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Abstract

A network of n communication links operating over a shared wireless channel is con-
sidered. Fading is assumed to be the dominant factor affecting the strength of the channels
between nodes. The objective is to maximize the throughput of the network. A scheme that
can be simply implemented in a distributed and single-hop fashion is proposed and analyzed. It
is shown that under Rayleigh and log-normal fading conditions, the proposed scheme achieves
sum-rates that scale &s;n andev25Viogn respectively, wheré is a channel parameter and a
constant. This is the same as what is obtained by a centralized and multihop method in the work
of Gowaikar et al. Nevertheless, an analysis in the shadow fading model points out that when
the network is not well-connected, single-hop methods are suboptimum and invoking multihop
communication is inevitable to achieve the maximum throughput. An interesting aspect of the
proposed method is the tradeoff it introduces between the scaling factor and the rate per link;

it is shown that the proposed method allows rate-per-links of o&ldr) while keeping the
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order of the sum-rate unchanged. This is in contrary to the most previous works that enforce

a vanishingly small rate for each link.

Index Terms

Wireless network, decentralized power allocation, fading channel, sum-rate, scaling law.

I. INTRODUCTION

In a wireless network, a number of source nodes transmit data to their designated
destination nodes through a shared wireless channel. Followed by the pioneering work
of Gupta and Kumar [1], considerable attention has been paid to investigate how the
throughput of wireless networks scales withthe number of nodes. This has been done
assuming different network topologies, traffic patterns, protocol schemes, and channel
models [1]-[12].

From the information theoretic point of view, a wireless network is a generalized ver-
sion of theinterference channdlL3], whose capacity region has not been fully character-
ized, yet. Consequently, there are only a few papers that take a pure information theoretic
approach to the throughput of wireless networks [2]-[4]; instead, most researchers base
their throughput analyses on certain simplifying assumptions including Gaussian signal
transmission, linear receiver structures (which excludes interference cancelation), and
point-to-point coding (which excludes for example multi-access and broadcast schemes).
In this case, interference at each receiver is treateddalstive white Gaussian noise
(AWGN) and thesignal to interference-plus-noise rat{®//NR) along with the Shannon
capacity formula determine the achievable rate of each link. We will follow this paradigm
throughout this paper.

In [1], it is assumed that nodes are distributed over a constant area. Also, each
node is the source of exactly one data stream to be sent to a destination randomly or
arbitrarily chosen from the othetr — 1 nodes. With this traffic pattern and under the

fairness constraint that all data streams be transmitted at the same rate, it is shown that a



rate of1/y/n and1/+/nlog(n) per node is achievable in arbitrary and random networks
respectively. An extension of this result for the case that nodes are mobile or under delay
constraints was provided in [5]. The result of [1] was later improved by [6], [7] by
showing that even random networks can achieve the rate/ ¢f. per node. In all of
these works, rate per nodes decrease to zero as the number of nodes grows. However, it is
practically appealing to have rate per nodes that remain constantiwgews. In [8], it
is shown that a nondecreasing rate per node is achievable when nodes are mobile. In this
work, we address this issue and show that even for fixed networks, it is possible to have
rate per links like©(1) while keeping the order of the maximum sum-rate unchanged.

Most of the works analyzing the throughput of large wireless networks consider a
channel model in which the signal power decays according to a distance-based attenuation
law [1]-[4], [6]-[10]. However, in a wireless environment the presence of obstacles and
scatterers adds some randomness to the received signal. In addition, the power attenuation
laws may not be valid when the receiver is not in the far field of the transmitter as in the
dense networks. This random behaviour of the channel, known as fading, can drastically
change the scaling laws of a network. This can be verified by reviewing the results of
the few papers that have considered fading in their study of the throughput scaling law
[5], [11], [12]. In [5], it is shown that for the same setup as in [1], the presence of fading
decreases the order of the lower bound on rate per node by a fadiesaf

In this paper, we follow the model of [11], where fading is assumed to be the
dominant factor affecting the strength of the channels between nodes. In [11], two nodes
are considered as a potential transmitter-receiver pair only if the fading channel between
them isgoodenough. The transmission protocol, which is basically a scheduling, is based
on a result from random graph theory about noncolliding paths between randomly chosen
pairs of vertices. Despite most of the previous works, only a fraction of data streams are

scheduled for transmission; however, the scheduled data streams are transmitted at the

!In an arbitrary network, the nodes locations can be chosen optimally, but, in a random network the nodes are

located randomly.



same rate. This data rate, the number of active source-destination pairs, and the channel
goodnesgriterion are chosen such that the total throughput of the network is maximized.

It is shown that the throughput of the network strongly depends on the fading channel
distribution. We perform throughput analysis for Rayleigh, log-normal, and shadow fading
channels.

