

ηπ(i)





(b)

≥ E





ρπ(j)

1 + ρπ(j)I
π(i)
π(j)

(∣∣γπ(i)

∣∣λmax(π(i))
∣∣v1(π(i))HΦπ(j)

∣∣− λmax(π(i))‖Φ⊥
π(i)‖

)2

ηπ(i)





(c)

≥ E

{
ρπ(j)λmax(π(i))

1 + ρπ(j)I
π(i)
π(j)

( ∣∣γπ(i)

∣∣
∣∣∣
[
απ(i)Φπ(i) + v1(π(i))⊥

]H
Φπ(j)

∣∣∣−
∥∥Φ⊥

π(i)

∥∥
)2
}

(d)

≥ E

{( ∣∣γπ(i)

∣∣ ∣∣απ(i)

∣∣ ∣∣ΦH
π(i)Φπ(j)

∣∣− ‖v1(π(i))⊥‖ −
∥∥Φ⊥

π(i)

∥∥
)2
}

, (107)

where λmax(π(i)) denotes the maximum singular value of HH
π(i)Hπ(i). (a) comes from the fact that

|a+ b|2 ≥ (|a|− |b|)2. (b) results from the facts that v1(π(i)) is the eigenvector corresponding to

the maximum singular value of Hπ(i), and hence, v1(π(i))HHH
π(i)Hπ(i) = λmax(π(i))v1(π(i))H ,

and also

∣∣∣∣
(
Φ⊥

π(i)

)H

HH
π(i)Hπ(i)Φπ(j)

∣∣∣∣
2

≤
∥∥∥Φ⊥

π(i)

∥∥∥
2

λmax(π(i)). (c) comes from the fact that ηπ(i) =
∥∥Hπ(i)Φπ(i)

∥∥2 ≤ λmax(π(i)), and finally (d) results from the facts that I
π(i)
π(j) =

∥∥Hπ(i)Φπ(j)

∥∥2 ≤
λmax(π(i)),

∣∣∣
[
απ(i)Φπ(i) + v1(π(i))⊥

]H
Φπ(j)

∣∣∣ ≥
∣∣απ(i)

∣∣
∣∣∣ΦH

π(i)Φπ(j)

∣∣∣−‖v1(π(i))⊥‖, and |γπ(i)| <
1. Since

∣∣vH
1 (π(i))Φπ(i)

∣∣ ∼ 1+o(1), it follows that |απ(i)| = |γπ(i)| ∼ 1+o(1) and ‖v1(π(i))⊥‖ =∥∥∥Φ⊥
π(i)

∥∥∥ ∼ o(1). Hence, the necessary condition to achieve the maximum sum-rate is having
∣∣∣ΦH

π(i)Φπ(j)

∣∣∣
2

∼ o(1), ∀i, j > i, with probability one. In other words, Φπ(i) and Φπ(j) must be

semi-orthogonal to each other with probability one, which completes the proof of Lemma 2.

�

Remark - It is worth to note that the right hand side of (104) achieves the maximum sum-rate

of M ln
(
1 + P

M
ln N [1 + o(1)]

)
if the power is uniformly allocated to the coordinates, almost
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surely. In other words, ρi = P
M

[1 + o(1)].

Lemma 3 Defining εi , vH
1 (π(i))Υi, where Υi ,

[
Φπ(i+1)| · · · |Φπ(M)

]
, and v1(π(i)) denotes

the eigenvector corresponding to the maximum eigenvalue of the ith encoded user, assuming

Dirty-paper Coding, the necessary condition to have ROpt−R → 0, in the case K < M − i+1

is ‖εi‖2 ∼ o
(

1
P ln N

)
and in the case K ≥ M − i + 1 is ‖εi‖2 ∼ o(1), with probability one.

Proof - Consider the user with the encoding order i. The rate of this user can be upper-bounded

as

Rπ(i) ≤ E



ln

∣∣∣∣∣∣
I + Hπ(i)Qπ(i)H

H
π(i)

(
I + Hπ(i)

[
M∑

j=i+1

Qπ(j)

]
HH

π(i)

)−1
∣∣∣∣∣∣





= E



ln

∣∣∣∣∣∣
I + ρπ(i)Hπ(i)Φπ(i)Φ

H
π(i)H

H
π(i)

(
I + Hπ(i)

[
M∑

j=i+1

ρπ(j)Φπ(j)Φ
H
π(j)

]
HH

π(i)

)−1
∣∣∣∣∣∣



 .

(108)

Writing the SVD of Hπ(i) as Uπ(i)Λπ(i)V
H
π(i), we have

Rπ(i) ≤ E
{
ln
∣∣I + ρπ(i)λ1(π(i))Ψπ(i)Ψ

H
π(i)W

∣∣} , (109)

where W , (I + G)−1, in which G , Λπ(i)V
H
π(i)

[∑M
j=i+1 ρπ(j)Φπ(j)Φ

H
π(j)

]
Vπ(i)Λ

T
π(i), and

Ψπ(i) ,
Λπ(i)V

H
π(i)

Φπ(i)√
λ1(π(i))

. Having the facts that vH
1 (π(i))Φπ(i) ∼ 1 + o(1), vH

j (π(i))Φπ(i) ∼ o(1),

j 6= 1 (Lemma 2), λ1(π(i)) ∼ ln N , and λj(π(i)) ∼ o(ln N), j 6= 1 (Lemma 1), we have

