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Amin Mobasher† and Amir K. Khandani†

Abstract

Recently, a lot of quasi-maximum likelihood decoding methods have been introduced to

solve the decoding problem in multiple antenna systems. The general method proposed in [1]

has a near optimal performance for M-ary QAM or PSK constellation. The advantage of this

algorithm is that it can be implemented for any constellation with an arbitrary binary labeling,

say Gray labeling. However, it is more complex compared to some other methods that special-

ized their algorithm for a limited scenario (also with degraded performance). In this paper, we

introduce a new general algorithm based on matrix-lifting Semi-Definite Programming (SDP).

The new relaxation introduces a small degradation in the performance; however, the reduction

in the complexity is prohibitively large. The number of variables is decreased from O(N 2
K

2)

to O((N + K)2). Moreover, it can be implemented for any constellation and labeling method.

I. INTRODUCTION

Recently, there has been a considerable interest in Multi-Input Multi-Output (MIMO)

antenna systems due to achieving a very high capacity as compared to single-antenna

systems [2]. One of the important problems in MIMO systems is Decoding. Decoding

concerns the operation of recovering the transmitted vector from the received signal,

which is known to be an NP-hard problem.

† Coding & Signal Transmission Laboratory (www.cst.uwaterloo.ca), Dept. of Elec. and Comp. Eng., University

of Waterloo, Waterloo, Ontario, Canada, N2L 3G1, Tel: 519-884-8552, Fax: 519-888-4338, e-mail: {amin, khan-

dani}@cst.uwaterloo.ca



2

In the last decade, Sphere Decoder (SD)1 is introduced as a Maximum Likelihood

(ML) decoding method for MIMO systems with near-optimal performance [5]. In the SD

method, the lattice points inside a hyper-sphere are generated and the closest lattice point

to the received signal is determined. In [6], an exponential lower bound is derived on the

average complexity of SD, and it is shown that the worst case complexity is exponential

[7], [8]. However, it is experienced that over certain ranges of rate, Signal to Noise Ratio

(SNR) and dimension the average complexity is polynomial.

To overcome the complexity issue, a variety of sub-optimum polynomial time al-

gorithms based on Semi-Definite Programming (SDP) are suggested in the literature for

decoding [1], [9]–[12].

In [9], a quasi-maximum likelihood method for decoding is introduced. Each signal

constellation is expressed by its binary representation and the decoding is transformed

into a quadratic minimization problem [9]. Then, the resulting problem is solved using

a relaxation for rank-one matrices in Semi-Definite Programming (SDP) context. It is

shown that this method has a near optimum performance and a polynomial time worst

case complexity. However, the method proposed in [9] is limited to scenarios that the

constellation points are expressed as a linear combination of bit labels. A typical example

is the case of natural labeling in conjunction with PSK constellation [10]. Another quasi-

maximum likelihood decoding method is introduced in [11] for larger PSK constellations

with near ML performance and low complexity.

Another quasi-maximum likelihood decoding method in introduced in [12] for the

MIMO systems employing 16-QAM. They replace any finite constellation by a polyno-

mial constraint, e.g. if x ∈ {a, b, c}, then (x−a)(x− b)(x− c) = 0. Then, by introducing

some slack variables, the constraints are expressed in terms of quadratic polynomials.

Finally, the SDP relaxation is resulted by dropping the rank-one constraint. The work in

[12] , in its current form, is restricted to MIMO systems employing 16-QAM. However,

it can be generalized for larger constellations at the cost of defining more slack variables,

1This technique is introduced in the mathematical literature several years ago [3], [4].
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increasing the complexity, and significantly decreasing the performance.

In [1], an efficient approximate ML decoder for MIMO systems is developed based

on SDP. The transmitted vector is expanded as a linear combination (with zero-one

coefficients) of all the possible constellation points in each dimension. Using this formu-

lation, the distance minimization in Euclidean space is expressed in terms of a binary

quadratic minimization problem. The minimization of this problem is over the set of

all binary rank-one matrices with column sums equal to one. In order to solve this

minimization problem, two relaxation models is presented, providing a trade-off between

the computational complexity and the performance (both models can be solved with

polynomial-time complexity). Simulation results show that the performance of the last

model is near optimal for M-ary QAM or PSK constellation (with an arbitrary binary

labeling, say Gray labeling). Therefore, the decoding algorithm built on the proposed

model in [1] has a near-ML performance with polynomial computational complexity.