Generally, a realistic model of wireless network channels should take into account
both randomness and distance-based effects. Recently, a generalization of the work in
[11] has appeared in [12], where the authors consider a general fading model on top of
a power decay law.

A common attribute of the works in [1]-[12] is that the information flow is routed
through some intermediate nodes, named relay or router, to reach the final destination.
Such a strategy, which is called multihop communication, necessitates a central unit
with full knowledge of all channel conditions that decides on the routing paths and
the schedule of transmissions. Furthermore, it induces delay in the network that can
not be tolerated in some applications. Also, implicit in multihop communication is
the excess power consumption by the relay nodes. This latter issue can be a critical
disadvantage in applications where the total power is constrained. In this work, we present
a strategy that allows data to be transmitted directly from sources to their corresponding
receivers without utilizing any other nodes as routers. This model includes single-hop
ad hoc networks, cellular networks, and code division multiple access (CDMA) systems
as its special cases. This single-hop communication scheme can be implemented in a
decentralized fashion. Each source node needs to know only its direct channel to the
corresponding destination. The generality of this method allows it to be applied to any
fading channel models. It turns out that in the popular models of Rayleigh and log-
normal fading, the proposed method achieves the same sum-rate as what is obtained in
the centralized and multihop method of [11].

Contrary to the aforementioned works on large wireless networks, there are a lot

of works in the literature investigating the throughput optimization in networks with



arbitrarily small sizes. Based on the network structure, throughput optimization can be
executed in different ways, e.g. by power control [14], bandwidth allocation [15], [16],
transmission scheduling [17], routing [18], [19], base station selection [20], etc. Among
these various challenging problems, power control has a prominent role in the past and
ongoing research in this area. The problem of minimizing the transmit power subject to
satisfying some quality of service requirements can be formulated as a linear program
[17] and can be solved in a decentralized fashion [14], [21]. However, the problem
of sum-rate maximization subject to some power constraints, that has been frequently
appeared in the literature [22]-[25], turns out to be a nonlinear nonconvex problem. One
approach to solve this problem is to utilize numerical optimization methods (see e.qg.
[24]). Another approach is to adopt an approximation of the objective function such that
the problem can be converted to a convex program [22]-[24]. As will be explained in
the next section, this work is based on power allocation and some related observations
reported in the literature.

The rest of the paper is organized as follows. In Section Il, the system description,
objective, and problem formulation, are presented . We derive a lower bound on the
average sum-rate in Section Ill. The analyses of the proposed method for some specific
fading models is studied in Section IV. We discuss the tradeoff between sum-rate and
rate per link in Section V. Finally, we conclude the paper in Section VI.

Notation: Bold face lower case (upper case) letters denote vectors (matriges);
and 1,, stand for the all-zero and all-one column vectors of lengthrespectively;

N, represents the set of natural numbers less than or equal to_, is a vector
obtained by eliminating théth element ofx; * < y or x < y denote element-wise
inequality; log is the natural logarithm functions means approximate equality; for any
functions f(n) and h(n), h(n) = O(f(n)) is equivalent tolim,, .. |h(n)/f(n)| < oo,
h(n) = Q(f(n)) is equivalent tdim,, .. |h(n)/f(n)| > 0, h(n) = o(f(n)) is equivalent
to lim, o |(n)/f(n)| =0, h(n) = w(f(n)) is equivalent tdim,,_., |(n)/f(n)| = oo,

h(n) = ©(f(n)) is equivalent tolim, ., |h(n)/f(n)] = ¢, where0 < ¢ < oo, and



h(n) ~ f(n) is equivalent tdim,, .., h(n)/f(n) = 1.

[I. SYSTEM DESCRIPTION ANDPRELIMINARIES

We consider a wireless communication network withpairs of transmitters and
receivers. Each transmitter aims to send data to its corresponding receiver. We denote the
vector of transmit powers bp = (py, - -+, p,), Wherep; is the transmit power of link

1. The following constraint is imposed on the transmit power
0, <p<a, 1)

wherea = (aq, - - , a,) represents the vector of maximum allowed transmit powers.

The channels are represented by coefficights= |a;;|*, wherea,; is the channel
gain between receivérand transmittey. This means the received power from transmitter
J at the receiver equalsGj;p;. The channel gains, in general, depend on small scale
and large scale fadings, path attenuation, processing gain of the CDMA system, etc. In
this paper, we assume the channel coefficients are i.i.d. random variables drawn from a
pdf f(z) with meany and variancer.

We consider an additive white Gaussian noise (AWGN) with variamcat the
receiver:. The receivers are conventional, linear receivers, i.e., without multiuser de-
tection. Since the transmissions occur simultaneously within the same environment, the
signal from each transmitter acts as interference for other links. Assuming Gaussian signal
transmission from all links, the distribution of the interference will be Gaussian as well.
Thus, we can define th8INRof the receiveri as
. Gips
o+ Gapy

J#i

7i(p) (2

Throughout the paper, we occasionally ugeinstead ofy;(p). The SINR determines
different QoS measures such as the maximum possible data rate, or the error probability

of link 1.