Ψπ(i) = [1 + o(1), o(1), · · · , o(1)]T . In other words, as N →∞, Ψπ(i) approaches to the vector

[1, 0, · · · , 0]T . Using |I + AB| = |I + BA|, we can write

Rπ(i) ≤ E
{
ln
(
1 + ρπ(i)λ1(π(i))ΨH

π(i)WΨπ(i)

)}

≈ E
{
ln
(
1 + ρπ(i)λ1(π(i))W11 [1 + o(1)]

)}
, (110)

where Aij denotes the (i, j)th entry of matrix A. Using the concavity of ln function, and having

the facts that λ1(π(i)) ∼ ln N + o(ln N) with probability one, we have

Rπ(i) ≤ ln
(
1 + ρπ(i)(ln N)E {W11} [1 + o(1)]

)
. (111)

Since the necessary condition to achieve the maximum sum-rate is having Rπ(i) ∼ ln( P
M

ln N),

∀i, the above equation implies that the necessary condition to have limN→∞ROpt − R = 0 is

having E {W11} ∼ 1 + o(1), which incurs that W11 must scale as 1 + o(1), with probability

one. In the following, we calculate W11.
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G = Λπ(i)V
H
π(i)

[∑M
j=i+1 ρπ(j)Φπ(j)Φ

H
π(j)

]
Vπ(i)Λ

T
π(i) can be written as

G = ZΘΘHZH , (112)

where Z ,
[√

λ1(π(i))v1(π(i))| · · · |
√

λK(π(i))vK(π(i))
]H

, and

Θ ,
[√

ρπ(i+1)Φπ(i+1)| · · · |√ρπ(M)Φπ(M)

]
.

ZΘ can be written as
[
ΞT |ΩT

]T
, where Ξ ,

√
λ1(π(i))vH

1 (π(i))Θ and Ω , ZrΘ, and Zr ,[√
λ2(π(i))v2(π(i)) |· · · |

√
λK(π(i))vK(π(i))

]H
. Substituting in the above equation yields

G =


 ‖Ξ‖2 ΞΩH

ΩΞH ΩΩH


 . (113)

As a result, W11 can be written as

W11 =
|I + ΩΩH |
|I + G|

=
|I + ΩΩH |

(1 + ‖Ξ‖2) |I + ΩΩH |+∑K
j=2(−1)j+1G1j|∆(C1j)|

, (114)

where ∆(C1j) denotes the minor of C1j and C , G + I. |∆(C1j)| can be computed as

|∆(C1j)| =
∑

i
1,j /∈Ai

|∆Ai
(G1j)| , (115)

where ∆Ai
(G1j) denotes a sub-matrix of ∆(G1j), resulted from deleting the rows and columns

corresponding to the elements in Ai, and Ai is an arbitrary subset of {1, 2, · · · , K}. Note that

∆∅(G1j) = ∆(G1j), where ∅ denotes the null set. Similarly, we can write

|I + ΩΩH | =
∑

i
1/∈Ai

|∆Ai
(G11)| . (116)

Substituting (115) and (116) in (114), after some manipulations, we obtain

W11 =
|I + ΩΩH |

|I + ΩΩH |+ |G|+ ‖Ξ‖2δ1 +
∑K

j=2(−1)j+1G1jδj

, (117)

where δ1 ,
∑

i
1/∈Ai
Ai 6=∅

|∆Ai
(G11)| and δj ,

∑
i

1,j /∈Ai
Ai 6=∅

|∆Ai
(G1j)|. Two situations can occur here:

• Case I; K ≥ M − i + 1: In this case, since G is of rank at most M − i, |G| = 0

in the above equation. We have observed that in order to achieve the maximum sum-

rate ρπ(j) ∼ P
M

[1 + o(1)], which incurs |Glk| ∼ Θ
(
Pf (1)(λ)

)
, k, l 6= 1, where λ ,
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[λ2(π(i)), · · · , λK(π(i))], and f (m)(λ) denotes a function of λ, with order m 6. Having

this, it can be easily proved that

‖Ξ‖2δ1 +
K∑

j=2

(−1)j+1G1jδj ∼ Θ
(
PK−2‖Ξ‖2f (K−2)(λ)

)
,

and

|I + ΩΩH | ∼ Θ
(
PK−1f (K−2)(λ)g(1)(λ)

)
. (118)

Using this and (117), it follows that the necessary condition to satisfy W11 ∼ 1 + o(1)

is having ‖Ξ‖2 ∼ o
(
Pg(1)(λ)

)
. Since g(1)(λ) ∼ o(ln N), this condition can be written as

‖Ξ‖2 ∼ o (P ln N).

• Case II; K < M− i+1: In this case, G is full-rank with probability one and with a similar

argument as in the previous part, we can show that

|G| ∼ Θ
(
‖Ξ‖2PK−1f (K−2)(λ)g(1)(λ)

)
.

Hence, using (117) and (118), the necessary condition to satisfy W11 ∼ 1 + o(1) is having

‖Ξ‖2 ∼ o (1).

Having the facts that ρπ(j) ∼ P
M

and λ1(π(i)) ∼ ln N , we have ‖εi‖2 ∼ ‖Ξi‖2
P ln N

. Therefore,

the conditions of ‖Ξ‖2 ∼ o (P ln N) and ‖Ξ‖2 ∼ o (1) are translated into ‖εi‖2 ∼ o (1) and

‖εi‖2 ∼ o
(

1
P ln N

)
, respectively, which completes the proof of Lemma 3.

