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Abstract

A key element for many fading-compensation techniques is long-range prediction of the

fading channel. A linear approach, usually used to model the time evolution of the fading

process, does not perform well for long-range prediction. In this article, we propose an adaptive

channel prediction algorithm using a state-space approach for the fading process based on the

sum-sinusoidal model. Our simulations show that this algorithm significantly outperforms the

conventional linear method, for both stationary and non-stationary fading processes, especially

for long-range predictions. The self-recovering structure, as well as the reasonable and steady

computational complexity, makes the proposed algorithm appealing for practical applications1.
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I. INTRODUCTION

In this article, we address the problem of channel fading modeling and prediction.

Channel fading prediction can be used to improve the performance of telecommunication

systems. Having estimates of future samples of the fading coefficients enhances the

performance of many tasks at the receiver and/or at the transmitter, including channel

equalization, the decoding process of data symbols, antenna beamforming, and adaptive

coding and modulation.

Consider a fading channel from a transmit antenna to a receive antenna. A single

path flat fading is assumed for the channel. If the path delay variations are not negligible

in comparison with the symbol period, the same analysis could be applied to each resolved

multipath component. The channel fading coefficient hn is zero mean (subscript n is the

time index), with the variance σ2
h = 1. Fig. 1 shows the block diagram for prediction of

a fading channel. The channel coefficients are estimated from the received signal series

{yn}, where the nature of yn could be different depending on the application. Usually

yn is a pilot signal which is appropriately designed for channel estimation, as in 3G

systems. In some applications, yn is the modulated user data which is used by a blind

channel estimation algorithm. The subject of channel fading estimation is well-established

in the literature and will not be addressed here. We assume that the channel estimate hn

is shown as hn = hn + vn, where vn is the estimation error modeled as a zero mean

Gaussian noise [1] with the variance σ2
v . As an indicator for the estimation quality, the

observation SNR is defined as SNRz = σ2
h/σ

2
v = 1/σ2

v .

For prediction of a future sample of the channel using the past measurements, a

model is needed to represent the dynamics of the channel. Having the series of the channel

measurements {hn}, the parameters of the model are estimated or updated, and the future

fading sample is predicted as shown in Fig. 1. The model selection and extraction of the
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Fig. 1. Block diagram of a channel prediction scheme

parameters, as well as the prediction algorithm, are explained in the sequel.

Many processes are represented with a linear model, i.e. an auto-regressive moving-

average (ARMA) model. In this context, an approximate low-order AR model is often

used as it can capture most of the fading dynamics. For example, see the MMSE linear

predictor proposed in [2], and the channel tracking algorithms utilizing Kalman filter

in [3] and [4]. Linear models are easy to use and have a low complexity, but they fail to

show the true time behavior of a channel fading process.

A fading channel can be modeled as sum of a number of sinusoids as shown in (29).

This model relies on the physical scattering mechanism [5]. The so-called sum-sinusoidal

model has been used for prediction of the channel fading [6], [7], [8], [9]. In this article,

we use the sum-sinusoidal model in a Kalman filtering framework as suggested in our

earlier work [10]. This model is adaptively updated to follow the changes in the scattering

environment.

Assuming a two-dimensional isotropic scattering and an omni-directional receiving

antenna, it is known that the autocorrelation function of the fading process can be written

as [5]

Rh(t, t− τ) =
E[h(t)h∗(t− τ)]

σ2
h

= J0(2πfdτ), (1)

where fd is the maximum doppler frequency, J0(·) is the first-kind Bessel function of

the zero order, and τ is the time difference. A Rayleigh fading process with the above
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correlation property is called the Jakes fading [5]. We use a wide-sense stationary (WSS)

version of the Jakes fading [11] (which uses 14 low-frequency sinusoids) to examine the

performance of the underlying algorithms. We also generate a non-stationary and more

realistic mobile fading using a ray-tracing approach [10], and examine the algorithms

with the non-stationary fading as well.

Here is a summary of the contributions of this article:

• Linear approach (Section II):

– A 1-step predictor is conventionally used for the linear method. Here a D-

step predictor (D≥1) is presented, and the relation to the 1-step predictor is

addressed.

– A tracking algorithm for the D-step predictor is proposed.

• The proposed approach (Section III):

– Based on the sum-sinusoidal fading model, a state-space model is proposed.