In this paper, we are interested in rates at which the transmitters can send data
to their corresponding receivers without any error. According to the Shannon capacity

formula [13], the maximum rate of link is equal to
ri(p) = log (1 4+ vi(p)) nats/channel use. (3)

The network rate vector is defined as-= (rq, --- , r,). In a network, we desire to have

all rates as large as possible. However, due to the interplay between the rates of different
links (see (2) and (3)), it is not possible to maximize all the rates simultaneously. Instead,
one may consider maximizing a utility function of the network which is increasing in all
rates. A common utility function is the sum-rate of the network.

The problem of sum-rate maximization is formulated as follows:

n

max Z ri(p),

P =1
st 0,<p<a, (4)
which is a non-convex optimization problem. Thus, the algorithms developed for con-
vex problems may converge to local optimum points for this problem. The following
proposition identifies one of the characteristics of problem (4).
Proposition 1: In the optimum solutionp* of (4), the power of at least one link
takes its maximum allowed value.
Proof: For the sake of contradiction, assumpé < a. Consider the index set
I ={ieN,: pf>0} and define

a*:min{a—i}. (5)
i€ | p;
Choose a new power vectpr= o*p*, which obviously satisfies the constraifis< p < a.

Sincea* > 1, it follows that

n n

> i) > > rilp), (6)

i=1 i=1

which is in contradiction to the optimality gb*. [ ]



There are some special cases, where even stronger statements can be expressed about the
solution of (4). These special cases are listed below:

Special Case 1 (Uplink CDMA)The result in [25] indicates that in the uplink
CDMA, whereGj; = G, for all j € N,,, the power of all links take the value of zero or
the maximum allowed value except for at most one link.

Special case 2= 2): When there are only two links sharing a wireless channel,
we have the following interesting result.

Proposition 2: The optimum solution of (4) fom = 2 is obtained when one of
the transmitters transmits with maximum power and the other one is silent, or both
transmitters transmit with maximum power

Proof: Assume for simplicity that channel coefficients and noise powers are scaled
such that the maximum allowed power of both links and also the direct channel coeffi-
cientsG;; are equal to one. According to Proposition 1, in the optimum solution of (4)
the power of at least one link should be equal to one; without loss of generality assume

pe = 1. It suffices to show that the maximum of the function

b1 1
=1 1+ —— | +1 1+ — 7
fpr) = log ( m + G21> o8 ( N2 + G12p1> 0

is obtained either ap; = 0 or p; = 1. By computing the derivative off(p;) and
simplifying it we obtain

;oo AP+ Bpi+C
f (pl) — d(pl) )

whereA = G2,, B = 215G12, C = no(n2 +1) — G12(m + Ga1), andd(p,) is a polynomial

(8)

in p; with all coefficients non-negative. Thus, the sign ©fp,) is determined by its
numerator. Note thatl, B > 0. If C' > 0, the numerator (and thuf'(p;)) is always
non-negative fop; > 0. Thus, f(p;) is increasing inp; and achieves its maximum at
p1 = 1. If C < 0, the numerator has exactly one positiyé€)(@nd one negativep() roots.

Thus, f(p1) has a minimum ap); and attains its maximum at O or 1. [ |

2pfter the authors published this result in [26], it was independently reported in [27].



Obviously, if in the optimum solution only one link is active, it should be the link
with the largest direct channel coefficient.
Special case 3 (low SINR regimd):we know that theSINRof all links is small,

we can use the approximatidog(1 + =) ~ = to write (4) as follows

max > % (p)
=1

s.t. on_g p <a. (9)

Although this problem is again non-convex, the following result can be concluded that
allows for obtaining the optimum solution by enumerating the vertices of the hypercube
of the power domain.

Proposition 3: In the optimum solutionp* of (9), all transmit powers are either
zero or the maximum allowed value, i.g;, € {0, a;} for all i € N,,.

Proof: Define the objective function

= Z %i(p)- (10)

If for some: € N,,, p*, = 0,,_;, clearly p; = a, maximizes the sum-rate and the proof
is complete. Ifp*, # 0,,_1, by substituting the values of;(p) from (2) in the objective

function (10) and computing the second order partial derivative with respegt \we

obtain
82T v;(p)
_2§ G?” (11)
Op; i)

which is positive for allp_, # 0,,_1. Thus,T'(p) is convex with respect tp;. As a result,
the maximizing value op; lies on one end of the intervadl, a;]. u

The low SINRscenario is of special interest in this paper. In fact, when there are
many links sharing a wireless channel, most likely they should operate in th&8INR®R
regime. In this case, Proposition 3 suggest®aoff strategy to maximize the sum-rate.

