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Abstract

We evaluate the capacity of time-varying channels with periodic feedback at the transmitter. It is

assumed that the channel state information is perfectly known at the receiver and is fed back to the

transmitter at the regular time-intervals. The system capacity is investigated in two cases: i) finite state

Markov channel, and ii) additive white Gaussian noise channel with time-correlated fading. In the first

case, we show that the capacity is achievable by multiplexing multiple codebooks across the channel.

In the second case, we derive the channel capacity and the optimal adaptive coding. It is shown that

the optimal adaptation can be achieved by a single Gaussian codebook, while adaptively allocating the

total power based on the side information at the transmitter.
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I. I NTRODUCTION

Communications theory over time-varying channels has been widely studied from different

perspectives regarding the availability of the channel state information (CSI) at the transmitter

and/or the receiver. Communication with perfect CSI at the transmitter is studied by Shannon

in [1], where the capacity is expressed as that of an equivalent memoryless channel without

side information at either the transmitter or the receiver. Communication with perfect CSI at

the receiver is investigated, for example, in [2]. With the assumption of perfect CSI at both the

transmitter and the receiver, the capacity of finite state Markov channels (FSMCs) and compound

channels is studied in [3] and [4], respectively. In practice, the assumption of perfect CSI is not

practical due to estimation inaccuracy, limited feedback channel capacity, or feedback delay.

Communication with imperfect side information is well investigated in the literature [5]–[8].

In [5], the capacity of FSMCs is evaluated based on the assumed statistical relationship of the

channel state and side information at the transmitter. The channel capacity, when feedback delay

is taken into account, is studied in [9], [10]. The optimal transmission and feedback strategies

with finite feedback alphabet cardinality is investigated in [11].

In this paper, we consider a point-to-point time-varying channel with perfectly known CSI

at the receiver. It is assumed that the channel is constant during a channel use and varies from

one channel use to the next, based on a Markov random process. The CSI is provided at the

transmitter through a noiseless feedback link at regularly-spaced time intervals. EveryT channel

use, the CSI of the current channel use is fed back to the transmitter. We obtain the channel

capacity of the system and show that it is achievable by multiplexingT codebooks across the

channel. It is worth mentioning that for FSMCs, the results of [5] apply directly to compute the
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channel capacity, if the side information at the transmitter and receiver are jointly stationary.

However, in our model, the side information at the transmitter is not stationary.

Adaptive transmission is an efficient technique to increase the spectral efficiency of time-

varying wireless channel by adaptively modifying the transmission rate, power, etc., according

to the state of the channel seen by the receiver. Adaptive transmission, which requires accurate

channel estimates at the receiver and a reliable feedback path between the receiver and transmitter,

was first proposed in the late 1960’s [12]. A variable-rate and variable-power MQAM modulation

scheme for high-speed data transmission over fading channels is studied in [13] [14], where the

transmission rate and power are optimized to maximize the spectral efficiency. We utilize the

introduced feedback model to obtain the capacity of additive white Gaussian noise (AWGN)

channel with time-correlated fading. It is shown that the capacity is achievable using a single

codebook with adaptively allocating power based on the side information at the transmitter. Also,

the optimum power allocation is derived.

The rest of the paper is organized as follows. In Section II, the system model is described and

the channel capacity is obtained. The capacity of time-correlated fading channel with periodic

feedback is derived in Section III. The impact of channel correlation and feedback error on the

capacity is evaluated in Section IV. Finally, the paper is concluded in Section V.

Throughout this paper, upper case letters represent random variables; lower case letters denote

a particular value of the random variable;an
m represents the sequence(am, · · · , an) and a∗ is

the complex conjugate ofa.
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II. M ARKOV CHANNEL WITH FEEDBACK STATE

We consider a channel with discrete inputXn ∈ X and discrete outputYn ∈ Y at time instant

n. The channel state is characterized as a finite-state first order Markov process:

Pr(un|un−k
1 ) = Pr(un|un−k) (1)

The state process,Un ∈ U , is independent of the channel input and channel output:

Pr(xN
1 , yN

1 |uN
1 ) =

N∏
n=1

Pr(xn, yn|un). (2)

It is assumed that CSI is perfectly known at the receiver. The CSI is provided at the transmitter

through a noiseless feedback link periodically at everyT symbols, i.e.,U1, UT+1, U2T+1, · · · are

sent over the feedback link and instantly received at the transmitter. Assume that the codeword

length,N , is an integer factor ofT andM , N
T

. Let us defineVi , UT (i−1)+1 for 1 ≤ i ≤ M

and ñ , b n
T
c+ 1.