– Using the state-space model, an adaptive Kalman algorithm is proposed. The

algorithm is presented for both acquisition and tracking phases.

– A tracking algorithm for the doppler frequencies is proposed.

– An enhancement to the prediction part of the adaptive Kalman filter is proposed.

In the next two sections, The linear approach and the proposed approach are pre-

sented. Then, the algorithms are compared in the simulation results.

II. LINEAR APPROACH

To model a fading process, a linear model is widely used. An AR (Auto Regressive)

model of order NAR is recursively defined as follows

hn+1 =

NAR∑
i=1

a(i) hn−i+1 + ξn+1 (2)
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where a = [a(1), a(2), · · · , a(NAR)]T is the AR coefficients vector, and ξn+1 is the

model error which has a zero mean.

The time evolution of an AR model can also be shown as a state-space model [3]

as follows 



hn = Bhn−1 + qn

zn = mhn + un

(3)

where

hn = [hn, hn−1, · · · , hn−NAR+1]
T (4)

is the fading regressor at time n, B is the transition matrix defined as

B =




aT

INAR−1×NAR−1 0NAR−1×1




, (5)

and qn is a noise vector representing the model error. m is known as the measurement

matrix which is defined as

m = [1, 0, · · · , 0]1×NAR
, (6)

un is the observation noise, and zn is the system output.

It is easy to show that ĥn+1|n = Bhn, where ĥn+1|n is the prediction of hn+1 given

the observations up to the time n, i.e., ĥn+1|n = E [hn+1|zn, zn−1 · · ·]. Similarly,

ĥn+D|n = BD hn. (7)

Also,

ĥn+D|n = m ĥn+D|n (8)

= mBD hn. (9)
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A. The Linear Prediction Algorithm (LP)

Assuming an AR model of the order NAR, a 1-step linear predictor is shown as

follows

ĥn+1 =

NAR∑
i=1

a(i) hn−i+1. (10)

Minimizing the mean square error (MSE), E

[∣∣∣hn − ĥn

∣∣∣
2
]

, provides the prediction co-

efficients a via solving the Yule-Walker equations [12].

For the Jakes fading, a is analytically available [13]. In practice, a is estimated using

the fading samples using one of the well-known methods such as Levinson method, Burg

method, or Prony method. In a non-stationary environment, the coefficients is frequently

updated to follow the model variations.

Here, the linear coefficients are estimated using a Least-Squares approach and

solving the equations by the Levinson-Durbin recursion over a window length of TAR.

The estimates are updated every TAR samples. Fig. 2 shows the flowchart of the algorithm.

1) D-step Prediction Versus 1-step Prediction: To perform a D-step prediction, the

1-step predictor could be used D times recursively. However, we are interested in a direct

D-step prediction method because it is easier to analyze and also to implement. Further-

more, this is particularly helpful in the tracking mode as it is addressed in Section II-A.2.

Equation (10) can be extended to provide a D-step linear predictor [13], as follows

ĥn+D =

NAR∑
i=1

a(D)(i) hn−i+1. (11)

The superscript “(D)” indicates that the variable is related to the D-step predictor.

Calculation of the coefficients of the 1-step predictor, a, was explained before. For the

D-step predictor,

a(D) = [a(D)(1), a(D)(2), · · · , a(D)(NAR)]T (12)
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Fig. 2. Block Diagram of the Linear Prediction Algorithm (LP)

can be computed using a. It is evident from (9) that a(D) = (mBD)T , meaning a(D)T is

the first row of BD. Hence, the calculation steps are as follows:

a → B → BD → a(D) (13)

2) Tracking: In a non-stationary environment, model in changing and the assump-

tion of a fixed model over the observation window results in a performance degradation.

A low-complexity adaptive algorithm is desired to track the changes of an over time. An

LMS algorithm is used as in [14]

an+1 = an + µAR hH
n en (14)

where en = hn − ĥn. Note that we have added the time index n for an in the tracking

mode signifying that it is changing at each time step.

As explained in Section II-A.1, a
(D)
n is calculated using an, which requires the

calculation of BD
n . In the tracking mode, this calculation is needed at each time that an
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is updated which imposes a high computational complexity. In the following, we propose

a method to decrease the complexity.

