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Abstract

We evaluate the capacity of time-varying channels with periodic feedback at the transmitter. It is
assumed that the channel state information is perfectly known at the receiver and is fed back to the
transmitter at the regular time-intervals. The system capacity is investigated in two cases: i) finite state
Markov channel, and ii) additive white Gaussian noise channel with time-correlated fading. In the first
case, we show that the capacity is achievable by multiplexing multiple codebooks across the channel.
In the second case, we derive the channel capacity and the optimal adaptive coding. It is shown that
the optimal adaptation can be achieved by a single Gaussian codebook, while adaptively allocating the

total power based on the side information at the transmitter.
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. INTRODUCTION

Communications theory over time-varying channels has been widely studied from different
perspectives regarding the availability of the channel state information (CSI) at the transmitter
and/or the receiver. Communication with perfect CSI at the transmitter is studied by Shannon
in [1], where the capacity is expressed as that of an equivalent memoryless channel without
side information at either the transmitter or the receiver. Communication with perfect CSI at
the receiver is investigated, for example, in [2]. With the assumption of perfect CSI at both the
transmitter and the receiver, the capacity of finite state Markov channels (FSMCs) and compound
channels is studied in [3] and [4], respectively. In practice, the assumption of perfect CSl is not
practical due to estimation inaccuracy, limited feedback channel capacity, or feedback delay.
Communication with imperfect side information is well investigated in the literature [5]—[8].

In [5], the capacity of FSMCs is evaluated based on the assumed statistical relationship of the
channel state and side information at the transmitter. The channel capacity, when feedback delay
is taken into account, is studied in [9], [10]. The optimal transmission and feedback strategies

with finite feedback alphabet cardinality is investigated in [11].

In this paper, we consider a point-to-point time-varying channel with perfectly known CSI
at the receiver. It is assumed that the channel is constant during a channel use and varies from
one channel use to the next, based on a Markov random process. The CSI is provided at the
transmitter through a noiseless feedback link at regularly-spaced time intervals./Eebannel
use, the CSI of the current channel use is fed back to the transmitter. We obtain the channel
capacity of the system and show that it is achievable by multipleXingpdebooks across the

channel. It is worth mentioning that for FSMCs, the results of [5] apply directly to compute the



channel capacity, if the side information at the transmitter and receiver are jointly stationary.
However, in our model, the side information at the transmitter is not stationary.

Adaptive transmission is an efficient technique to increase the spectral efficiency of time-
varying wireless channel by adaptively modifying the transmission rate, power, etc., according
to the state of the channel seen by the receiver. Adaptive transmission, which requires accurate
channel estimates at the receiver and a reliable feedback path between the receiver and transmitter,
was first proposed in the late 1960’s [12]. A variable-rate and variable-power MQAM modulation
scheme for high-speed data transmission over fading channels is studied in [13] [14], where the
transmission rate and power are optimized to maximize the spectral efficiency. We utilize the
introduced feedback model to obtain the capacity of additive white Gaussian noise (AWGN)
channel with time-correlated fading. It is shown that the capacity is achievable using a single
codebook with adaptively allocating power based on the side information at the transmitter. Also,
the optimum power allocation is derived.

The rest of the paper is organized as follows. In Section II, the system model is described and
the channel capacity is obtained. The capacity of time-correlated fading channel with periodic
feedback is derived in Section Ill. The impact of channel correlation and feedback error on the
capacity is evaluated in Section IV. Finally, the paper is concluded in Section V.

Throughout this paper, upper case letters represent random variables; lower case letters denote
a particular value of the random variabl&; represents the sequen¢e,,--- ,a,) anda* is

the complex conjugate af.



I[l. MARKOV CHANNEL WITH FEEDBACK STATE

We consider a channel with discrete inpXxif € X and discrete outpdit;,, € ) at time instant

n. The channel state is characterized as a finite-state first order Markov process:
Pr(u,|u? ™) = Pr(up|un—_g) Q)
The state proces$], € U, is independent of the channel input and channel output:

N
Pr(zt’, y1 [ut) = | [ Pr@n, ynlun). (2)
n=1

It is assumed that CSI is perfectly known at the receiver. The CSI is provided at the transmitter
through a noiseless feedback link periodically at evErgymbols, i.e.l;, Ury1, Uspyq,- -+ are
sent over the feedback link and instantly received at the transmitter. Assume that the codeword
length, IV, is an integer factor of’ and M £ . Let us defineV; £ Urq_1)4q for 1 <i < M
andn £ [2] + 1.