This strategy is the basis of our proposed method in the next section.
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[11. AL OWERBOUND ON SUM-RATE

It is interesting to know how the throughput of a wireless network scales with the
number of nodes, when this number is large. In this section, we present a simple heuristic
power allocation scheme, which yields to a lower bound on the average sum-rate of the
wireless network described before. Motivated by the special cases listed at the end of
Section Il, particularly Proposition 3, this scheme is based omtheff power allocation
strategy

Definition 1: A power allocation is called ann-off strategyif the power of linki
is selected from the sd0, a;}.

We provide a power allocation strategy and obtain the sum-rate whiabyisptotically
almost surely(a.a.s) achievable by this scheme. In the following, we assume all links
have power constraints equal f& i.e.,a = P1,. Furthermore, the noise powers at all
receivers are limited and the same, iig.= n < co.

Consider a threshold and assume that link is activated and transmits with full
power if G;; > t; otherwise, it remains silent. Note that the performance of this on-off
strategy depends on the value of the threshold ¢ is very large, the quality of the
selected links will be very good, but the number of such links is small and as a result
the achieved sum-rate will be small; on the other hand,sfvery small, many links are
chosen, but it causes a large interference and again the sum-rate will be small. Thus, it
is crucial to choose a proper value for

Let & denote the number of active links. Without loss of generality, we assume that

the active links are indexed bl 2, --- , k. The corresponding sum-rate is equal to
i G
R = log |1+ —7>0— 1, (12)
ZZ—; P+ Z%l, Gji
VE=)

wherep = n/P. Considering the fact tha¥';; > ¢ for the selected links and by defining

the interference termi; = Z?‘::l Gj; foralli =1,2,---, k, we obtain the following
J#i
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lower bound on the sum-rate

k
t
R > 1 1 . 13
_;og(erjL[i) (13)
This lower bound can be further simplified by using the Jensen’s inequality, i.e.,
t

R>Fklog| 1+ ——— |, (14)

( p+ % Z?:l ]i>

Let's definel = + S°F | I;, which is the empirical average of the interference terms.

From the definition ofl;, we conclude that
El) = (k— 1) (15)
k—1
7 ol (16)

Since the mean of; grows withk, the classical form of the strong law of large numbers

Var[l] =

can not be applied to conclude thatends to its mean as— oo. However, the following
Lemma indicates thaf is in some sense concentrated around its mean.
Lemma 1:Assumel; (i =1, 2, --- , k) are i.i.d. random variables with me&h —

1)u and variancek — 1)o2. Then, forl = 1 3" | I, we have
I —(k—Dp| <ix, a.a.s., (17)

for any ¢, — oo ask — .
Proof. By using the mean and variance bfrom (15) in the Chebyshev inequality,

we obtain

k—102 o2

——>1- .
ko 4y (0

If Y. — oo ask — oo, the right hand side of the above inequality tends to 1. This proves

P{l = (k=1p| <y} =1 (18)

the lemma. [ |

According to Lemma 1, the lower bound in (14) can be written as

t
R>klog |1+ ,  a.a.s., 19
B g< Nk+¢k) (19)
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for any ¢, — oo ask — oo. Note that the constant — . is absorbed in the function
Y. This lower bound is only a function of and k. Parametert is a constant to be
chosen optimaly later, however,is a random variable. Assume the probability of a link
being active isg. Due to our link activation strategy, which selects links independently
and with probabilityg, the number of active linkg;, is a binomial random variable with
parameters andq. The following lemma indicates thatis asymptotically almost surely
concentrated around its mean.

Lemma 2:1f k£ is a binomial random variable with parametersand ¢, then we

have
|k —nq| < &/ng,  a.a.s. (20)

for any &, — oo asn — oc.
Proof. Sincek is binomial with parameterg and ¢, its mean and variance are

equal tong andng(1 — q), respectively. Using these values in the Chebyshev inequality,

we obtain
1—% < P{!k—nq\<£n HQ(l—q)}
< P{|k —nq| < &/nq}, (21)

where the second inequality is due to the fact thatq < 1. If £, — co asn — oo, the
left hand side of the above inequality tends to 1. This proves the lemma. [ |
As mentioned before, Lemmas 1 and 2 are valid forapwnd¢,, that grow unboundedly
with £ andn, respectively. However, to benefit from these results, in the following, we
are only interested in such cases that the growth rate of these two functions is slower
than some certain order.

Now, we are ready to prove the main result of this section, which is an achievability
result on the sum-rate of wireless networks under consideration.