Assume that δn is the increment vector

an+1 = an + δn. (15)

This form of iteration includes many adaptive methods, most importantly LMS and RLS

algorithms. From (15) and (5), we may write

Bn+1 = Bn + ∆n (16)

where

∆n =




δT
n

0(NAR−1)×NAR




(17)

Assuming a sufficiently large sampling frequency, an is slowly changing with the

time index n, and δn has a small norm. Therefore,

BD
n+1 = (Bn + ∆n)D (18)

∼= BD
n +

D∑
i=1

Bi−1
n ∆nB

D−i
n (19)

= BD
n + ∆(D)

n (20)

where (19) is approximated by neglecting the terms in which ∆n has a power larger than

one. Therefore, we may write

a
(D)
n+1 = a(D)

n + δ(D)
n , (21)

which corresponds to the operation of the first rows of the matrices in (20). Now, δ
(D)
n

can be calculated using δn as follows,

δn → ∆n → ∆(D)
n → δ(D)

n (22)
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G
(1)
n =




1 0 0

0 1 0

0 0 1




, G
(2)
n =




2 an(1 ) 1 0

an(2 ) an(1 ) 1

an(3 ) 0 an(1 )




(24)

G(3)
n =




3 an(1 )2 + 2 an(2 ) 2 an(1 ) 1

2 an(1 ) an(2 ) + an(3 ) 2 an(2 ) + an(1 )2 an(1 )

2 an(1 ) an(3 ) an(3 ) an(1 )2 + an(2 )




(25)

G(4)
n =




4 an(1 )3 + 6 an(1 ) an(2 ) + 2 an(3 ) 3 an(1 )2 + 2 an(2 ) 2 an(1 )

3 an(1 )2an(2 ) + 2 an(1 ) an(3 ) + 2 an(2 )2 4 an(1 ) an(2 ) + 2 an(3 ) + an(1 )3 2 an(2 ) + an(1 )2

an(3 )
(
3 an(1 )2 + 2 an(2 )

)
2 an(1 ) an(3 ) 2 an(3 ) + an(1 )3 + 2 an(1 ) an(2 )




(26)

where δ
(D)
n is obtained from the first row of ∆

(D)
n . It is observed from (19) that each

element of ∆
(D)
n is a linear combination of the elements of ∆n (or equivalently δn).

Therefore, we can write

δ(D)
n = G(D)

n δn (23)

where matrix G
(D)
n is a function of the elements of an.

Equations (24)-(26) show G
(D)
n for D = 1, 2, 3, 4, for NAR = 3. As an is slowly

changing, G
(D)
n may be recalculated only in the acquisition mode. This approximation

can be further simplified, if G
(D)
n is calculated for a fixed typical channel. For the channel
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a = [1, 0, · · · , 0]T , G
(D)
n has a simple form; for example for NAR = 3,

G(D)
n ≈




D D − 1 D − 2

0 1 1

0 0 1




. (27)

Our simulations show that the performance does not change significantly with this ap-

proximation in a wide range of mobile speed and D.

III. THE PROPOSED APPROACH

When the receiver, the transmitter, and/or the scatterers are moving, each scattered

component undergoes a doppler frequency shift given approximately by [15], [14]

f(k) = fd cos(θ(k)) (28)

where θ(k) is the incident radiowave angle of the k’th component with respect to the

motion of the mobile and fd is the maximum doppler frequency defined as fd = V
C

fc,

where fc is the carrier frequency, V is the mobile speed and C is the speed of light.

Assuming Nsc scatterers, the complex envelop of the flat fading signal at the receiver is

h(t) =
Nsc∑

k=1

a(k) ej(ω(k) t+φ(k)) + ζ(t) (29)

where for the k’th scatterer, a(k) is the (real) amplitude, φ(k) is the initial phase, ω(k) =

2πf(k), and ζ(t) is the model error. The phase φ(k) can be absorbed in the amplitude

as α(k) = a(k) ejφ(k). Assuming a sampling rate of fs = 1/Ts, the fading samples can

be written as

hn =
Nsc∑

k=1

α(k) ejω(k)nTs + ζn (30)

where hn = h(nTs), and n is the time index. In the realistic mobile environments, there

are usually a few main scatterers which construct the fading signal [16]. Note that the
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Jakes model is a special case of the sum-sinusoidal model, and is mathematically valid

only for a rich-scattering environment.