�

Remark - Note that since

‖εi‖2 =
M∑

j=i+1

|vH
1 (π(i))Φπ(j)|2,

it follows that for case 1,

|vH
1 (π(i))Φπ(j)|2 ∼ o (1) , i + 1 ≤ j ≤ M,

and for case 2,

|vH
1 (π(i))Φπ(j)|2 ∼ o

(
1

P ln N

)
, i + 1 ≤ j ≤ M.

In other words, achieving the maximum sum-rate imposes an orthogonality constraint between

the eigenvector corresponding to the maximum singular value of each user and the coordinates

6A function f(x1, · · · , xn) is said to be of order m, if it can be written as
∑

j cj

∏n
l=1 x

αl(j)
l , where

∑n
l=1 αl(j) = m, ∀j.
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of the transmitted signal for users with higher encoding orders. This orthogonality constraint is

much more restrictive in the second case.

In Lemmas 1-3, we have proved that, for any user selection strategy and any known precoding

scheme, in order to achieve the maximum sum-rate capacity, the following constraints must be

satisfied with probability one:

• The maximum singular values of selected users must behave as ln N .

• The transmit covariance matrices must be rank one.

• The transmit coordinates must be almost orthogonal to each other. Moreover, they must be

almost in the direction of the eigenvectors corresponding to the maximum singular values

of the selected users.

• The transmit power must be allocated almost uniformly among the selected users.

Having the above constraints satisfied, depending on the number of receive antennas, an or-

thogonality constraint must be satisfied between the eigenvector corresponding to the maximum

singular value of each user and the transmit coordinates of the users with higher encoding orders,

with probability one. Now, the question is that, taking the effect of quantization into account, how

accurate should the BS know the channels of the selected users such that the above constraints

are satisfied. For this purpose, we focus on the last constraint and associate ‖εi‖2 with the size

of the quantization cookbook for the ith encoded user in the following lemma:

Lemma 4 Let Li be the size of the codebook used for the quantization of Hπ(i). Then, for any

quantization method and any value of θ, we have

Pr{‖εi‖2 > θ} ≥
[
max

(
0, 1− Li

(
M − 1

i− 1

)
θM−i

)]N

. (119)

Proof - Since the transmitter only knows the quantized information about the channel matrices,

we can write v1(π(i)) as v̂1(π(i)) + ∆v1(π(i)), where v̂1(π(i)) is perfectly known by the

transmitter and can be considered as a deterministic vector, and ∆v1(π(i)) is unknown to the

transmitter. Hence, we have

εi = [v̂1(π(i)) + ∆v1(π(i))]H Υi

= bπ(i) + ∆xπ(i), (120)

where bπ(i) , v̂H
1 (π(i))Υi is a 1 × (M − i) vector, known to the transmitter, while ∆xπ(i) ,

∆vH
1 (π(i))Υi is an unknown 1× (M − i) vector. We can write

‖εi‖2 ≥ min
n
‖bn + ∆vH

1 (n)Υi‖2, (121)

DRAFT



35

where v1(n) denotes the eigenvector corresponding to the maximum singular value of the nth

user, ∆v1(n) denotes the error in v1(n) due to the quantization of Hn, and bn , v̂H
1 (n)Υi. In

fact, in the above equation, it is assumed that all users quantize their channel matrices, and ‖εi‖2

is lower-bounded by the minimum error. Since ∆v1(n) are i.i.d random variables, it follows that

µn , ‖bn + ∆xn‖2, where ∆xn , ∆vH
1 (n)Υi, are independent from each other. Hence,

Pr{‖εi‖2 > θ} ≥
N∏

n=1

ξn, (122)

where ξn , Pr{µn > θ}. ξn can be lower-bounded as follows:

ξn

(a)

≥ 1− Pr

{
Li⋃

l=1

‖xn − dl‖2 ≤ θ

}

(b)

≥ max

(
0, 1−

Li∑

l=1

Pr
{
‖xn − dl‖2 ≤ θ

}
)

, (123)

where cl, l = 1, · · · , Li, are the corresponding quantization code words for the quantization of

xn , vH
1 (n)Υi, and dl , cl − bn. (a) comes from the fact that all the quantization bits are not

necessarily utilized for the quantization of xn
7, and (b) results from the union bound for the

probability.

Since the columns of Υi, namely {Φπ(j)}M
j=i+1, are semi-orthogonal to each other, xn ,

vH
1 (n)Υi can be approximated by yn, which denotes the projection of v1(n) over the (M − i)-

dimensional sub-space spanned by {Φπ(j)}M
j=i+1. More precisely,

xn ∼ yn [I + o(I)] . (124)

As v1(n) is an isotropically distributed unit vector in C
1×M , the pdf of yn can be computed

from [28] as

p(yn) =
(M − 1)!

πM−i(i− 1)!

(
1− ‖yn‖2

)i−1
, ‖yn‖ ≤ 1. (125)

7In fact, if we denote the original quantization code words, utilized for the quantization of Hn, by {el}
Li

l=1, we can write

cl = f(el), 1 ≤ l ≤ Li, where f(.) is a mapping which depends on the quantization method. Since the mapping f(.) is not

necessarily one-to-one, it follows that the number of distinct elements in the set {cl}
Li

l=1 is at most Li.
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Combining (124) and (125), Pr {‖xn − dl‖2 ≤ θ} can be computed as

Pr
{
‖xn − dl‖2 ≤ θ

}
=

∫

CM−i(dl,
√

θ)

p(xn)dxn

(124)
≈

∫

CM−i(dl,
√

θ)

p(yn)dyn

(a)

≤ (M − 1)!