Theorem 1:Consider a wireless network with links and i.i.d. random chan-

nel coefficients with pdff(z), cdf F(x), and meanu. Choose anyt > 0 and define
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q=1— F(t). Then, a sum-rate of

() = (g = o) o (14 oot ) @)

is a.a.s. achievable for any, = o(,/nq) that approach infinity as — oo and any
¢n = ¥(ng — &/nq), wherey(n) makes the function

nlog (1 v m) (23)

increasing ink for any constant, and«(n) — co asn — co.

Proof: By applying the on-off power allocation strategy, we obtained a lower bound
on the achievable sum-rate in (19). According to condition (23), this lower bound is
increasing ink. Thus, if we replace the number of active links,by its possible lower

bound, the achievability result remains valid. However, from Lemma 2 we know that

k> ng—¢&,\/nq, a.a.s. (24)
By the assumptiod,, = o(,/nq), the lower bound in (24) is non-negative and can replace
k in (19) to give (22) withy,, = 1(ng — &\/nq). [ |

We can conclude the following corollaries from the above discussion and from the
proof of Theorem 1.
Corollary 1: In the on-off strategy that achieves the sum-rate given in Theorem 1,

the number of active links scales as

k~ng a.a.s. (25)
Proof: The proof is starightforward by using the assumptipr= o(,/nq) in Lemma 2.
u
An important parameter in a wireless network is the rate at which each scheduled
link can transmit its own data stream. We refer to this parameteatasper link and
denote it by\. The following corollary quantifies this parameter for the proposed method.
Corollary 2: In the on-off strategy that achieves the sum-rate given in Theorem 1,

the rate per link scales as

t
A ~ log (1 + 1(nd = &n/rd) + S%) a.a.s. (26)
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Proof: The result is simply obtained by dividing the sum-rdté) from (22) by
the number of users from (25). [ |
As specified in (22), the achievable sum-rate in Theorem 1 is a function of the
parametert. Thus,t can be chosen such that the achievable sum-rate in Theorem 1 is
maximized. Let’s define
t* = arg max R(t), (27)

and
R* = max R(t) (28)

to be the optimum threshold and the maximum achievable sum-rate, respectively.

Corollary 3: In the on-off strategy, the average achieved sum-rate satisfies
E[R] > R, (29)

where R* is as defined in (28).
Note that Corollary 3 expresses a deterministic statement, in contrary to previous state-
ments which hold asymptotically almost surely.

Proof. By definition of conditional expectation, we have

E[R] = E[R|R> R*]Pr[R > R']
+E[R|R < R*]Pr[R < R*]
> R*XPrlR>R"]+0xPr[R < R
= R, (30)

where the last equality holds asymptotically by choosingt* in Theorem 1. [ |

It is worth mentioning that in the suggested on-off strategy, no coordination is
required between the links. All one transmitter needs to know is wether its direct channel
coefficient is above the threshold. Based on this information, it decides wether to
transmit with full power or remain silent. In general, the values*aind R* are functions

of n, but how they scale witlw strongly depends on the channel distribution function
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f(z). Specifically, one needs to know the relation betwgeandt¢ as well as the value
of p to obtaint* and R*. In the next Section we provide some examples and show how

the achievable sum-rates depend on the fading model.

IV. CASE STuDY

In this section, we provide some examples of fading channels and show how to
apply the method and result of the previous section to each case. We start with the
popular channel model of Rayleigh fading and study it in detail. We also adopt two
more models from [11], i.e., shadow fading and log-normal fading models. The results
mention that the scaling laws of the sum-rate drastically depend on the fading channel
model under consideration. It also turns out that the sum-rate scaling law achieved by
our decentralized scheme is the same as what is obtained in [11] for the case of Rayleigh
fading and log-normal fading models. However, it is smaller in the case of shadow fading
model. This observation points out the need for multihop in cases where the interference

term is strong.

A. Rayleigh Fading

In a Rayleigh fading channel, the coefficieits; are exponentially distributed with
f(z) = e* andu = 1. Thus, using the corresponding cumulative distributed function,
the relation between and¢ is described ag = ¢*. By substituting this value in (22),

we obtain the function to be maximized as

Lemma 3:In a wireless network with Rayleigh fading channels andinks, the

optimum threshold for the on-off strategy is equal to

4logl n
t*zlogn—Qloglogn—i—logZ—i-M-i-O 5— ; (32)
logn logn

where¢,, = o(logn).
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Proof. see Appendix A. [ |

Corollary 4: In a wireless network with Rayleigh fading channels antinks, we
have

R* =logn —2loglogn + O(1), a.a.s. (33)

Proof: Substitute the value of from (32) in (31). [ |

By applying the result of Lemma 3 to Corollaries 1, 2, and 3, we obtain the following
corollary.