Encoding and DecodingAssume thatil” € W is the message to be sent by the transmitter
and A,, = 2% is the cardinality of). A codeword of lengthV is a sequence of the encoding
function ¢,, which maps the set of messages to the channel input alphabets. The input codeword

at timen depends on the messageand the CSI at the transmitter up to timei.e. v7,
Ty = @n(w, v]). 3)

The decoding functiongp, maps a received sequence 8f channel outputs using CSI at the

receiver to the message set such that the decoded message dgyl’, ul).

Theorem 1 The capacity of a finite state Markov channel with periodic feedback is given by

T
%ZZPr(v) qrtr(lg?ﬁq)ZPt(uh})[(X;Y|u,v)7 (4)



where T is the feedback period?;(u|v) = Pryu, .., (u[v) and ¢(z|v) is the random coding
probability distribution function (PDF) parametrized with subscripto reflect the dependency

on time.

A. Achievablity

We state a result on the capacity of FSMCs, which we then apply in the proof. It is shown
that the capacity of FSMCs with perfectly known C&I, at the receiver and side information

V' at the transmitter is [5]
Z Pr(v maX Pr(u|v)I(X;Y |u,v), (5)

whereU andV are jointly stationary and ergodic with joint PDFBt V') andV is a deterministic
function of U.

We consider the channel &s parallel subchannels where thé subchannel( < ¢t < T)
occurs in time instance§ — 1)7' +¢,1 < i < M. Noting that the channel state of th&
subchanne{U;_, TH} Y, and the side information at the transmit{gr;}, = {U(i,l)TH}fV:fl
are jointly stationary and ergodic, we defifig(u|v) = Pr,, ., ., (u|v) for 1 <t < T. Using

(5), the achievable rate of th&" subchannel is

= ZPr( max ZPt u|v)I(X;Y|u,v). (6)

T codebooks are designed correspondingRtofor 1 < ¢ < T and multiplexed across th&
subchannels, i.e., at time instarfis— 1)T + ¢ for 1 < i < M, the channel inputs from the"

codebook are sent over the channel. Therefore, the achievable rate is

T
= 2SS P ) mass > R(ulo) (X:Ylu,v) )
t=1 wv



B. Converse

In this part, we prove the converse to the capacity theorem. The proof is motivated by the

proof in [5]. From the Fano’s inequality [15], we have
HW|Y{,UN) < P.log Ay, + h(P,) = Ney, (8)
where P, = P(WW # W) andey — 0 asN — oc.

HWYY,UY) = HW|UY) - I(W; Y |[0Y)

= NR—I(W;Y"|U). 9)
Using (8) and (9), we can write
R< %HW; YVUY) + e (10)
Then we have,

IW;Y,|UN, v

hE

I(W; YUY =

S
I
—

H(Y,[UY, YY) = H(Ya|U, Y W)

M-

S
Il
—

H<Yn|Una ‘/17:0) - H(Yn|U1Nﬂ }/1”_17 W)

i
I

H<Yn|Uan1ﬁ) - H(Yn|Uan7V1ﬁ> (11)

A=
NE

n=1

(X0 Yo | U, V), (12)

WE

n=1

where @) follows from the fact that the channel output is independent of the message and past

channel outputs given the state of the channel and the channel input. On the other hand, for a



givenn, we have

I(X0; Ya|Un, V) = D Pz, o] )PH0T ™ for) Pr(va) T(X; Y|t 0, 05)

U, U7

= Z Pr(w,|vs)Pr(v Z Pr(v 1|Un (Xn; Yo |tn, vf n= l,vﬁ)

Un,Vp

é Z Pr(uy,|va)Pr(vs) max 1(X,; Y |un, va), (13)

S (mnh}n)
where ) follows from the property in (1), andc) results from the concavity of mutual
information with respect to the input distribution, ant,|v:) £ 3,51 Pr(oy ™" [vz)Pr(z,[v]).