The general method proposed in [1] has a near optimal performance for M-ary QAM

or PSK constellation. However, it is more complex compared to some other methods that

specialized their algorithm for a limited scenarios [1], [9]–[12]. In this paper, we introduce

a new general algorithm based on matrix-lifting Semi-Definite Programming (SDP) [13],

[14]. The new relaxation introduces a small degradation in the performance; however, the

reduction in the complexity is prohibitively large. The number of variables is decreased

from O(N2K2) to O((N +K)2). Moreover, it can be implemented for any constellation

and labeling method.

Following notations are used in the sequel. The space of N ×K (resp. N ×N ) real

matrices is denoted by MN×K (resp. MN ), and the space of N ×N symmetric matrices

is denoted by SN . For a N × K matrix X ∈ MN×K the (i, j)th element is represented

by xij , where 1 ≤ i ≤ N, 1 ≤ j ≤ K, i.e. X = [xij]. We use trace(A) to denote

the trace of a square matrix A. The space of symmetric matrices is considered with the

trace inner product 〈A,B〉 = trace(AB). For A,B ∈ SN , A � 0 (resp. A � 0) denotes

positive semi-definiteness (resp. positive definiteness), and A � B denotes A − B � 0.

For two matrices A,B ∈ MN , A ≥ B, (A > B) means aij ≥ bij , (aij > bij) for all i, j.
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The Kronecker product of two matrices A and B is denoted by A ⊗ B (for definition

see [15]).

For X ∈ MN×K , vec(X) denotes the vector in R
NK (real NK-dimensional space)

that is formed from the columns of the matrix X. For X ∈ MN , diag(X) is a vector

of the diagonal elements of X. We use eN ∈ R
N (resp. 0N ∈ R

N ) to denote the N × 1

vector of all ones (resp. all zeros), EN×K ∈ MN×K to denote the matrix of all ones, and

IN to denote the N × N Identity matrix. For X ∈ MN×K , the notation X(1 : i, 1 : j),

i < K and j < N denotes the sub-matrix of X containing the first i rows and the first

j columns.

The rest of the paper is organized as follows. The problem formulation is introduced

in Section II. Section III is the review of the vector-lifting semi-definite programming

presented in [1]. In Section IV, we propose our new algorithm based on matrix-lifting

semi-definite programming. we use the geometry of the relaxation to find a projected

relaxation which has a better performance. Section V is devoted to the methods that can

be used to solve the SDP problem. An augmented lagrangian method is proposed for

the special structure of the problem. In Section VI, we present an optimization method,

based on matrix nearness, on how we can find the integer solution of the original decoding

problem from the relaxed optimization problem.

II. PROBLEM FORMULATION

A MIMO system can be modeled by [1]

y = Hx + n, (1)

where y is the M × 1 received vector, H is M × N real channel matrix, n is N × 1

additive white gaussian noise vector, and x is N × 1 data vector whose components are

selected from the set {s, · · · , sK}.

Noting xi ∈ {s, · · · , sK}, for i = 1, · · · , N , we have

xi = ui,1s1 + ui,2s2 + · · ·+ ui,KsK, (2)
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where

ui,j ∈ {0, 1} and
K
∑

j=1

ui,j = 1, ∀ i = 1, · · · , N. (3)

Let

U =















u1,1 · · · u1,K

u2,1 · · · u2,K

...
. . .

...

uN,1 · · · uN,K















and s =









s1

...

sK









.

Therefore, the transmitted vector is x = Us and UeK = eN .

At the receiver, the Maximum-Likelihood (ML) decoding rule is given by

x̂ = arg min
xi∈{s,··· ,sK}

‖ŷ − Hx‖2, (4)

where x̂ is the most likely input vector and ŷ is the received vector. Noting x = Us,

this problem is equivalent to

min
Ue=e

‖ŷ − HUs‖2 ≡

min
Ue=e

sTUTHTHUs − 2ŷTHUs. (5)

Therefore, the decoding problem can be formulated as

min sTUTHTHUs − 2ŷTHUs

s.t. UeK = eN

ui,j ∈ {0, 1}. (6)

Let Q = HTH, S = ssT , C = −syTH, and let EK×N denote the set of all binary

matrices in MK×N with row sums equal to one, i.e.

