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Abstract

A network of n communication links operating over a shared wireless channel is con-

sidered. Fading is assumed to be the dominant factor affecting the strength of the channels

between nodes. The objective is to maximize the throughput of the network. A scheme that

can be simply implemented in a distributed and single-hop fashion is proposed and analyzed. It

is shown that under Rayleigh and log-normal fading conditions, the proposed scheme achieves

sum-rates that scale aslog n ande
√

2S
√

log n, respectively, whereS is a channel parameter and a

constant. This is the same as what is obtained by a centralized and multihop method in the work

of Gowaikar et al. Nevertheless, an analysis in the shadow fading model points out that when

the network is not well-connected, single-hop methods are suboptimum and invoking multihop

communication is inevitable to achieve the maximum throughput. An interesting aspect of the

proposed method is the tradeoff it introduces between the scaling factor and the rate per link;

it is shown that the proposed method allows rate-per-links of orderΘ(1) while keeping the
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order of the sum-rate unchanged. This is in contrary to the most previous works that enforce

a vanishingly small rate for each link.

Index Terms

Wireless network, decentralized power allocation, fading channel, sum-rate, scaling law.

I. I NTRODUCTION

In a wireless network, a number of source nodes transmit data to their designated

destination nodes through a shared wireless channel. Followed by the pioneering work

of Gupta and Kumar [1], considerable attention has been paid to investigate how the

throughput of wireless networks scales withn, the number of nodes. This has been done

assuming different network topologies, traffic patterns, protocol schemes, and channel

models [1]–[12].

From the information theoretic point of view, a wireless network is a generalized ver-

sion of theinterference channel[13], whose capacity region has not been fully character-

ized, yet. Consequently, there are only a few papers that take a pure information theoretic

approach to the throughput of wireless networks [2]–[4]; instead, most researchers base

their throughput analyses on certain simplifying assumptions including Gaussian signal

transmission, linear receiver structures (which excludes interference cancelation), and

point-to-point coding (which excludes for example multi-access and broadcast schemes).

In this case, interference at each receiver is treated asadditive white Gaussian noise

(AWGN) and thesignal to interference-plus-noise ratio(SINR) along with the Shannon

capacity formula determine the achievable rate of each link. We will follow this paradigm

throughout this paper.

In [1], it is assumed thatn nodes are distributed over a constant area. Also, each

node is the source of exactly one data stream to be sent to a destination randomly or

arbitrarily chosen from the othern − 1 nodes. With this traffic pattern and under the

fairness constraint that all data streams be transmitted at the same rate, it is shown that a
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rate of1/
√

n and1/
√

n log(n) per node is achievable in arbitrary and random networks1,

respectively. An extension of this result for the case that nodes are mobile or under delay

constraints was provided in [5]. The result of [1] was later improved by [6], [7] by

showing that even random networks can achieve the rate of1/
√

n per node. In all of

these works, rate per nodes decrease to zero as the number of nodes grows. However, it is

practically appealing to have rate per nodes that remain constant whenn grows. In [8], it

is shown that a nondecreasing rate per node is achievable when nodes are mobile. In this

work, we address this issue and show that even for fixed networks, it is possible to have

rate per links likeΘ(1) while keeping the order of the maximum sum-rate unchanged.

Most of the works analyzing the throughput of large wireless networks consider a

channel model in which the signal power decays according to a distance-based attenuation

law [1]–[4], [6]–[10]. However, in a wireless environment the presence of obstacles and

scatterers adds some randomness to the received signal. In addition, the power attenuation

laws may not be valid when the receiver is not in the far field of the transmitter as in the

dense networks. This random behaviour of the channel, known as fading, can drastically

change the scaling laws of a network. This can be verified by reviewing the results of

the few papers that have considered fading in their study of the throughput scaling law

[5], [11], [12]. In [5], it is shown that for the same setup as in [1], the presence of fading

decreases the order of the lower bound on rate per node by a factor oflog n.

In this paper, we follow the model of [11], where fading is assumed to be the

dominant factor affecting the strength of the channels between nodes. In [11], two nodes

are considered as a potential transmitter-receiver pair only if the fading channel between

them isgoodenough. The transmission protocol, which is basically a scheduling, is based

on a result from random graph theory about noncolliding paths between randomly chosen

pairs of vertices. Despite most of the previous works, only a fraction of data streams are

scheduled for transmission; however, the scheduled data streams are transmitted at the

1In an arbitrary network, the nodes locations can be chosen optimally, but, in a random network the nodes are

located randomly.
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same rate. This data rate, the number of active source-destination pairs, and the channel

goodnesscriterion are chosen such that the total throughput of the network is maximized.