πM−i(i− 1)!

∫

CM−i(dl,
√

θ)

dyn

=
(M − 1)!

πM−i(i− 1)!
vol
(
CM−i(dl,

√
θ)
)

(b)
=

(
M − 1

i− 1

)
θM−i, (126)

where Cm(t, r) denotes the m-dimensional sphere (in the complex space) centered at t with

radius r, and vol(v) denotes the volume of the region v. (a) comes from the fact that that from

(125), p(yn) ≤ (M−1)!
πM−i(i−1)!

, and (b) results from the fact that the volume of a sphere with radios

d in the m-dimensional complex space is equal to πm

m!
d2m. Substituting (126) in (123), we have

ξn ≥ max

(
0, 1− Li

(
M − 1

i− 1

)
θM−i

)
. (127)

Substituting in (122), Lemma 4 easily follows.

�

In Lemma 3, we have shown that in order to achieve the maximum sum-rate, in the case

K < M − i+1, we must have ‖εi‖2 ∼ o
(

1
P ln N

)
and in the case K ≥ M − i+1, we must have

‖εi‖2 ∼ o (1), with probability one. In other words, in the first case,

Pr

{
‖εi‖2 >

1

P ln N

}
∼ o(1), (128)

and in the second case,

Pr
{
‖εi‖2 > 1

}
∼ o(1). (129)

Combining the above equations with (119), it follows that for the user with the encoding order

i, such that i ≤ M −K, we must have
(

1− Li

(
M − 1

i− 1

)[
1

P ln N

]M−i
)N

∼ o(1) ⇒ Li ∼ ω

(
[P ln N ]M−i

N

)
, (130)

and for the users with the encoding order greater than M −K,

Li ∼ ω

(
1

N

)
. (131)
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Therefore, in the case of K < M , the total amount of feedback can be written as

E{FQ}
(a)

≥ E{NQ}+
M−K∑

i=1

[log2(Li)]
+

(b)∼ ln ln(P ln N) + ω(1) +
M−K∑

i=1

[(M − i) ln(P ln N)− ln N + ω(1)]+ , (132)

where NQ denotes the number of users who send feedback to the BS. (a) comes from the fact

that at least NQ users send one bit and (M − K) users each send [log2(Li)]
+ bits to the BS,

where Li is computed from (130). (b) results from (79) and (130).

In the case of K = M , (131) does not impose any constraints on Li. Hence, the total amount

of feedback can be lower-bounded as

E{FQ} ≥ E{NQ}

∼ ln ln ln N + ω(1), (133)

which completes the proof of Theorem 10.

�

Although the above theorem gives us the necessary conditions for the amount of feedback to

achieve the maximum sum-rate, the achievability of those conditions is not clear. A subsequent

theorem gives the sufficient condition for achieving the maximum sum-rate.

From the above theorem the following observations can be made:

i) In the case of K < M , for the asymptotic scenario of P → ∞, the minimum amount of

feedback per user in order to achieve the maximum sum-rate grow logarithmically with SNR.

This logarithmic growth is also shown for the fixed-size networks in [10], when the BS performs

ZFBF. Moreover, for the fixed SNR scenario, this theorem implies that the minimum amount of

feedback bits per user does not need to grow with N , which agrees with the result of Theorem

5, where we showed that the maximum sum-rate is achievable by a fixed amount of feedback

per user.

ii) The more interesting observation is that, in the case of K = M , the above theorem does not

impose any constraints on the minimum amount of feedback bits per user, even for the asymptotic

scenario of P → ∞. One may argue that this is not surprising as in this case, the transmitter

can select the user which maximizes the single-user capacity (with a fixed amount of feedback

per user, regardless of SNR), and communicating with that user, without knowing its channel. In

[21], we have shown that this argument is not valid, as limN→∞ROpt −RTDMA = M ln M . In
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other words, there is a constant gap between the achieving sum-rate and the maximum sum-rate.

In fact, the reason that this case differs form the previous case is the “interference hiding”. Since

each user has M coordinates and the number of interfering coordinates is M −1, the transmitter

can wisely hide the interference coordinates in the null-space of the signal coordinate, and thus

the receiver does not see any interference. As a result, unlike the previous case, the total amount

of feedback does not grow with SNR.

Theorem 11 The sufficient condition for achieving the maximum sum-rate, such that limN,P→∞ROpt−
R = 0, in the case of K < M is

E{FQ} ∼ [M(M − 1) ln P −M(K − 1) ln ln N − o(ln N)]+ + ω(ln ln(P ln N)), (134)

and in the case of K = M is

E{FQ} ∼ M ln ln ln N + ω(1). (135)

Proof - The proof is based on the two algorithms given in the following, in the cases K < M

and K = M . We show that by using these algorithms one can achieve the maximum sum-rate

throughput of the system in each case, while the total amount of feedback satisfies (134) and

(135), respectively.

Case K < M :

Consider the following algorithm:

1. Set the thresholds t, β, and ε.

2. Define

S0 = {k| λmax(k) > t},

where λmax(k) is the the maximum singular value of the kth user.