EN×K ={U∈MN×K : UeK = eN , uij ∈ {0, 1}, ∀i, j} . (7)

Therefore, the minimization problem (6) is

min trace
(

SUTQU + 2CU
)

s.t. U ∈ EN×K (8)
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III. VECTOR-LIFTING SEMI-DEFINITE PROGRAMMING

In order to solve the optimization problem (8), the authors in [1] proposed a

quadratic vector optimization solution by defining u = vec(UT ),U ∈ EN×K . By using

this notation, the objective function is replaced by uT (Q⊗S)u+2vec(CT )Tu. To solve

this vector quadratic problem, the quadratic form is linearized using the vector





1

u



 ,

i.e.

Zu =





1

u





[

1 uT

]

=





1 uT

u uuT



 =





1 uT

u Y



 , (9)

where Y = uuT and it is relaxed to Y � uuT , or equivalently, by the Schur complement,

to the lifted constraint





1 uT

u Y



 � 0. Note that this matrix is selected from the set

F := conv
{

Zu : u = vec(UT ), U ∈ EN×K

}

. (10)

Therefore, the decoding problem using vector lifting semi-definite programming can be

represented by

trace





0 vec(CT )T

vec(CT ) Q









1 uT

u Y





s.t.





1 uT

u Y



 ∈ F , (11)

which can be solved by usual SDP techniques. For more details, we refer the reader to

[1].

Note that the optimization variable is a matrix in SNK+1. This leads to NK + 1

by NK + 1 matrix variables, which has O(N 2K2) variables and it is prohibitively large

for computations. However, the best approach is to keep and exploit the structure of the

original optimization problem (8).
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IV. MATRIX-LIFTING SEMI-DEFINITE PROGRAMMING

In order to keep the matrix U in its original form in (8), the idea is to use the

constraint Y = UTU instead of Y = uuT . Now the relaxation is Y � UTU, or

equivalently, by the Schur complement,





IN U

UT Y



 � 0. This is known as matrix-

lifting semi-definite programming.

Define the new variable V = US. Since the matrix S is symmetric, the objective

function in (8) can be represented as the Quadratic Matrix Program [14]

trace





[

UT VT

]





0 1
2
Q

1
2
Q 0









U

V



+ 2CU





= trace









0 1
2
Q

1
2
Q 0









U

V





[

UT VT

]

+ 2CU





= trace (LQWU) , (12)

where

L =









0 CT 0

C 0 1
2
Q

0 1
2
Q 0









and

WU =









I UT VT

U UUT UVT

V VUT VVT









.

In order to linearize WU consider the matrix




U

V





[

UT VT

]

=





X Y

Y Z



 , (13)

where X,Y,Z ∈ SN . This equality can be relaxed to




UUT UVT

VUT VVT



−





X Y

Y Z



 � 0. (14)
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It can be shown that this relaxation is convex in the Löwner partial order [13] and it is

equivalent to the linear constraint [13]

W ,









I UT VT

U X Y

V Y Z









� 0. (15)

On the other hand, the feasible set in (8) is the set of binary matrices in MN×K with row

sum equal to one, the set EN×K in (7). By relaxing the rank-one constraint for the matrix

variable in (12), we have a tractable SDP problem. The feasible set for the objective

function in (12) is approximated by

FM = conv {WU | U ∈ MN×K : UeK = eN ,

uij ∈ {0, 1}, ∀i, j;V = US} (16)

Therefore, the decoding problem can be represented by

min trace (LW)

s.t. W ∈ FM (17)

Note that the size of matrix W is (2N+K)×(2N+K), compared to (NK+1)×(NK+1)

in [1], which is a huge reduction in the size of the problem.