Replacingn = (7 — 1)T'+ ¢ in (13) and using (12), we have

M T
WiYMUM<Y DY Y Prlugordva)Priva) x

n=1 t=1 vap UE_1)T+t

max (X114 Yia-1)re| Wa-1)7ee Vi) (14)
a(z (i 1)T+t|'Uﬁ)

—MZZR ulv)Pr(v) max I(X;Y |u,v), (15)

(v
=1 uw qt(z|v)

where (15) follows from the fact tha§V;}X, and {U;,_1)r.};Z, are jointly stationary and
ergodic and the right-hand side of (14) does not depend.ddsing (10) and (15), we have
R< = Z;Prv ma|§)ZPt ulv) (XY |u,v) + en. (16)

1. GAUSSIAN CHANNEL

In this section, we consider a point to point transmission over a time-correlated fading channel.
It is assumed that the channel gain is constant over each channel use (symbol) and varies from

symbol to symbol, following a first order Markovian random process. The signal at the receiver



T'n = hnmn + Zn, (17)

whereh,, € C is the fading gain and,, is AWGN with zero mean and unit variance. It is assumed
that the CSI is perfectly known to the receiver. Ev8iychannel use, the instantaneous fading
gain is sent to the transmitter through a noiseless feedback linkaig |ori1], - - -, [hr—1)r41]
are fed back and instantly received at the transmitter.

Let us defineu,, = |h,|*> for 1 < n < N, v; £ |hg_1yry]? for 1 <i < M and P,(ulv) £
Pl ... (ulv). The average input power is subject to the constré@fit,|’] < P. In the
following, E.[¢(U, V)] denotes the expectation value ovgr,v) whereU and V' have joint

PDF P;(u, v).

Theorem 2 The capacity of time-correlated fading channel with periodic feedback is

PrPr

T
1
max - ZEt[log(l + Up,(V))], (18)
t=1
subject to. ST E[p,(V)] < P, whereT is the feedback period.

First, we recount some results on the capacity of single user channels, which is applied in
the proof. A general formula for the capacity of single user channels which is not necessarily
information stable or stationary is obtained in [16]. Consider inpwnd outpuft” as sequences
of finite-dimensional distribution, wherg is induced byX via a channel which is an arbitrary
sequence of finite-dimensional conditional output distribution from input alphabets to the output

alphabets. The general formula for the channel capacity is as follows:

C =supI(X;Y), (19)
X



wherel(X;Y) is defined as the liminf in probability of the normalized information density [16]

, 1 Pr(Y,N| XN
KD = Lo PO
1

(20)
Assume that the channel state informatigh,is available at the receiver. Consideriggas an
additional output, the channel capacitys = supy I(X;Y, Q). If @ is not available at the

transmitter and is consequently independeniXofthen the capacity is [17]
C =sup I(X;Y]Q), (21)
X

where(X;Y|Q) is the liminf in probability of the normalized conditional information density

, 1 Py XY, QN)
XN‘YN N — _1 1 1yl
@N( 1511 ‘Ql) N 0g PI’(Y1N|Q]1V)

(22)

Now, we are ready to prove Theorem 2, where the proof is motivated by the proof in [5].

A. Achievablity

Noting (17), the processed received signal at timis

ha
Il

Yn = Tn’ = \hn!% + Z;w (23)

wherez! = hn . which has the same distribution as. The transmitter sends

|
Tn = vV pn(vﬁ)sna (24)

over the channel wherg, is an i.i.d. Gaussian codebook with zero mean and unit variance, and

o Ry — R, is the power allocation function. Using (23) and (24), we can write

Yn = \/q_nsn + Z:w (25)



10

whereq, = pn(vi)|ha|?> = pn(vi)u,. Noting (25), we have a channel with inpStand output

Y and channel stat@, which is known at the receiver. Sin¢g is independent of¥, we can

use (21) to obtain the achievable rate.

. 1 PriYN SN, QM)
N'YN N I 1 17%]
in (S Y7 @) N 0g PrYN Q)
1
N

N PHY, S, Q)
28 oy ian

n=1
N
1 Y, |2 ,
=52 (10g<1 +Qn) + 1'+g - |Zn\2) , (26)
n=1 n

where (d) results from the fact thaf) and Z'Y are i.i.d. sequences and the last line follows

from the fact thaty,, conditioned on(),, is Gaussian with zero mean and varianice (),,. Note

that asN — oo, £330 el — L5™V |7/]2 = 1 with probability one. Therefore, with

probability one, we have

N
. 1
in(SYYQY) = 5 D log(1+ Q)
n=1

T M
1
= m Z Z log(l + Q(i—l)T+t)

t=1 =1

11 &
=7 Z i Z log (1 + U(z‘—1)T+tP(z‘—1)T+t(Vi)) . (27)
=1 —1

Noting that{U;_1)r+:}2, and {V;}}, are jointly stationary and ergodic far< ¢t < T, we

define P, (u,v) to be their joint PDF. We set;_1)yr4¢ = p, for 1 <i < M and1 <t <T. As
M — oo in (27), the sample mean converges in probability to the expectation. Therefore, the
achievable rate is