A. Estimation of the Model Parameters

A majority of the works on channel modeling use a statistical approach. However,

the fading model (30) could be observed as a deterministic equation, and a handful of

articles have used this approach to capture the behavior of the fading process, e.g., refer

to [6], [7], [8], [9]. Assuming Nsc scatterers, there are 2 Nsc unknown parameters to

be determined in the model given in (30). As a systematic solution, only 2 Nsc fading

samples are required to form an equation set. Solving the equation set provides ω(k) and

α(k), for k = 1, · · · , Nsc. As this approach uses only a few noisy measurements of the

fading process, it could result in poor estimation of the parameters. Article [7] uses an

improved method to find the parameters using an ESPIRIT algorithm to find the doppler

frequencies, and then solving a set of linear equations by the Least-Squares method to

estimate the complex amplitudes. Alternatively, article [6] uses the Root-MUSIC method

to find the doppler frequencies.

To estimate the amplitudes α(k), the Least Squares and the Bayesian methods are

used in [8] assuming that ω(k)’s are known. As another solution, it assumes an AR model

for each α(k), estimates the AR coefficients using a Modified Covariance method, and

constructs a Kalman filter on the AR model to estimate the amplitudes [8].

In this paper, we propose a new approach to find the parameters. The details of the

method follows.

Assuming a constant scattering model, Fourier transform of the fading signal shown

in (30) is

H(ω) =
Nsc∑

k=1

α(k) δ(ω − ω(k)) + §(ω) (31)
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This means that different scattering components are decoupled in the frequency domain

and consequently can be estimated. The Fourier analysis provides an accurate estimation

of ω(k)’s if they do not change significantly over the observation window. In practice,

the ω(k)’s change slowly with time. Therefore, a high-resolution method is required to

estimate the doppler frequencies using a short window of recent measurements, as in [6],

[7], [8]. Furthermore, these estimates need to be performed frequently which imposes

a high computational complexity. However, this problem can be solved by an adaptive

filter. We utilize a tracking loop to follow the slow variations of ω(k)’s at each fading

sample. Therefore, unlike the window-based methods, the doppler frequencies are up-to-

date at each sample. A sudden change in the frequencies may occasionally happen, for

example, if the mobile path abruptly changes. In this case, the frequencies are estimated

again. Because of the nature of this approach, initial estimates of the frequencies do not

need to be very accurate. Therefore, we can use a simple fourier analysis like an FFT

algorithm.

As can be seen in (31), the α(k)’s may also be estimated from the Fourier analysis.

However, α(k)’s usually change faster than ω(k)’s as the mobile moves and the scattering

environment changes. These changes may even be significant over a few fading samples.

Therefore, the estimates of the α(k)’s should be kept up-to-date. Knowing ω(k)’s, we

construct a Kalman filter based on the sum-sinusoidal model to efficiently follow the

α(k) variations using each sample of the channel measurements. The state-space model

is introduced in the next two sections.
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B. The State-Space Model

A time evolution model is a useful tool for the prediction of a process. A well-known

form of an evolution model known as the state-space model can be written as




xn = An xn−1 + qn

zn = mn xn + vn

(32)

where xn is an Nray ×1 state vector at time n, An is an Nray×Nray matrix which controls

the transition of the state vector in time, and qn is a noise vector with the covariance

Qn = E[qn qH
n ], which represents the model error. The mn is the measurement matrix,

vn is the observation noise, and zn is the system output. In practical systems, An, Qn and

mn are usually constant or slowly time-varying. A well-known state-space representation

of an AR model can be found in [10]. We propose a new state-space model for the mobile

fading in the next section.

Considering the sum-sinusoidal process given in (30), we propose the following

state-space model:

An = diag
[
ejωn(1) Ts , ejωn(2) Ts , · · · , ejωn(Nray) Ts

]
(33)

and

mn = [1, 1, · · · , 1]1×Nray , (34)

where Nray is the model order which is the number of the assumed scatterers (ideally,

Nray = Nsc). The zn in (32) is substituted with the available measurement of the fading

sample, i.e., zn = hn. Therefore, the state vector xn consists of the complex envelops of

the scattering components. A Kalman filter can utilize the state-space model to estimate

the state xn at each time.
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Fig. 3. Block Diagram of Proposed Prediction Algorithm (KF)

C. The Proposed Algorithm (KF)

We propose an adaptive fading prediction algorithm here. Fig. 3 shows the flowchart

of the algorithm, and a description of the main blocks follows.