Encoding and Decoding:Assume thatW ∈ W is the message to be sent by the transmitter

andAw = 2NR is the cardinality ofW. A codeword of lengthN is a sequence of the encoding

functionϕn which maps the set of messages to the channel input alphabets. The input codeword

at timen depends on the messagew and the CSI at the transmitter up to timen, i.e. vñ
1 ,

xn = ϕn(w, vñ
1 ). (3)

The decoding function,φ, maps a received sequence ofN channel outputs using CSI at the

receiver to the message set such that the decoded message isŵ = φ(yN
1 , uN

1 ).

Theorem 1 The capacity of a finite state Markov channel with periodic feedback is given by

1

T

T∑
t=1

∑
v

Pr(v) max
qt(x|v)

∑
u

Pt(u|v)I(X; Y |u, v), (4)
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whereT is the feedback period,Pt(u|v) = Prui|ui−t+1
(u|v) and qt(x|v) is the random coding

probability distribution function (PDF) parametrized with subscriptt to reflect the dependency

on time.

A. Achievablity

We state a result on the capacity of FSMCs, which we then apply in the proof. It is shown

that the capacity of FSMCs with perfectly known CSI,U , at the receiver and side information

V at the transmitter is [5]

C =
∑

v

Pr(v) max
q(x|v)

∑
u

Pr(u|v)I(X; Y |u, v), (5)

whereU andV are jointly stationary and ergodic with joint PDF Pr(U, V ) andV is a deterministic

function of U .

We consider the channel asT parallel subchannels where thetth subchannel (1 ≤ t ≤ T )

occurs in time instances(i − 1)T + t, 1 ≤ i ≤ M . Noting that the channel state of thetth

subchannel{U(i−1)T+t}M
i=1 and the side information at the transmitter{Vi}M

i=1 = {U(i−1)T+1}M
i=1

are jointly stationary and ergodic, we definePt(u|v) = Prui|ui−t+1
(u|v) for 1 ≤ t ≤ T . Using

(5), the achievable rate of thetth subchannel is

Rt =
∑

v

Pr(v) max
qt(x|v)

∑
u

Pt(u|v)I(X; Y |u, v). (6)

T codebooks are designed corresponding toRt for 1 ≤ t ≤ T and multiplexed across theT

subchannels, i.e., at time instants(i − 1)T + t for 1 ≤ i ≤ M , the channel inputs from thetth

codebook are sent over the channel. Therefore, the achievable rate is

R =
1

T

T∑
t=1

∑
v

Pr(v) max
qt(x|v)

∑
u

Pt(u|v)I(X; Y |u, v). (7)



6

B. Converse

In this part, we prove the converse to the capacity theorem. The proof is motivated by the

proof in [5]. From the Fano’s inequality [15], we have

H(W |Y N
1 , UN

1 ) ≤ Pe log Aw + h(Pe) = NεN , (8)

wherePe = Pr(W 6= Ŵ ) and εN → 0 asN →∞.