Although the constraint in (13) is relaxed, we still can add/consider some linear

constraints that have been removed. These constraints are valid for the non-convex rank-

constrained decoding problem. However, we force the SDP problem to satisfy these

constraints. Consider the auxiliary matrix V and the symmetric matrices X,Y and Z in

matrix W.

Since U ∈ EN×K and
∑N

j=1 u2
ij = 1, it is clear that diag(X) = eN . Also, Y

represents USUT and Z represents US2U
T . In each row of U, there is only one 1 and

the rest are zero. Therefore, we have

diag(Y) = Udiag(S) and diag(Z) = Udiag(S2). (18)
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Moreover, S = ssT (rank-one matrix) and S2 = (
∑K

1=i s
2
i )S, we have a stronger results

for Z, i.e. Z = (
∑K

1=i s
2
i )Y. Therefore, we have

min trace









L









I UT VT

U X Y

V Y Z

















s.t. UeK = eN ; U ≥ 0

V = US

diag(X) = eN

diag(Y) = Udiag(S)

Z = (
K
∑

1=i

s2
i )Y









I UT VT

U X Y

V Y Z









� 0

U,V ∈ MN×K,X,Y,Z ∈ SN (19)

Remark 1: In communication applications it is always assumed that the average of

the constellation points is zero, in order to reduce the transmitted energy. This results in

sTeK = 0. Therefore, we have VeK = USeK = UssTeK = 0N .

Remark 2: The equation in (18) determines the diagonal elements of Y. This prop-

erty is hidden in the special structure of U, i.e. U ∈ E . By using this property, we can

even add more constraints. The equation Y = USUT implies that Yij = Skl for some k

and l. Therefore, the value of Yij is between the minimum and maximum elements of S.

Remark 3: It can be easily shown that, in communication applications, S, Y, and

Z are diagonal dominant matrices (since sTeK = 0). This property can also be used to

add more constraints.
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A. Geometry of the Relaxation

In this section, we eliminate the constraints defining Ue = e by providing a tractable

representation of the linear manifold spanned by this constraint. This method is called

gradient projection or reduced gradient method [16]. The following lemma is on the

representation of matrices having sum of the elements in each row equal to one. This

lemma is used in our reduced gradient method.

Lemma 1: Let

G =
[

IK−1 −eK−1

]

∈ M(K−1)×K (20)

and

F =
1

K

(

EN×K − EN×(K−1)G
)

∈ MN×K. (21)

A matrix U ∈ MN×K with the property that the summation of its elements in each row

is equal to one, i.e. UeK = eN , can be written as

U = F + ÛG, (22)

where Û = U(1 : N, 1 : (K − 1)).

Proof: see [1].

Corollary 4: ∀U ∈ EN×K , ∃Û ∈ MN×(K−1), ûij ∈ {0, 1} s.t. U = F+ÛG, where

Û = U(1 : N, 1 : (K − 1)). Note that the summation of each row of Û is 0 or 1.

Consider the minimization problem (8). By substituting (22), the objective function

is

trace
(

SUT QU + 2CU
)

= trace
(

S(F + ÛG)
T
Q(F + ÛG) + 2C(F + ÛG)

)

= trace
(

GSGT ÛTQÛ + GSFTQÛ + QFSGTÛT

+GCÛ + CTGTÛT + 2CF + SFTQF
)

= trace
(

L̂WÛ + 2CF + SFTQF
)

, (23)
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where

L̂ =









0 QFSGT + CTGT 0

GSFTQ + GC 0 1
2
Q

0 1
2
Q 0









,

WÛ =









I ÛT V̂T

Û ÛÛT ÛV̂T

V̂ V̂ÛT V̂V̂T









,

V̂ = ÛGSGT (24)

Therefore, the decoding problem (6) can be written as

min trace
(

L̂WÛ

)

s.t. Û = U(1 : N, 1 : (K − 1)); U ∈ EN×K

V̂ = Û
(

GSGT
)

(25)

Using the same procedure as before, we can show that the decoding problem is equivalent

to the following reduced matrix-lifting semi-definite programming problem:
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min trace









L̂









I ÛT V̂T

Û X̂ Ŷ

V̂ Ŷ Ẑ

















s.t. ÛeK−1 ≤ eN ; Û ≥ 0

V̂ = Û
(

GSGT
)

X̂2
ii = X̂ii for i = 1, · · · , N

diag(Ŷ) = Ûdiag
(

GSGT
)

Ẑ =

(

K−1
∑

1=i

(si − sK)2

)

Ŷ









I ÛT V̂T

Û X̂ Ŷ

V̂ Ŷ Ẑ









� 0

Û, V̂ ∈ MN×(K−1), X̂, Ŷ, Ẑ ∈ SN (26)

Note that the quadratic constraint X̂2
ii = X̂ii is equivalent to diag(X̂) = ÛeK−1.