1) Kalman Filtering: Kalman Filtering is now commonly used in communication

systems (for example, see [3], [17], [4]). Assuming a state-space model, Kalman filter

efficiently estimates the state vector xn using the observation samples. The estimation

of the state vector given the observations at the time n, shown as xn|n, is optimal in the

MMSE sense. This state vector is used to predict the future samples of the fading signal

later.

Table I shows the Kalman equation, and Table II defines the variables used in the

Kalman equations. The presented Kalman filter works perfectly as long as the assumed

model represented by An is valid. In the transient times when the model is changing, the

Kalman filter may lose the track of the state. A threshold is imposed on the magnitude of
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Prediction part:

xn|n−1 = An xn−1|n−1 (35)

Pn|n−1 = An Pn−1|n−1A
T
n + Q (36)

Update part:

kn = Pn|n−1 mH
n

(
mn Pn|n−1 mH

n + σ2
v

)−1

(37)

xn|n = xn|n−1 + kn

(
zn −mn xn|n−1

)
(38)

Pn|n = Pn|n−1 − kn mn Pn|n−1 (39)

TABLE I

KALMAN EQUATIONS

the error term in (38), εn = zn−mn xn|n−1, to prevent large invalid changes. Namely, if

|εn| > Tε then ε′n = Tε εn/ |εn| is used instead. A threshold of Tε = 4 σv is used here. To

decrease the transient time, the estimates of α(k)’s from the Fourier analysis are applied

as initial values to the Kalman filter.

Fig. 4 shows a sample of the trajectories of |xn(k)|’s versus n (|xn(k)| = |αn(k)|).
2) Model Acquisition: The current parameters for the fading model are estimated

according to Section III-A. We apply the Fourier method to estimate ω(k), k = 1, · · · , Nray

using an FFT algorithm [13].

Acquisition could be done frequently to keep up-to-date with the doppler frequency
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Q The covariance matrix of the model noise

zn The observation sample

xn|n−1 The a priori estimate of the state xn (i.e., the estimation

of the state at the time n given the observations upto the

time n− 1)

xn|n The a posteriori estimate of the state xn (i.e., the estimation

of the state at the time n given the observations upto the

time n)

Pn|n−1 The covariance matrix of the a priori error

Pn|n The covariance matrix of the a posteriori error

TABLE II

VARIABLES USED IN THE KALMAN FILTER

changes. But to decrease the required computations, it may be done only when the scatter-

ing model has significantly changed. The proposed algorithm enters the acquisition mode

when the error trend exceeds a threshold as explained in Section III-C.5. Furthermore, the

algorithm does not allow two consecutive acquisitions to happen close together because,

after each acquisition, other blocks of the algorithm should have enough time to catch

up with the new model parameters.

3) Tracking: An adaptive algorithm is used to track the fine changes of the doppler

frequencies. Using a gradient-based approximation, the following LMS algorithm is

applied (See Appendix IV for details)

wn+1(k) = wn(k) + µKF=
[
xH

n|n(k) en

]
. (40)

where = is the imaginary operator and

en = zn − hn|n, (41)
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Fig. 4. A sample of the tracking capabilities of the Kalman filter for the envelopes of the scattering components

hn|n = mn xn|n. (42)

4) Prediction: Given the current state xn, which carries all the information about

the past, the future channel state should be predicted. It has been shown [18] that given

a constant state transition matrix An, the MMSE estimate of the D-step prediction is

x̂n+D|n = AD
n xn|n. (43)

where x̂n+D|n is the estimate of the state vector at the time n+D, given the observations

until the time n. However, the doppler frequencies slowly change, resulting in slight

changes from An+1 to An+D. It is shown in Appendix I that considering the model

changes over time, the optimal predictor is

x̂n+D|n = An+D · · ·An+2An+1 xn|n. (44)

At the time n, the matrices An+2, · · · ,An+D are not known. However, they can be

estimated by assuming the same trend for the doppler frequency changes over the next

D samples. Utilizing the tracking model of (40), the following estimate is achieved (see

Appendix II for the proof),

An+D · · ·An+2An+1 = AD
n diag[ej

D(D+1)
2

δwnTs ], (45)
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where

δwn = wn+1 −wn (46)

which can be calculated using (40) or another similar algorithm.