H(W |Y N
1 , UN

1 ) = H(W |UN
1 )− I(W ; Y N

1 |UN
1 )

= NR− I(W ; Y N
1 |UN

1 ). (9)

Using (8) and (9), we can write

R ≤ 1

N
I(W ; Y N

1 |UN
1 ) + εN . (10)

Then we have,

I(W ; Y N
1 |UN

1 ) =
N∑

n=1

I(W ; Yn|UN
1 , Y n−1

1 )

=
N∑

n=1

H(Yn|UN
1 , Y n−1

1 )−H(Yn|UN
1 , Y n−1

1 ,W )

≤
N∑

n=1

H(Yn|Un, V ñ
1 )−H(Yn|UN

1 , Y n−1
1 ,W )

a≤
N∑

n=1

H(Yn|Un, V ñ
1 )−H(Yn|Un, Xn, V ñ

1 ) (11)

=
N∑

n=1

I(Xn; Yn|Un, V
ñ
1 ), (12)

where (a) follows from the fact that the channel output is independent of the message and past

channel outputs given the state of the channel and the channel input. On the other hand, for a
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given n, we have

I(Xn; Yn|Un, V
ñ
1 ) =

∑

un,vñ
1

Pr(un|vñ, vñ−1
1 )Pr(vñ−1

1 |vñ)Pr(vñ)I(Xn; Yn|un, v
ñ−1
1 , vñ)

b
=

∑
un,vñ

Pr(un|vñ)Pr(vñ)
∑

vñ−1
1

Pr(vñ−1
1 |vñ)I(Xn; Yn|un, vñ−1

1 , vñ)

c≤
∑
un,vñ

Pr(un|vñ)Pr(vñ) max
q(xn|vñ)

I(Xn; Yn|un, vñ), (13)

where (b) follows from the property in (1), and (c) results from the concavity of mutual

information with respect to the input distribution, andq(xn|vñ) ,
∑

vñ−1
1

Pr(vñ−1
1 |vñ)Pr(xn|vñ

1 ).

Replacingn = (ñ− 1)T + t in (13) and using (12), we have

I(W ; Y N
1 |UN

1 )≤
M∑

ñ=1

T∑
t=1

∑
vñ

∑
u(ñ−1)T+t

Pr(u(ñ−1)T+t|vñ)Pr(vñ)×

max
q(x(ñ−1)T+t|vñ)

I(X(ñ−1)T+t; Y(ñ−1)T+t|u(ñ−1)T+t, vñ) (14)

=M

T∑
t=1

∑
u,v

Pt(u|v)Pr(v) max
qt(x|v)

I(X; Y |u, v), (15)

where (15) follows from the fact that{Vi}M
i=1 and {U(i−1)T+t}M

i=1 are jointly stationary and

ergodic and the right-hand side of (14) does not depend onñ. Using (10) and (15), we have

R ≤ 1

T

T∑
t=1

∑
v

Pr(v) max
qt(x|v)

∑
u

Pt(u|v)I(X; Y |u, v) + εN . (16)

¥

III. G AUSSIAN CHANNEL

In this section, we consider a point to point transmission over a time-correlated fading channel.

It is assumed that the channel gain is constant over each channel use (symbol) and varies from

symbol to symbol, following a first order Markovian random process. The signal at the receiver
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is

rn = hnxn + zn, (17)

wherehn ∈ C is the fading gain andzn is AWGN with zero mean and unit variance. It is assumed

that the CSI is perfectly known to the receiver. EveryT channel use, the instantaneous fading

gain is sent to the transmitter through a noiseless feedback link, i.e.,|h1|, |hT+1|, · · · , |h(M−1)T+1|

are fed back and instantly received at the transmitter.

Let us defineun , |hn|2 for 1 ≤ n ≤ N , vi , |h(i−1)T+1|2 for 1 ≤ i ≤ M and Pt(u|v) ,

Prui|ui−t+1
(u|v). The average input power is subject to the constraintE[|xn|2] ≤ P . In the

following, Et[g(U, V )] denotes the expectation value overg(u, v) where U and V have joint

PDF Pt(u, v).

Theorem 2 The capacity of time-correlated fading channel with periodic feedback is

max
ρ1···ρT

1

T

T∑
t=1

Et[log(1 + Uρt(V ))], (18)

subject to 1
T

∑T
t=1 E[ρt(V )] ≤ P, whereT is the feedback period.