Corollary 5: In a wireless network withe links and under Rayleigh fading channel

model, on-off strategy yields

1
k ~ 5 log®n — 2loglogn x logn + O(&, logn), a.a.s., (34)
2
A~ , a.a.s., (35)
logn
E[R] > logn — 2loglogn + O(1). (36)

In the above, we analyzed the scaling laws of the wireless network, when the the
thresholdt and the number of usefsare optimaly chosen. However, a natural question
is how the scaling laws change when the network serves more or less users (links) than
the optimum obtained above. The following Lemma addresses this issue.

Lemma 4:In a wireless network with Rayleigh fading channels, if thebest
links (links with largest self channel coefficients) are permitted transmission, then, the

achievable sum-rat& is related to the number of active linksaccording to

( o(logn) if &k =o(logn)
alog (1 + i) logn if k~ alogn for somea > 0
R~ 4 logn if k=w(ogn)andk=o0(n*), V0<a<l ;
(1 —a)logn if k-~ nete for some0 < a < 1 and some:;,, — 0
| o(logn) if &k~ n'" for somee, — 0"

(37)
asymptotically almost surely, where the limits are takemas oo.
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Proof: The proof relies on the following two equations, that we have already seen,
but are repeated here for simplicity
k ~ net (38)
t
R = ne'log <1 + _t> . (39)
ne

The first equation describes the relation betweemd k£, and the second one gives the

sum-rateR in terms oft. We proceed by the proof in a case by case basis.
logn

n

1) If k= o(logn), we can writek = , where(,, — oo asn — oco. Hence, we
obtain

t =logn — loglogn + log(¢,), (40)

Consequently, from (39) we obtain

logn logn
R ~ 2 log<10gn>
Cn
_ loga log 1
Cn
= o(logn) (41)

2) If £ ~ alogn for some constant > 0, we have
t ~logn — loglogn — log a. (42)

As a result, we obtain

alogn

1
R ~ alognlog(1+ ogn)

= alog (1 + l) logn (43)
«
3) If k =w(logn) andk = o(n®) for all 0 < o < 1, we should have
t ~ logn. (44)

Hence, we obtain

w(logn)
~ logn, (45)

1
R ~ w(logn)log (1+ g n )
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where the last equality is based on the approximaliig(l + =) ~ x for small values of
Z.

4) If k ~ n>te for some0 < o < 1 and some:,, — 0, we should have

t ~ logn —logn®te

= (1—a—e¢,)logn
~ (1—a)logn (46)
Substituting these values éfandt in (39) gives
R~ (1—a)logn. 47)
5) If k ~n'~ for somee, — 0T, we have

t ~ logn—logn!'™
= ¢€,logn

= o(logn) (48)
Substituting these values éfandt in (39) gives
R = o(logn). (49)

u
This lemma points out that there is a vast range for valuek thfat can result in
sum-rates of ordelog n. This range starts frord(log n) and includes all values df as
long ask = o(n). This effect is shown in Fig. 1, wherR is depicted versus for three
different values ofn. It is seen that while decreasirigfrom its optimum value rapidly
decreases the sum-rate, the rate of variations in larger valuésiofairly slow. The
range of logarithmic variations of sum-rate is also of interest to us due to the rate per

link issue to be discussed in Section V.
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n=100000

0 20 20 50 80 100
Fig. 1. Sum-rate vs. number of active links fer= 1000, 10000, 100000.

B. Log-Normal Fading

Consider a network with channel strengths drawn i.i.d. from a log-normal distribu-

tion with pdf
(logz — M)?
252 , x>0 (50)

- \/27TSSU€

with S and M being the parameters of the distribution [11]. The following proposition

/()

establishes the relation betwegmndt in the log-normal fading model for large values
of t.

Proposition 4: Assume X is a log-normal random variable with the pdf given in
(50) and letqg = Pr{.X > t]. Then, for large values aof we have
(logt — M)

5 o (51)

Var(logt — M)

q~=
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Proof. By the definition ofg, we have

/°° 1 _(1ogz—M>2d (52)
= (& 252 xXr
1 + V2nSx
L g (53)
= & 28 xr
logt 27TS
1 logt — M
- gerc(lE M), (54)
2 V28
2 . : .
where erfc(z) = fo e~*’dz is the complementary error function. By using the
s
approximationerfc(z) ~ ﬁe‘ﬁ for large values ofr, the result is obtained. [ |

By substituting the value af from Proposition 4 in (22), the sum-rate, as a function of
t, is obtained as

11/2
S n . Buetess
R(t) = —— %%(3252 log | 1+ %es , (55)

where, for the brevity of notation, we have definee- logt — M. Also, B is a constant
depending on the distribution parameters.
Lemma 5:1In a wireless network with log-normal fading channels antinks, the

optimum threshold for the on-off strategy satisfies

#* ~ M5 V25 Viogn (56)
Proof. See Appendix B. [ |
Corollary 6: In a wireless network with log-normal fading channels andinks,

we have
R* ~ 6_#6‘/55\/@ a.a.s. (57)
Proof. Substitute the value aof* from (56) in (55). [ |

By applying the result of Lemma 5 to Corollaries 1, 2, and 3, we obtain the following

corollary.
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Corollary 7: In a wireless network wit links and under log-normal fading chan-

nel model, on-off strategy yields

_ 352

~ 6\/@25 logneﬂSVlog”, a.a.s. (58)
V85
A~ — .a.S. 59
s a.a.s (59)
E[R] > =5 eVaSVIoET, (60)

The sum-rate scaling order ef 25V°e" js the same as what is obtained in [11].