Using the predicted state x̂n+D|n, the fading sample at the time n+D can be obtained

as ĥn+D|n = mn x̂n+D|n.

5) Calculation of the Error Trend: We use an exponential window for calculation

of the error trend from the sample errors, as follows

En+1 = λEn + (1− λ) |en|2 , (47)

where λ is the forgetting factor (0 ¿ λ < 1).

Fig. 5 shows the trajectories of |en|2 and En versus n, corresponding to the results

shown in Fig. 4. Note that more than one acquisition may happen to follow each phase

of the model change, as observed in the plots.

IV. SIMULATION RESULTS

Table III shows the simulation parameters. The two prediction algorithms (LP and

KF) are compared here, with respect to the average MSE versus the prediction depth.

The results are reported for various linear orders NAR, and various scattering orders Nray,

respectively (Nray is an approximation of Nsc in (30)). Fig. 6 shows the results for the

Jakes fading for the mobile speeds of V = 25 and V = 100 kmph. It is observed that

KF significantly outperforms LP if Nray is large enough (here, for Nray ≥ 8), while LP

fails at high prediction depths regardless of the linear order.

The Jakes fading is only valid for a rich scattering environment. Furthermore,

because the Jakes fading is stationary, it can not model the changes in the scattering

environment. To test the algorithms in a more realistic setting, we use a Ray-Tracing

simulation environment as explained in [10]. The mobile is randomly moving vertically
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Fig. 5. A sample of the error history for the Kalman filter

fc 2.15 GHz

fs 1500 Hz

SNRz 10 dB

TABLE III

SIMULATION PARAMETERS

and horizontally in the scattering area and experiences different combinations of signal

rays. At each point of the mobile path, it undergoes a different doppler frequency and a

different signal power for each ray. Therefore, the generated fading, called “RT fading”,

can closely resemble the channel in a real mobile environment which is usually dominated

by a few scatterers.

Fig. 7 shows the results for RT fading for V = 25 and V = 100 kmph. It is

observed that KF can always outperform LP. For a linear predictor, the MSE is directly
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Fig. 6. Comparison of MSE versus prediction depth for the Jakes fading at V = 25 and V = 100
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Fig. 7. Comparison of MSE versus prediction depth for (non-stationary) RT fading at V = 25 and V = 100

related to the correlation properties of the fading, i.e., a lower correlation results in a

higher MSE. The fading correlation is not monotonic, therefore the MSE versus D plot

may not be increasing at high mobile speeds as observed in Fig. 7 for V = 100 kmph.

It is also observed that increasing Nray does not necessarily improve the performance.

In conclusion, the simulations show that the proposed prediction algorithm can perform

very well in real mobile environments, and it significantly outperforms the adaptive linear

algorithm.
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V. CONCLUSION

In this article, we propose a new method for prediction of fading channels. The

doppler frequencies are estimated and updated by an acquisition-tracking method, and

the amplitudes are updated by a Kalman filter. Because of the self-recovering nature of

both adaptive filter and Kalman filter, the algorithm is robust to practical uncertainties

such as the changes of the scattering environment, and the accuracy of the channel

estimates (or observation SNR). The proposed algorithm has a reasonable complexity.

Most of the existing algorithms have a window-based structure requiring frequent high-

complexity computations, while the proposed method has a sample-by-sample structure

resulting in a steady flow of low-complexity calculations. The simulation results show

the significant advantage of the algorithm over the conventional method, especially at

high mobile speeds, and low observation SNR’s.

APPENDICES

Appendix I:

Assume the state-space model shown in (32). The state at the time n + D could be

written as

xn+D = An+D xn+D−1 + qn+D (48)

= An+D (An+D−1 xn+D−2 + qn+D−1) + qn+D (49)

= An+DAn+D−1xn+D−2 + An+Dqn+D−1 + qn+D (50)

and so on until

xn+D = An+DAn+D−1 · · ·An+1xn +

An+DAn+D−1 · · ·An+2qn+1 + · · ·

+An+Dqn+D−1 + qn+D (51)
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Hence, for prediction of xn+D given the available observation data up to the time n,

from (51) it can be written as

x̂n+D|n = E [xn+D|zn] (52)

= An+DAn+D−1 · · ·An+1E [xn|zn] +

0 + · · ·+ 0 + 0 (53)

= An+DAn+D−1 · · ·An+1 xn|n (54)

using the fact that E[qi|zn] = 0, i > n.