T
R =2 3" Eillog(1 + Up,(V)] (28)
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B. Converse

Using (11), we have

=2

W YNUN) <> HY, U V) = H(Y|Un, X, V)

n=1

=

<> Eflog(1 + URE[ X, [*[V7))]. (29)

n=1

The above inequality relies on the facts that
H(Y,|Up,, X,,, V") = H(Z,) = log 2me (30)
and
H(Y,|U,, V") < Ellog(2me(1 + UnE[|. X, [*[VI"]))]. (31)

The upper-bound in (31) is achievedXf, conditioned onl’j* has a Gaussian distribution. We
setz, = +/fn(v})s, wheref, : R” — R, and S{ is an i.i.d. Gaussian sequence with zero

mean and unit variance. On the other hand,
Eflog(1 + Unfu(Vi)] = EELog(1 + Unfu(Vi))| U, Vil
< Eflog(1 + E[U fu (V;)|Un, Vi)
= Ellog(1 + U,E[£,(V{)[Va])] (32)

where (d) follows from the concavity of the logarithm. Let us defipg(Vi;) = E[f,, (Vi) |Va].

By using (29) and (32), we obtain

N
1 Vv IN N 1

M
Z]E log(1 + Ugi—tyrepi-1yr+¢(Vi))]

'ﬂlH
Me
-

&
Il
—
.
—

M

T
1 1
< T E E[log(1 + i g Uti—nyr+ipi-1yr+:(Va))]- (33)

t=1 i=1
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Using (33) and noting the fact that thét/;_,)r.};2, and {V;}!Z, are jointly stationary and

ergodic forl <t < T, we can write

IOV YV I0Y) < 2 3 Eufloa(1 + Up,(V))], (34)

t=1

1
N

wherep,(.) £ L Zf‘il pa-1yr+(.). Combining (10) and (34), we conclude that

T
R < 2> Eillog(1+ Up(V)] (35)

t=1

subject tod 3> E[p,(V)] < P.
|
Remark:In Section Il, we prove that the capacity of Markov channels is generally achieved by
using multiple code multiplexing technique. However, for AWGN channel with time-correlated
fading, the proof relies on using one Gaussian codebook, where the symbols are adaptively scaled

by the appropriate power allocation function based on the side information at the transmitter.

IV. PERFORMANCEEVALUATION

We study the impact of the channel correlation and feedback period on the capacity of the
time-correlated Rayleigh fading channel. Let us assume that time-correlated Rayleigh fading

channel is a Markov random process with the following PDF [18]:

Pr(u) = (36)
0. otherwise

Pi(ulv) = 4(v)

P(ul) = ®(u,v,a't), (37)
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where
1 utov 20+/uv
157 exp <— = )Io ) u=>0,
D (u,v,0)= 1=o? 1= ( t=e? ) (38)
0 otherwise.

In (38),0 < o < 1 describes the channel correlation coefficient &pd) denotes the modified
Bessel function of order zero. Noting that the capacity in (18) is a strictly concave region of
7, 1 <t < T, we nomerically solve the convex optimization problem. In Figure 1, the capacity

is depicted versus the feedback period for various channel correlation coefficients and compared

to the capacity when no CSI is available at the transmitter.

0.8 T T
—*—0.95
—&—0.9
0.78)" —+—097 1
—6—0.8
0.76 F —— No CSlI at transmiiter | |
0.74 4
2
3
8 072 |
©
(8]

0.7 3
0.68 4
0.66 N
0.64 i i i i ; i

0 2 4 6 8 10 12

Time interval

Fig. 1. Capacity of time-correlated Rayleigh fading channel vefBulor SNR = 1 and channel correlation coefficients

a =0.97,0.95,0.9,0.8. The dash-dot line is the capacity with no side information at the transmitter.

V. CONCLUSION

We have obtained the capacity of finite state Markov channel with periodic feedback at the

transmitter. Also, the channel capacity and optimal adaptive coding is derived for the time-
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correlated fading channel with periodic feedback. It is shown that the optimal adaptation can be

achieved by a single Gaussian codebook, while scaling by the appropriate power.
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