3. All users in S0 quantize the eigenvector corresponding to the maximum singular value of

their channel matrix, denoted by vk, using the quantization code book C = {c1, · · · , c2B},

where {cl}2B

l=1 are i.i.d. unit vectors with uniform distribution (RVQ). The quantized vector

of vk, denoted by v̂k is selected as

v̂k = arg max
cl∈C

|vH
k cl|.

4. All the users in the set

S1 =
{

k ∈ S0

∣∣∣ |vH
k v̂k|2 > 1− ε

}

DRAFT



39

send one bit to the BS. The BS selects one user in S1 at random and inform this user (s1)

to feed back its eigenvector. User s1 feeds back the quantization index corresponding to its

eigenvector to the BS. The BS sends this index to all the users in the set S1 − {s1}.

5. For m = 2 to M the following steps are repeated:

– Define Sm =
{

k ∈ Sm−1

∣∣∣ |vH
k v̂sm−1 |2 < β

}
. All users in Sm send one bit to the BS.

– The BS selects one user in Sm at random and informs this user (sm) to feed back its

corresponding eigenvector.

– User sm feeds back the quantization index corresponding to its eigenvector to the BS.

The BS sends this index to all the users in the set Sm − {sm}.

6. After selecting the users and receiving their quantized eigenvectors, the BS forms the beams

{Φsm}M
m=1, such that Φsm is in the null-space of v̂sj

, j 6= m (Zero-Forcing Beam-Forming).

In other words, ΦH
sm

v̂sj
= 0, ∀j 6= m.

7. The BS forms the transmitted signal as

x =
M∑

j=1

Φsj
xsj

, (136)

where xsj
∼ CN (0, P

M
) is the intended signal for the user sj .

8. At the receiver sm, the received vector ysm is multiplied by uH
sm

, where usm denotes the

left eigenvector corresponding to the maximum eigenvalue of the user sm, to form rsm =

uH
sm

ysm . Then, the decoding is performed.

Defining the event Q ,
⋂M

m=1{|Sm| 6= 0}, the sum-rate can be upper-bounded as

R = Pr {Q}RQ + Pr
{
QC
}
RQC

≥ Pr {Q}RQ

(a)

≥
[
1−

M∑

m=1

Pr {|Sm| = 0}
]
RQ, (137)

where RQ denotes the average sum-rate conditioned on Q and (a) comes from the union bound

for the probability. To compute RQ, we calculate the rate of each user conditioned on Q. For
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this purpose, the received signal by the smth user is simplified as follows:

rsm = uH
sm

ysm

= uH
sm

[Hsmx + nsm ]

(a)
=

√
λmax(sm)vH

sm
x + zsm

=
√

λmax(sm)vH
sm

Φsmxsm +
∑

j 6=m

√
λmax(sm)vH

sm
Φsj

xsj
+ zsm , (138)

where zsm ∼ CN (0, 1) is AWGN and (a) comes from writing SVD for Hsm . In the above

equation, the first term contains the desired signal and the rest are the interference and noise

terms. Hence, the rate of this user can be written as

Rsm = E

{
ln

(
1 +

P
M

λmax(sm)
∣∣vH

sm
Φsm

∣∣2
∑

j 6=m
P
M

λmax(sm)
∣∣vH

sm
Φsj

∣∣2 + 1

)}
. (139)

We can write

vsm = α‖sm
v̂sm + v̂⊥sm

, (140)

where α
‖
sm , v̂H

sm
vsm and v̂⊥sm

is the projection of vsm over the sub-space perpendicular to v̂sm .

Using the above equation,
∣∣vH

sm
Φsj

∣∣2 can be written as

∣∣vH
sm

Φsj

∣∣2 =
∣∣∣
(
α‖sm

v̂sm + v̂⊥sm

)H
Φsj

∣∣∣
2

(a)
=

∣∣∣
(
v̂⊥sm

)H
Φsj

∣∣∣
2

≤
∥∥v̂⊥sm

∥∥2

= 1−
∣∣v̂H

sm
vsm

∣∣2 , (141)

where (a) comes from the fact that v̂H
sm

Φsj
= 0, j 6= m, by the algorithm. Conditioned on Q,

we have λmax(sm) > t and
∣∣v̂H

sm
vsm

∣∣2 > 1− ε. Therefore, the rate of the smth user, conditioned

on Q, can be lower-bounded as

Rsm|Q ≥ ln

(
1 +

Pt
M

∣∣vH
sm

Φsm

∣∣2

1 + Ptε(M−1)
M

)
. (142)

In the Appendix, we have shown that having β ∼ o(1) and ε ∼ o(1) guarantees
∣∣vH

sm
Φsm

∣∣2 ∼
1 + o(1). Having this, it follows that choosing t ∼ ln N + o(ln N) and ε ∼ o

(
1

P ln N

)
incurs

Rsm|Q ∼ ln
(
1 + P

M
ln N + o(ln N)

)
. Similarly, we can show that the same rate is achiev-

able for the other selected users. Hence, RQ ∼ M ln
(
1 + P

M
ln N + o(ln N)

)
and as a result,
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limP,N→∞ROpt − RQ = 0. Using this fact and (137), it follows that the sufficient condi-

tion to achieve limP,N→∞ROpt − R = 0 is
[∑M

m=1 Pr {|Sm| = 0}
]
RQ ∼ o(1), which incurs

Pr {|Sm| = 0} ∼ o
(

1
ln(P ln N)

)
. Since SM ⊆ SM−1 ⊆ · · · ⊆ S1, it suffices to consider only SM .