First, we recount some results on the capacity of single user channels, which is applied in

the proof. A general formula for the capacity of single user channels which is not necessarily

information stable or stationary is obtained in [16]. Consider inputX and outputY as sequences

of finite-dimensional distribution, whereY is induced byX via a channel which is an arbitrary

sequence of finite-dimensional conditional output distribution from input alphabets to the output

alphabets. The general formula for the channel capacity is as follows:

C = sup
X

I(X; Y ), (19)



9

whereI(X; Y ) is defined as the liminf in probability of the normalized information density [16]

iN(XN
1 ; Y N

1 ) =
1

N
log

Pr(Y N
1 |XN

1 )

Pr(Y N
1 )

. (20)

Assume that the channel state information,Q, is available at the receiver. ConsideringQ as an

additional output, the channel capacity isC = supX I(X; Y, Q). If Q is not available at the

transmitter and is consequently independent ofX, then the capacity is [17]

C = sup
X

I(X; Y |Q), (21)

whereI(X; Y |Q) is the liminf in probability of the normalized conditional information density

iN(XN
1 ; Y N

1 |QN
1 ) =

1

N
log

Pr(Y N
1 |XN

1 , QN
1 )

Pr(Y N
1 |QN

1 )
. (22)

Now, we are ready to prove Theorem 2, where the proof is motivated by the proof in [5].

A. Achievablity

Noting (17), the processed received signal at timen is

yn = rn
h∗n
|hn| = |hn|xn + z′n, (23)

wherez′n = h∗n
|hn|zn, which has the same distribution aszn. The transmitter sends

xn =
√

ρn(vñ)sn, (24)

over the channel wheresn is an i.i.d. Gaussian codebook with zero mean and unit variance, and

ρn : R+ → R+ is the power allocation function. Using (23) and (24), we can write

yn =
√

qnsn + z′n, (25)
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whereqn = ρn(vñ)|hn|2 = ρn(vñ)un. Noting (25), we have a channel with inputS and output

Y and channel stateQ, which is known at the receiver. SinceQN
1 is independent ofSN

1 , we can

use (21) to obtain the achievable rate.

iN(SN
1 ; Y N

1 |QN
1 ) =

1

N
log

Pr(Y N
1 |SN

1 , QN
1 )

Pr(Y N
1 |QN

1 )

d
=

1

N

N∑
n=1

log
Pr(Yn|Sn, Qn)

Pr(Yn|Qn)

=
1

N

N∑
n=1

(
log(1 + Qn) +

|Yn|2
1 + Qn

− |Z ′
n|2

)
, (26)

where(d) results from the fact thatSN
1 andZ ′N

1 are i.i.d. sequences and the last line follows

from the fact thatYn conditioned onQn is Gaussian with zero mean and variance1 + Qn. Note

that asN → ∞, 1
N

∑N
n=1

|Yn|2
1+Qn

= 1
N

∑N
n=1 |Z ′

n|2 = 1 with probability one. Therefore, with

probability one, we have

iN(SN
1 ; Y N

1 |QN
1 ) =

1

N

N∑
n=1

log(1 + Qn)

=
1

MT

T∑
t=1

M∑
i=1

log(1 + Q(i−1)T+t)

=
1

T

T∑
t=1

1

M

M∑
i=1

log
(
1 + U(i−1)T+tρ(i−1)T+t(Vi)

)
. (27)

Noting that{U(i−1)T+t}M
i=1 and {Vi}M

i=1 are jointly stationary and ergodic for1 ≤ t ≤ T , we

definePt(u, v) to be their joint PDF. We setρ(i−1)T+t = ρt for 1 ≤ i ≤ M and1 ≤ t ≤ T . As

M → ∞ in (27), the sample mean converges in probability to the expectation. Therefore, the

achievable rate is

R =
1

T

T∑
t=1

Et[log(1 + Uρt(V ))]. (28)
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B. Converse

Using (11), we have

I(W ; Y N
1 |UN

1 )≤
N∑

n=1

H(Yn|Un, V ñ
1 )−H(Yn|Un, Xn, V ñ

1 )

≤
N∑

n=1

E[log(1 + UnE[|Xn|2|V ñ
1 ])]. (29)

The above inequality relies on the facts that

H(Yn|Un, Xn, V ñ
1 ) = H(Zn) = log 2πe (30)

and

H(Yn|Un, V ñ
1 ) ≤ E[log(2πe(1 + UnE[|Xn|2|V ñ

1 ]))]. (31)