It is shown that the throughput of the network strongly depends on the fading channel

distribution. We perform throughput analysis for Rayleigh, log-normal, and shadow fading

channels.

Generally, a realistic model of wireless network channels should take into account

both randomness and distance-based effects. Recently, a generalization of the work in

[11] has appeared in [12], where the authors consider a general fading model on top of

a power decay law.

A common attribute of the works in [1]–[12] is that the information flow is routed

through some intermediate nodes, named relay or router, to reach the final destination.

Such a strategy, which is called multihop communication, necessitates a central unit

with full knowledge of all channel conditions that decides on the routing paths and

the schedule of transmissions. Furthermore, it induces delay in the network that can

not be tolerated in some applications. Also, implicit in multihop communication is

the excess power consumption by the relay nodes. This latter issue can be a critical

disadvantage in applications where the total power is constrained. In this work, we present

a strategy that allows data to be transmitted directly from sources to their corresponding

receivers without utilizing any other nodes as routers. This model includes single-hop

ad hoc networks, cellular networks, and code division multiple access (CDMA) systems

as its special cases. This single-hop communication scheme can be implemented in a

decentralized fashion. Each source node needs to know only its direct channel to the

corresponding destination. The generality of this method allows it to be applied to any

fading channel models. It turns out that in the popular models of Rayleigh and log-

normal fading, the proposed method achieves the same sum-rate as what is obtained in

the centralized and multihop method of [11].

Contrary to the aforementioned works on large wireless networks, there are a lot

of works in the literature investigating the throughput optimization in networks with
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arbitrarily small sizes. Based on the network structure, throughput optimization can be

executed in different ways, e.g. by power control [14], bandwidth allocation [15], [16],

transmission scheduling [17], routing [18], [19], base station selection [20], etc. Among

these various challenging problems, power control has a prominent role in the past and

ongoing research in this area. The problem of minimizing the transmit power subject to

satisfying some quality of service requirements can be formulated as a linear program

[17] and can be solved in a decentralized fashion [14], [21]. However, the problem

of sum-rate maximization subject to some power constraints, that has been frequently

appeared in the literature [22]–[25], turns out to be a nonlinear nonconvex problem. One

approach to solve this problem is to utilize numerical optimization methods (see e.g.

[24]). Another approach is to adopt an approximation of the objective function such that

the problem can be converted to a convex program [22]–[24]. As will be explained in

the next section, this work is based on power allocation and some related observations

reported in the literature.

The rest of the paper is organized as follows. In Section II, the system description,

objective, and problem formulation, are presented . We derive a lower bound on the

average sum-rate in Section III. The analyses of the proposed method for some specific

fading models is studied in Section IV. We discuss the tradeoff between sum-rate and

rate per link in Section V. Finally, we conclude the paper in Section VI.

Notation: Bold face lower case (upper case) letters denote vectors (matrices);0n

and 1n stand for the all-zero and all-one column vectors of lengthn, respectively;

Nn represents the set of natural numbers less than or equal ton; x−i is a vector

obtained by eliminating theith element ofx; x ≤ y or x < y denote element-wise

inequality; log is the natural logarithm function;≈ means approximate equality; for any

functions f(n) and h(n), h(n) = O(f(n)) is equivalent tolimn→∞ |h(n)/f(n)| < ∞,

h(n) = Ω(f(n)) is equivalent tolimn→∞ |h(n)/f(n)| > 0, h(n) = o(f(n)) is equivalent

to limn→∞ |h(n)/f(n)| = 0, h(n) = ω(f(n)) is equivalent tolimn→∞ |h(n)/f(n)| = ∞,

h(n) = Θ(f(n)) is equivalent tolimn→∞ |h(n)/f(n)| = c, where 0 < c < ∞, and
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h(n) ∼ f(n) is equivalent tolimn→∞ h(n)/f(n) = 1.