Finally, the fading sample at the time n + D can be predicted as

ĥn+D|n = E [hn+D|zn] (55)

= E [mn+D xn+D + vn+D|zn] (56)

= mn+D x̂n+D|n (57)

= mn+D An+DAn+D−1 · · ·An+1 xn|n. (58)

Appendix II:

Consider the proposed state-space model described in Section III-B. Implement-

ing (58), it can be written

An+D · · ·An+1 = diag
[
ej{ωn+D(1)+···+ωn+1(1)}Ts , · · · , ej{ωn+D(Nray)+···+ωn+1(Nray)}Ts

]
(59)

Assume the same trend for the doppler frequency changes from the time n to n+D,

i.e.,

wn+d
∼= wn + d δwn, d = 1, 2, · · · , D. (60)

where δwn = wn+1 −wn. Consequently,

An+D · · ·An+1 = diag
[
ej{D ωn(1)+(D+···+2+1) δωn(1)}Ts , · · · , ej{D ωn(Nray)+(D+···+2+1) δωn(Nray)}Ts

]
(61)

= AD
n diag

[
ej

D(D+1)
2

δwnTs

]
. (62)
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Appendix III: Model Extension

We provided a state-space model for a single-path SISO channel in Section III-B. To

extend the model to MIMO and/or multipath channels, the same approach can be used.

Assume there is a total of Nch different channels, where each one uses Nray sinusoids.

Furthermore, assume that each channel has Nmp resolvable multipath. The model can be

shown as follows,




Xn = An Xn−1 + Qn

Zn = Mn Xn + Vn

(63)

Each variable plays the same role as in (32). Xn is a NchNray × Nmp matrix which is

constructed by stacking the state vectors of different channels and different multipath

components as follows

Xn =




xn(1, 1) xn(1, 2) · · · xn(1, Nmp)

xn(2, 1) xn(2, 2) · · · xn(2, Nmp)

...
...

...

xn(Nch, 1) xn(Nch, 2) · · · xn(Nch, Nmp)




(64)

where xn(i, j) is the Nray × 1 state vector of the j-th multipath of the i-th channel. An

is a square matrix with NchNray diagonal elements containing the doppler frequencies,

Zn and Vn are Nch × Nmp matrices which contain the observation and the observation

noise for each channel at time n, respectively. Mn is a Nch×NchNray matrix as depicted
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in the following,

Mn =




1

1

. . .

1




(65)

containing Nch “1”-vectors defined as

1 = [1, 1, · · · , 1]1×Nray
(66)

Appendix IV: Tracking Algorithm for the Doppler Frequencies

Considering the definition of xn in (32), from (30) it can be written

ĥn =
Nsc∑

k=1

xn−1(k) ejωn(k)Ts (67)

where the phase-shifts of the sinusoidal terms up to the time n − 1 are absorbed in

xn−1(k). Assume the cost function

Cn = E

[∣∣∣hn − ĥn

∣∣∣
2
]

(68)

= E
[|en|2

]
, (69)

where

en = hn − ĥn. (70)

An LMS tracking algorithm can be implemented as

wn+1(k) = wn(k)− µ0
∂Cn

∂wn(k)
. (71)
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We can write

∂Cn

∂wn(k)
≈ ∂ |en|2

∂wn(k)
(72)

=
∂(eH

n en)

∂wn(k)
(73)

= 2< [
(−j Ts xn−1(k) ejωn(k)Ts)H en

]
(74)

= 2< [
(−j Ts xn(k))H en

]
(75)

= 2< [
j Ts xH

n (k) en

]
(76)

= −2 Ts=
[
xH

n (k) en

]
(77)

where < and = are the real and imaginary operators, respectively. Therefore, the LMS

algorithm has the following neat structure

wn+1(k) = wn(k) + µ= [
xH

n (k) en

]
, (78)

where µ = 2 Ts µ0 is the step size.
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