Defining qk , Pr{k ∈ SM} for a randomly chosen user k, we have

qk = Pr
{
λmax(k) > t, |vH

k v̂sm |2 < β,m = 1, · · · ,M − 1, |vH
k v̂k|2 > 1− ε

}
. (143)

Since the events A1 , {λmax(k) > t}, A2 ,
{
|vH

k v̂sm |2 < β,m = 1, · · · ,M − 1
}

and A3 ,
{
|vH

k v̂k|2 > 1− ε
}

are independent of each other, qk can be written as
∏3

i=1 qki, where qki ,

Pr{Ai}. We have

qk1
(a)∼ Θ

(
e−ttM+K−2

)
,

qk2
(b)∼ Θ(βM−1), (144)

where (a) comes from [20], and (b) comes from [21]. Furthermore,

qk3 = 1− Pr
{
|vH

k v̂k|2 < 1− ε
}

= 1−
L∏

l=1

Pr
{
|vH

k cl|2 < 1− ε
}

(a)
= 1−

(
1− εM−1

)L

∼ 1− e−LεM−1

≤ LεM−1, (145)

where L , 2B and (a) results from [21], Appendix C. Combining (144) and (145), we can write

Pr{|SM | = 0} ≈ (1− qk)
N

= (1− qk1qk2qk3)
N

&
[
1−Θ

(
e−ttM+K−2βM−1LεM−1

)]N

∼ exp
{
−Θ

(
Ne−ttM+K−2βM−1LεM−1

)}
. (146)

Hence, in order to have Pr{|SM | = 0} ∼ o
(

1
ln(P ln N)

)
, it suffices to have

L ∼ Θ
(

(ln ln(P ln N) + ω(1)) (βε)−(M−1)N−1ett−(M+K−2)
)
. (147)
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Choosing β ∼ o(1), t = (1− α) ln N , and ε = δ
P ln N

, where α, δ ∼ o(1), and substituting in the

above equation, we obtain

L ∼ Θ
(

(ln ln(P ln N) + ω(1)) [P ln N ]M−1(βδ)−(M−1)N−α[ln N ]−(M+K−2)
)

∼ Θ
(

(ln ln(P ln N) + ω(1)) P M−1[ln N ]−(K−1)(βδ)−(M−1)N−α
)
. (148)

Having B = [log2(L)]+, yields

B ∼ [(M − 1) ln P − (K − 1) ln ln N + ln ln ln(P ln N) + ω(1)− o(ln N)]+ . (149)

Using the above equation, the total amount of feedback can be written as

E{FQ} = MB +
M∑

m=1

E{|Sm|}

= MB +
M∑

m=1

(N −m + 1)Pr{k ∈ Sm}

(a)∼ MB + ω(ln ln(P ln N))

∼ [M(M − 1) ln P −M(K − 1) ln ln N − o(ln N)]+ + ω(ln ln(P ln N)), (150)

where (a) comes from the fact that selecting L as in (147), results in NPr{k ∈ SM} ∼
ln ln(P ln N) + ω(1), and hence, NPr{k ∈ Sm} ∼ NPr{k ∈ SM}βm−M ∼ ω(ln ln(P ln N)).

Case K = M :

Consider the following algorithm:

1. Set the thresholds t and ε.

2. Define

S0 = {k| λmax(k) > t},

where λmax(k) is the the maximum singular value of the kth user.

3. The BS selects a unit vector Φs1 at random and sends this vector to all users in S0.

4. All the users in the set

S1 =
{

k ∈ S0

∣∣∣ |vH
k Φs1 |2 > 1− ε

}
,

where vk denotes the eigenvector corresponding to the maximum eigenvalue of user k, send

one bit to the BS. The BS selects one user in S1 at random indexed by s1.

5. For m = 2 to M the following steps are repeated:
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– The BS selects a unit vector Φsm such that it is orthogonal to the previously chosen

vectors {Φsj
}m−1

j=1 , and sends it to the users in S0.

– Define Sm =
{

k ∈ S0

∣∣∣ |vH
k Φsm |2 > 1− ε

}
. All users in Sm send one bit to the BS.

– The BS selects one user in Sm at random indexed by sm.

6. The BS forms the transmitted signal as

x =
M∑

m=1

Φsmxsm , (151)

where xsm ∼ CN (0, P
M

) is the intended signal for the user sm.

7. At the receiver sm, the received vector is multiplied by R
−1/2
sm , where

Rsm , I +
∑

j 6=m

P

M
HsmΦsj

ΦH
sj
HH

sm
,

to form rsm = R
−1/2
sm ysm . Then, the decoding is performed.

As can be observed, this algorithm is very similar to the previous algorithm, with the difference

in the quantization code book and decoding. In this algorithm, the quantization code book

contains only one code word at each step, which is variable and decided by the BS, while in the

previous algorithm the quantization code book is fixed and the number of code words grow with

SNR. Moreover, the receiver uses all coordinates for decoding the signal, while in the previous

algorithm the decoding is only performed in one coordinate. In fact, in the case of K < M ,

using all the coordinates does not provide any gain, while in the case of K = M , it does. In

the case of K = M , if any of the sets Sm, m = 1, · · · ,M , is empty, the BS selects any user at

random and communicates with that user, setting the transmit covariance matrix equal to P
M

I.