The upper-bound in (31) is achieved ifXn conditioned onV ñ
1 has a Gaussian distribution. We

set xn =
√

fn(vñ
1 )sn wherefn : Rñ

+ → R+ and SN
1 is an i.i.d. Gaussian sequence with zero

mean and unit variance. On the other hand,

E[log(1 + Unfn(V ñ
1 ))] =E[E[log(1 + Unfn(V ñ

1 ))|Un, Vñ]]

d≤E[log(1 + E[Unfn(V ñ
1 )|Un, Vñ])]

=E[log(1 + UnE[fn(V ñ
1 )|Vñ])], (32)

where(d) follows from the concavity of the logarithm. Let us defineρn(Vñ) , E[fn(V ñ
1 ))|Vñ].

By using (29) and (32), we obtain

1

N
I(W ; Y N

1 |UN
1 )≤ 1

N

N∑
n=1

E[log(1 + Unρn(Vñ))]

=
1

T

T∑
t=1

1

M

M∑
i=1

E[log(1 + U(i−1)T+tρ(i−1)T+t(Vi))]

≤ 1

T

T∑
t=1

E[log(1 +
1

M

M∑
i=1

U(i−1)T+tρ(i−1)T+t(Vi))]. (33)
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Using (33) and noting the fact that that{U(i−1)T+t}M
i=1 and {Vi}M

i=1 are jointly stationary and

ergodic for1 ≤ t ≤ T , we can write

1

N
I(W ; Y N

1 |UN
1 )≤ 1

T

T∑
t=1

Et[log(1 + Uρt(V ))], (34)

whereρt(.) , 1
M

∑M
i=1 ρ(i−1)T+t(.). Combining (10) and (34), we conclude that

R ≤ 1

T

T∑
t=1

Et[log(1 + Uρt(V ))], (35)

subject to 1
T

∑T
t=1 E[ρt(V )] ≤ P.

¥

Remark:In Section II, we prove that the capacity of Markov channels is generally achieved by

using multiple code multiplexing technique. However, for AWGN channel with time-correlated

fading, the proof relies on using one Gaussian codebook, where the symbols are adaptively scaled

by the appropriate power allocation function based on the side information at the transmitter.

IV. PERFORMANCEEVALUATION

We study the impact of the channel correlation and feedback period on the capacity of the

time-correlated Rayleigh fading channel. Let us assume that time-correlated Rayleigh fading

channel is a Markov random process with the following PDF [18]:

Pr(u) =





e−u u ≥ 0

0. otherwise
(36)

P1(u|v) = δ(v)

Pt(u|v) = Φ(u, v, αt−1), (37)
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where

Φ(u,v,σ)=





1
1−σ2 exp

(
−u+σ2v

1−σ2

)
I0(

2σ
√

uv
1−σ2 ) u ≥ 0,

0 otherwise.

(38)

In (38), 0 < σ < 1 describes the channel correlation coefficient andI0(.) denotes the modified

Bessel function of order zero. Noting that the capacity in (18) is a strictly concave region of

ρt, 1 ≤ t ≤ T , we nomerically solve the convex optimization problem. In Figure 1, the capacity

is depicted versus the feedback period for various channel correlation coefficients and compared

to the capacity when no CSI is available at the transmitter.

0 2 4 6 8 10 12
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C
ap

ac
ity

0.95
0.9
0.97
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No CSI at transmiiter

Fig. 1. Capacity of time-correlated Rayleigh fading channel versusT for SNR = 1 and channel correlation coefficients

α = 0.97, 0.95, 0.9, 0.8. The dash-dot line is the capacity with no side information at the transmitter.

V. CONCLUSION

We have obtained the capacity of finite state Markov channel with periodic feedback at the

transmitter. Also, the channel capacity and optimal adaptive coding is derived for the time-
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correlated fading channel with periodic feedback. It is shown that the optimal adaptation can be

achieved by a single Gaussian codebook, while scaling by the appropriate power.
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