C. Shadow Fading

Consider a network whose channels coefficients are drawn i.i.d. from the pdf [11]

flx) = (1 —=p)-6(z) +p-d(x—1), (61)

where §(-) is the Dirac’s delta function. For this distributign = p. This pdf simply
models a shadow fading environment in which, for any links, with probability there
exists an obstacle that completely suppresses the signal and with probalsligh an
obstacle does not exist and the transmitted signal is received without any fading effect.

For a constanp, since there is only two possibilities for the channel coefficients,
the threshold optimization is trivial; one should choese- 1 to maximize the sum-rate.

This givesq = p and consequently,

1
R =mnplog (1 + —2) . (62)
np

An interesting scenario is when it is possible to chopses a function ofn such that

the sum-rate is maximized. Intuitively, whenis very small, the effect of interference

is low, but the number of unblocked links is low as well resulting in a small sum-rate.
On the other hand, ip is very large, there are many unblocked links but the number
of links interfering with each link is also high and the achieved sum-rate will be small

again. Thus, there should be some optimum valuepfor between.
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Lemma 6:In a wireless network with shadow fading channels andinks, the

optimum value ofp for the on-off strategy is equal to

Ve (63)
wherec =~ 0.5050 is a constant.
Proof: See Appendix C. [ |
Corollary 8: In a wireless network with shadow fading channels arlohks, under

optimum channel conditions, i.ep,= p*, we have

R* ~ clog (1 + 12) Vn, a.a.s. (64)

Proof: Substitute the value gf* from 0(63) in (62). [ |
As observed, the sum-rate scales\@s, which is smaller than the linear scaling with
n that was obtained in [11]. This shows the necessity of a multihop scheme to achieve
higher orders of sum-rate.

By applying the result of Lemma 6 to Corollaries 1, 2, and 3, we obtain the following
corollary.

Corollary 9: In a wireless network withn links and under shadow fading channel

model withp* given in (63), the on-off strategy yields

ko~ ey, (65)
A ~ log (1 n 0_12> , (66)
E[R] > clog (1 + Ci?) Vvn. (67)

It should be noted that under optimum channel conditions, the rate per link does

not go to zero.

V. TRADEOFF BETWEENSUM-RATE AND RATE PERLINK

We have seen that in the proposed scheme, when the number of users is chosen

properly such that the sum-rate is maximized, rate per link scalqzos;—naand Tocn for

Rayleigh fading and log-normal fading models, respectively. In both cases, rate per link
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approaches zero as— oo, which is not desirable in practice where each link requires
a reasonable amount of rate in the order of 1. Fortunately, the proposed strategy allows
for having rates per users equal@g1), while still keeping the scaling of the sum-rate
as O(R?). For example, accrding to Lemma 4 for the Rayleigh fading model, when
k = ©(logn), sum-rate i (logn) as well. In this case, rate per link scalesa®d ). The
same scenario also holds for the log-normal fading model. In the following, we address
this issue for Rayleigh and log-normal fading channels.
Assume in a network witm links for some threshold and the corresponding

number of active userk, a sum-rateR, is achievable. We define the scaling factor as

. R,
a= lim —,

where R,, and R;, are as defined before, but we have added a subscriptstress the

(68)

functionality of n. We are interested in values af for which o = ©(1). In Rayleigh
and log-normal fading channel® is obtained in a situation wher& > pk*, which

. t* . . .
results in R; and — having the same order. On the other hand, in both cases, if we

7!
t*

decrease the order of the number of users suchithats—, for some constant > 0,
the corresponding will still have the same order a$. Consequently, we achieve, =

*

Blog <1 + %) % which means
a = (log <1+%>, (69)
and
A =log (1 + %) . (70)

As a result of (69) and (70), at the range®f = O (R;), the scaling factor and the rate

per link are related as
A

er—1°

This equation reveals a tradeoff between rate per Ardd the scaling factar; one can

(71)

o =

increase rate per link by decreasing the scaling factor and vice versa. Figure 2 illustrates

the tradeoff between the scaling factor and the rate per link.
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Fig. 2. Tradeoff between the scaling factor and the rate per link.