This provides a rate scaling as M ln P , without requiring any amount of feedback.

Defining the event Q ,
⋂M

m=1{|Sm| 6= 0}, similar to (137), we can write

R = Pr{Q}RQ + [1− Pr{Q}]RQC

RS

= RQ − [1− Pr{Q}]
[
RQ −RQC

RS

]

≥ RQ −
(

M∑

m=1

Pr{|Sm| = 0}
)[

RQ −RQC

RS

]
, (152)

where RQC

RS denotes the achievable rate, when the BS selects one user at random and commu-

nicates with that user, conditioned on QC . It is easy to show that RQC

RS ∼ M ln P + Θ(1).
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The rate of the user sm, conditioned on Q, can be computed as

Rsm|Q = E

{
ln

∣∣∣∣I +
P

M
HsmΦsmΦH

sm
HH

sm
R−1

sm

∣∣∣∣
∣∣∣∣Q
}

. (153)

For ε ∼ o (1) and t ∼ ln N , and using the equations (110) and (117), it follows that

Rsm|Q & E

{
ln

(
1 +

P

M
t(1− ε)W11

)}

∼ ln

(
1 +

P

M
ln N [1 + o(1)]

)
, (154)

where W = R−1
sm

. Hence,

RQ ∼ M ln

(
1 +

P

M
ln N [1 + o(1)]

)
, (155)

and as a result, ROpt − RQ ∼ o(1). Therefore, having the fact that RQ − RQC

RS ∼ M ln ln N ,

we can show that ηm , Pr{|Sm| 6= 0} ∼ o
(

1
ln ln N

)
, ∀m, guarantees ROpt −R ∼ o(1). ηm can

be written as (1 − qm)N , where qm , Pr{k ∈ Sm}, for a randomly chosen user k. qm can be

computed as

qm = Pr{λmax(k) > t}Pr{|vH
k Φsm |2 > 1− ε}

(a)∼ e−ttM+K−2

Γ(M)Γ(K)
εM−1, (156)

where (a) comes from [20] and [21]. Consequently,

ηm ∼
[
1− e−ttM+K−2

Γ(M)Γ(K)
εM−1

]N

∼ e
−N e−ttM+K−2

Γ(M)Γ(K)
εM−1

. (157)

Choosing ε = 1
ln N

and t = ln N + (K − 1) ln ln N − ln ln ln ln N − ln Γ(M)Γ(K)− ω
(

1
ln ln ln N

)

results in ηm ∼ o
(

1
ln ln N

)
and hence, having limN,P→∞ROpt−R = 0. The amount of feedback

can be computed from

E{FQ} = E

{
M∑

m=1

|Sm|
}

= N

M∑

m=1

qm

(a)
≈

M∑

m=1

ln(η−1
m )

∼ M ln ln ln N + ω(1), (158)
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where (a) comes from the fact that ηm = (1− qm)N
≈ e−Nqm .

�

Remark 1- Comparing the necessary and sufficient conditions on the minimum amount of

feedback for achieving the maximum sum-rate, it turns out that the proposed algorithm in the

case of K < M is asymptotically optimal by a constant multiplicative factor, in terms of the

required amount of feedback, in the region ln P ∼ ω(ln N). Moreover, in the case K = M ,

the proposed algorithm is optimal by a constant multiplicative factor, in terms of the required

amount of feedback, for all ranges of SNR.

Remark 2- Comparing the two cases K < M and K = M , it follows that the minimum

amount of feedback in the first case grows logarithmically with SNR while in the second case

it does not grow with SNR.

Remark 3- In the case of K < M , when ln P � Ω(ln N), it is possible to achieve the

maximum sum-rate by using a finite-size quantization code book for all the users (Random

Beam-Forming). However, in the case of ln P ∼ ω(ln N), the size of the quantization code book

must grow polynomially with SNR. In the case of K = M , it is possible to achieve the maximum

sum-rate with finite rate quantization for all ranges of SNR. In other words, Random Beam-

Forming is always optimal in this case. Note that, however, the decoding must be performed in

all the coordinates.

Remark 4- The first algorithm can be considered as the generalization of Random Beam-

Forming, when the number of beams vary with SNR. This algorithm is very similar to the

algorithm proposed in [18], with the difference in limiting the number of candidate users and

thus reducing the amount of feedback furthermore.

IV. CONCLUSION

In this paper, the minimum required amount of feedback in order to achieve the maximum sum-

rate capacity in a MIMO-BC with large number of users and different ranges of SNR is studied.

In the fixed SNR and low SNR regimes, we have proved that to achieve the maximum sum-rate

the total amount of feedback from the users to the BS must be infinity. Moreover, in the fixed

SNR regime, in order to reduce the gap to the sum-rate capacity to zero, the amount of feedback

must scale at least as ln ln ln N , which is achievable by the Random Beam-Forming scheme

introduced in [14]. Indeed, it is shown that the optimality of Random Beam-Forming scheme

only holds for the region ln P � Ω(ln N). In the regime of ln P ∼ Ω(N), we consider two cases.
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In the case of K < M , we prove that the minimum amount of feedback in order to reduce the

gap between the achievable sum-rate and the maximum sum-rate to zero grows logaritmically

with SNR, which is achievable by the “Generalized Random Beam-Forming” scheme proposed

in [18]. In the case of K = M , we show that by using the Random Beam-Forming scheme

with the total amount of feedback not growing with SNR, the maximum sum-rate capacity is

achieved, provided that the decoding is performed in all the received coordinates.
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APPENDIX