B. Equivalent Formulation, but Different Results

The objective functions in the decoding problem (8) is trace
(

SUTQU + 2CU
)

which is equivalent to trace
(

QUSUT + 2UC
)

. However, exchanging the role of Q

and S results in two different formulation and bounds. Here, the auxiliary variable V

is defined as QU. Similar to previous notation, the auxiliary variables X,Y, and Z

represents UTU,UTQU, and UTQ2U, respectively. Therefore, it is easy to show that

the equivalent minimization problem is
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min trace

















0 C 0

CT 0 1
2
S

0 1
2
S 0

















I U V

UT X Y

VT Y Z

















s.t. UeK = eN ; U ≥ 0

V = QU

diag(X) = UTeN ; Xij = 0 i 6= j

YeK = UTQeN ; trace(YEK) = trace(QEN)

ZeK = UTQ2eN ; trace(ZEK) = trace(Q2EN)








I U V

UT X Y

VT Y Z









� 0

U,V ∈ MN×K,X,Y,Z ∈ SK (27)

Note that the size of the variable matrix is (2K + N).

V. SOLVING THE SDP PROBLEM

A. Common SDP Solvers

The relaxed decoding problems (19), (26), and (27) can be solved using Interior-

Point Methods (IPMs), which are the most common methods for solving SDP problems

of moderate sizes with polynomial computational complexities [17]. There are a large

number of IPM-based solvers to handle SDP problems, e.g., DSDP [18], SeDuMi [19],

SDPA [20], etc. In our numerical experiments, we use SeDuMi solver.
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B. The augmented Lagrangian algorithm

Recently, Burer and Monteiro [21] proposed a new method for solving a full-rank

SDP problem

min trace(LW)

s.t. trace(AiW) = bi for i = 1, · · · , m

W � 0. (28)

The algorithms distinguishing feature is a change of variables that replaces the symmetric,

positive semi-definite variable W ∈ Mn of (28) with a rectangular variable R according

to the factorization W = RRT . In [22], [23], it is shown that, for a SDP problem (28)

with m constraints, there exist an optimal solution with rank r such that r(r + 2) ≤ m.

In [21], R is chosen in Mn×r. By using this formulation, the positive semi-definite

constraint is removed since W = RRT automatically enforces the constraint. Now the

problem (28) can be reformulated as

min
R∈Mn×r

trace(RTLR)

s.t. trace(RTAiR) = bi for 0 ≤ i ≤ m (29)

In order to solve this non-linear problem, an augmented Lagrangian method is introduced

in [21]. The augmented Lagrangian is defined as

L(R, λ, σ) = trace(RTLR)

−
m
∑

i=1

λi

(

trace(RTAiR) − bi

)

+
σ

2

m
∑

i=1

(

trace(RTAiR) − bi

)2
, (30)

where R ∈ Mn×r, λ ∈ Rm, and σ ∈ R+. The last term is the penalty term indicating

the Euclidean norm of the infeasibility of R with respect to r.

To minimize the augmented Lagrangian (30), this function is alternatively minimized

with respect to R and with respect to λ and σ. The optimization of (30) with respect to
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R can be achieved by a limited-memory BFGS algorithm, which uses the gradient of L:

∇RL(R, λ, σ)=−2

m
∑

i=1

(

λi − σ
(

trace(RTAiR) − bi

))

AiR

+2LR. (31)

This algorithm has the advantage of maintaining O(nr) memory overhead, but also has

the speed of a quasi-Newton method.