VI. SUMMARY

In this paper, power allocation was considered to improve the sum-rate of wireless
networks with fading channels. A decentralized single-hop scheme based on on-off
strategy was proposed and analyzed for a general fading model. The analysis resulted
in a sum-rate which is asymptotically almost surely achievable. It was observed that in
the popular models of Rayleigh and log-normal fading the achievable sum-rate of this
simple method is the same as what was obtained previously in other works by complex
centralized multihop methods. We also showed that the proposed method is capable of
providing each active link an arbitrary large constant rate, while keeping the sum-rate
at the same order as its maximum. In this case,we could identify an interesting tradeoff

between the rate per link and the scaling factor of the sum-rate.

APPENDIXA

OPTIMUM THRESHOLD FORRAYLEIGH FADING MODEL

The optimum value of the thresholtt, is the value that maximizes the achievable

sum-rate in (31). As it is seerR(¢) is a complicated function of. However, since,
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can grow as slow as desired, we can&get 0 to obtain a more tractable form fdg(t)
from which azero order approximatiof the solution is obtained. In the next stage, we
will improve the solution using this zero order approximation.

a) Zero order approximationBy setting¢,, = 0, the objective function in (31)

is transformed to

R(t) = ne'log (1 + ) : (A.72)

ne—t
Using the approximatiotog(1l + =) ~ = — % the above function can be approximated
as

R +2
R(t) ~t —

(A.73)

2ne~t
The maximum of this function can be found using the first derivative test as follows. By
taking derivative of both sides of (A.73), we obtain

t t?
ne=t 2ne-t’ (A.74)

R(t)~1—

which is an increasing function in Consequently, the root of the equati®(t) = 0

gives the valuetz*o). This equation is equivalent to
2net = 2t + 2. (A.75)

Noting that the solution to this equation is increasing witfi.e. to) is large), by taking

logarithm of both sides of (A.75) we arrive at the following equation
2
tzlogn—2logt+log2—¥, (A.76)
whose solution can be verified to be

log 1
t}“o) =logn — 2loglogn + log2 + O oe08n . (A.77)
logn
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b) First order approximation:Using to) in (A.77), the term containing, in
(31) is approximated &s
&aVne t = ¢, logn. (A.78)

Since, can be chosen of ordeilogn), it is negligible in comparison witkg, log n.

Thus, the function to be maximized takes the form

t
W(t) = (ne™t = €,1 log ( 1 : A7
RW(t) = (ne &nlogn) og( Miyeran c logn) (A.79)

Assuming¢,, = o(logn), and taking the same approach as for obtairti('iagin the zero

order approximation, we can obtain

4logl "
t(y =logn —2loglogn + log2 + Zosoen +0 § . (A.80)
logn logn

As it is observed, as long & = o(logn), the paramete¢,, does not contribute in the

dominant terms of*. Thus, we have

Alogl
I —logn — 2loglogn + log2 + 1981081 ) (& (A.81)
logn logn

APPENDIXB

OPTIMUM THRESHOLD FORLOG-NORMAL FADING MODEL

The function to be maximized is given in (55). We first consider it as a function of
u. Once we have obtained, the value that maximizes this function, we will be able to
find ¢t* from

*

t* = e M, (B.82)

Using the approximatiotog(1 + =) ~ z — 122, the objective function is written as

SB Bue%e%
=— [ — ——M | . B.83
g(u) oAb - (B.83)

3With a little abuse of notation we have replac% by &,.. This is acceptable because we are only interested in

the order of the term tha}, introduces to the solution.
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By taking the derivative ofj(u) and setting it equal to zero, we obtain

3 2
Be'ezs? (1 + 2u + %) =n. (B.84)

Since the right hand side of this equatiniiswhich is assumed to be large, the solution
u* should be large as well. Thus, we can simplify the equation as
Bu2ete2s?
5'2

By taking logarithm of both sides of this equation and rearranging the terms, we obtain

=n. (B.85)

u? B
2—52:10gn—u—210gu—10g§. (B.86)
The solution of this equation can be verified to be
log logn
*=254/1 —-S*P+0——==). B.87
ut =2 ogn + < Tozn ) ( )
Then, from (B.82)t* is obtained as given in (56).
APPENDIXC
OPTIMUM p FOR SHADOW FADING MODEL
By definingz = np, the function to be maximized is
n
g(x) = zlog (1 -+ ;) . (C.88)
The first derivative ofy(z) equals
N ny o 2n
' (z) = log (1 + a:2> S (C.89)
2
The equatiory’(z) = 0 holds when’- = ¢2 or equivalently
n
¢ (C.90)

p= %7
wherec =~ 0.5050 is a constant. It is easy to verify that for the aforementioned value of
x, ¢"(x) > 0. Thus,p given in (C.90) gives the maximum value of the function under

consideration.
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