To evaluate vH
sm

Φsm , we define Pm as the sub-space defined by the vectors {v̂si
}i6=m. We

can write

vsm = v‖sm
+ v⊥sm

, (159)

where v
‖
sm is the projection of vsm over Pm, and v⊥sm

is the projection of vsm over P
⊥
m, and

P
⊥
m denotes the sub-space perpendicular to Pm. Since Φm is perpendicular to all the vectors in

the set {v̂si
}i6=m, it belongs to P

⊥
m, and we have

∣∣vH
sm

Φsm

∣∣2 =
∣∣∣
(
v‖sm

+ v⊥sm

)H
Φsm

∣∣∣
2

=
∣∣ΦH

sm
v⊥sm

∣∣2

= ‖v⊥sm
‖2

= 1− ‖v‖sm
‖2

(a)

& 1−
∑

i6=m

∣∣vH
sm

v̂si

∣∣2

(b)

≥ 1−
m−1∑

i=1

β −
M∑

i=m+1

∣∣vH
sm

v̂si

∣∣2

(c)
= 1− (m− 1)β −

M∑

i=m+1

∣∣∣
(
α‖mv̂sm + v̂⊥sm

)H (
γ
‖
i vsi

+ v⊥si

)∣∣∣
2

(d)

≥ 1− (m− 1)β −
M∑

i=m+1

(∣∣v̂H
sm

vsi

∣∣+ ‖v̂⊥sm
‖+ ‖v⊥si

‖
)2

(e)

≥ 1− (m− 1)β −
M∑

i=m+1

(√
β +

√
µm +

√
µi

)2

(f)

≥ 1− (m− 1)β − 3
M∑

i=m+1

(β + µm + µi)

(g)

≥ 1− (3M − 2m− 1)β − 6(M −m)ε. (160)

In the above equation, (a) follows from the fact that {v̂si
}i6=m form an semi-orthogonal basis

for P i. To see this, we evaluate
∣∣v̂H

si
v̂sj

∣∣2, i, j 6= m, for i > j. For this purpose, we write v̂si
as

γ
‖
i vsi

+ v⊥si
, in which v⊥si

denotes the projection of v̂si
over the subspace perpendicular to vsi

,
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and γ
‖
i , vH

si
v̂si

. Then, we have

∣∣v̂H
si
v̂sj

∣∣2 =

∣∣∣∣
(
γ
‖
i vsi

+ v⊥si

)H

v̂sj

∣∣∣∣
2

≤
(∣∣γ‖i

∣∣ ∣∣vH
si
v̂sj

∣∣+
∣∣∣
[
v⊥si

]H
v̂sj

∣∣∣
)2

≤
(√

β + ‖v⊥si
‖
)2

≤
(√

β +
√

ε
)2

∼ o(1), (161)

where the first inequality results from the fact that |a + b|2 ≤ (|a| + |b|)2, ∀a, b, the sec-

ond inequality follows from the facts that
∣∣γ‖i
∣∣ ≤ 1,

∣∣vH
si
v̂sj

∣∣ <
√

β (by the algorithm), and∣∣∣
[
v⊥si

]H
v̂sj

∣∣∣ ≤ ‖v⊥si
‖, the third inequality results from the fact that ‖v⊥si

‖2 = 1−
∣∣vH

si
v̂si

∣∣2, which

is by the algorithm upper-bounded by ε, and finally, the last line follows from the assumptions

of ε ∼ o(1) and β ∼ o(1).

The inequality (b) in (160) comes from the fact that
∣∣vH

sm
v̂si

∣∣2 < β for i < m by the

algorithm. The equality (c) results from writing vsm as α
‖
mv̂sm + v̂⊥sm

and v̂si
as γ

‖
i vsi

+ v⊥si

with the assumption of v̂H
sm

v̂⊥sm
= 0, and vH

si
v⊥si

= 0. Hence, it follows that α
‖
m = v̂H

sm
vsm ,

γ
‖
i = vH

si
v̂si

, ‖v̂⊥sm
‖2 = 1 −

∣∣α‖m
∣∣2, and ‖v⊥si

‖2 = 1 −
∣∣γ‖i
∣∣2. Inequality (d) follows from the

fact that
∣∣γ‖i
∣∣ < 1,

∣∣α‖m
∣∣ < 1,

∣∣v̂H
sm

v⊥si

∣∣ <
∥∥v⊥si

∥∥ and
∣∣vH

si
v̂⊥sm

∣∣ <
∥∥v̂⊥sm

∥∥. Inequality (e) comes

from the fact that
∣∣v̂H

sm
vsi

∣∣2 < β for i > m by the algorithm, and defining µm ,
∥∥v̂⊥sm

∥∥2
=

1 −
∣∣vH

sm
v̂sm

∣∣2 and µi ,
∥∥v⊥si

∥∥2
= 1 −

∣∣vH
si
v̂si

∣∣2. Inequality (f) comes from the fact that

∀a, b, c, (a+b+c)2 ≤ 3(a2+b2+c2), and finally, (g) results from the fact that
∣∣vH

sm
v̂sm

∣∣2 > 1−ε

for all 1 ≤ m ≤ M . From the above equation, it can be observed that having β ∼ o(1) and

ε ∼ o(1) yields
∣∣vH

sm
Φsm

∣∣2 ∼ 1− o(1).
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