In order to optimize (30) with respect to λ and σ, the authors in [21] updates λi

by λi − σ
(

trace(RTAiR) − bi

)

and σ by a multiplicative factor. They have shown that

this technique always emprically converges to the globally optimal solution, although

the quadratic programming problem is non-convex. Moreover, they have shown that this

method is significantly faster than existing SDP solvers.

C. Decoding Problem as a Quadratic Non-Linear Problem

Define R = [ I UT VT ]T . Therefore, the optimization problems (19), (26), and

(27) can be reformulated as the problem in (29). Instead of applying SDP solvers, we can

apply an augmented Lagrangian method directly to the mentioned decoding problems.

However, despite the work in [21], our SDP problems have an explicit rank constraint.

In other words, the size of the matrix R is precisely determined by the rank constraint.

The other difference is that we have some inequality constraints in our problem. The

augmented Lagrangian method in [21] should be generalized to handle linear inequality

constraints. We take the same approach as in [24] by solving directly for updates of the

Lagrange multipliers for both equality and inequality constraints.

The updates of λi can be solved by treating a constraint trace(RTAiR) ≥ bi as the

constraint trace(RTAiR) = bi + si and si ≥ 0. For inequality constraint, this results in

λi = max(λi − σ(trace(RTAiR) − bi), 0). (32)

This update satisfies λi ≥ 0 for Lagrange multipliers for inequality constraints. Computing

the Lagrangian and the gradient of the Lagrangian are also straightforward for inequality

constraints [24]. The second and third terms of the Lagrangian change: for each constraint
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i, the Lagrangian term −λi(trace(RTAiR)− bi)+ σ
2
(trace(RTAiR)− bi)

2 is unchanged

if σ(trace(RTAiR) − bi) ≤ λi. Otherwise, this term becomes −λ2
i /2σ. Similarly, in

the computation of the gradient of Lagrangian, we only contribute the term 2(λi −

σ(trace(RTAiR)−bi))AiR if σ(trace(RTAiR)−bi) ≤ λi. Otherwise, nothing is added

to the gradient.

VI. INTEGER SOLUTION - MATRIX NEARNESS PROBLEM

By solving the relaxed decoding problems, we can find a solution for matrix Ũ. In

general, this matrix is not in EN×K . The condition UeK = eN is satisfied. However, the

elements are between 0 and 1. This matrix has to be converted to a 0-1 matrix by finding

a matrix in EN×K which is nearest to this matrix.

A recurring problem in matrix theory is to find a structured matrix that best ap-

proximates a given matrix with respect to some distance measure. For example, it may

be known a priori that a certain constraint ought to hold, and yet it fails on account

of measurement errors or numerical roundoff. An attractive remedy is to replace the

tainted matrix by the nearest matrix that does satisfy the constraint. Matrix approximation

problems typically measure the distance between matrices with a norm. The Frobenius

and spectral norms are pervasive choices because they are so analytically tractable.

In order to find the nearest solution in EN×K to Ũ, the solution of the relaxed

problem, we solve the following minimization problem

min
U∈ EN×K

‖U − Ũ‖2
F
, (33)

where ‖A‖2
F

is the Frobenius norm of the matrix A and is defined as ‖A‖2
F

= trace(AAT ).

Therefore, the objective function can be reformulated as

‖U − Ũ‖2
F

= trace
(

(U − Ũ)(U − Ũ)T
)

= trace
(

UUT
)

− 2trace(ŨUT) + trace(ŨŨT)

= N − 2trace(ŨUT) + trace(ŨŨT). (34)



17

The last equality is due to the fact that for any U ∈ EN×K we have diag(UUT ) = eN , see

(19). Therefore, after removing the constants, finding the integer solution is the solution

of the following problem:

max
U∈ EN×K

trace(ŨUT) (35)

Consider the maximization problem

max trace(ŨUT)

s.t. UeK = eN

0 ≤ U ≤ 1, (36)

where ≤ in the last constraint is element-wise. This problem is a linear programming

problem with linear constraints and the optimum solution is a corner point meaning

that constraint are satisfied with equality art the optimum point. In other words, at the

optimum point, U ∈ EN×K . Therefore, in order to find the solution for (35), we can

simply solve the linear problem (36), which is strongly polynomial time.
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