II. SYSTEM DESCRIPTION ANDPRELIMINARIES

We consider a wireless communication network withn pairs of transmitters and

receivers. Each transmitter aims to send data to its corresponding receiver. We denote the

vector of transmit powers byp = (p1, · · · , pn), wherepi is the transmit power of link

i. The following constraint is imposed on the transmit power

0n ≤ p ≤ a, (1)

wherea = (a1, · · · , an) represents the vector of maximum allowed transmit powers.

The channels are represented by coefficientsGji = |αji|2, whereαji is the channel

gain between receiveri and transmitterj. This means the received power from transmitter

j at the receiveri equalsGjipj. The channel gains, in general, depend on small scale

and large scale fadings, path attenuation, processing gain of the CDMA system, etc. In

this paper, we assume the channel coefficients are i.i.d. random variables drawn from a

pdf f(x) with meanµ and varianceσ2.

We consider an additive white Gaussian noise (AWGN) with varianceηi at the

receiver i. The receivers are conventional, linear receivers, i.e., without multiuser de-

tection. Since the transmissions occur simultaneously within the same environment, the

signal from each transmitter acts as interference for other links. Assuming Gaussian signal

transmission from all links, the distribution of the interference will be Gaussian as well.

Thus, we can define theSINRof the receiveri as

γi(p) =
Giipi

ηi +
∑n

j=1
j 6=i

Gjipj

. (2)

Throughout the paper, we occasionally useγi instead ofγi(p). The SINR determines

different QoS measures such as the maximum possible data rate, or the error probability

of link i.



7

In this paper, we are interested in rates at which the transmitters can send data

to their corresponding receivers without any error. According to the Shannon capacity

formula [13], the maximum rate of linki is equal to

ri(p) = log (1 + γi(p)) nats/channel use. (3)

The network rate vector is defined asr = (r1, · · · , rn). In a network, we desire to have

all rates as large as possible. However, due to the interplay between the rates of different

links (see (2) and (3)), it is not possible to maximize all the rates simultaneously. Instead,

one may consider maximizing a utility function of the network which is increasing in all

rates. A common utility function is the sum-rate of the network.

The problem of sum-rate maximization is formulated as follows:

max
p

n∑
i=1

ri(p),

s.t. 0n ≤ p ≤ a, (4)

which is a non-convex optimization problem. Thus, the algorithms developed for con-

vex problems may converge to local optimum points for this problem. The following

proposition identifies one of the characteristics of problem (4).

Proposition 1: In the optimum solutionp∗ of (4), the power of at least one link

takes its maximum allowed value.

Proof: For the sake of contradiction, assumep∗ < a. Consider the index set

I = {i ∈ Nn : p∗i > 0} and define

α∗ = min
i∈I

{
ai

p∗i

}
. (5)

Choose a new power vectorp̂ = α∗p∗, which obviously satisfies the constraints0n ≤ p̂ ≤ a.

Sinceα∗ > 1, it follows that
n∑

i=1

ri(p̂) >

n∑
i=1

ri(p), (6)

which is in contradiction to the optimality ofp∗.
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There are some special cases, where even stronger statements can be expressed about the

solution of (4). These special cases are listed below:

Special Case 1 (Uplink CDMA):The result in [25] indicates that in the uplink

CDMA, whereGji = Gj for all j ∈ Nn, the power of all links take the value of zero or

the maximum allowed value except for at most one link.

Special case 2 (n = 2): When there are only two links sharing a wireless channel,

we have the following interesting result.

Proposition 2: The optimum solution of (4) forn = 2 is obtained when one of

the transmitters transmits with maximum power and the other one is silent, or both

transmitters transmit with maximum power2.

Proof: Assume for simplicity that channel coefficients and noise powers are scaled

such that the maximum allowed power of both links and also the direct channel coeffi-

cientsGii are equal to one. According to Proposition 1, in the optimum solution of (4)

the power of at least one link should be equal to one; without loss of generality assume

p2 = 1. It suffices to show that the maximum of the function

f(p1) = log

(
1 +

p1

η1 + G21

)
+ log

(
1 +

1

η2 + G12p1

)
(7)

is obtained either atp1 = 0 or p1 = 1. By computing the derivative off(p1) and

simplifying it we obtain

f ′(p1) =
Ap2

1 + Bp1 + C

d(p1)
, (8)

whereA = G2
12, B = 2η2G12, C = η2(η2 +1)−G12(η1 +G21), andd(p1) is a polynomial

in p1 with all coefficients non-negative. Thus, the sign off ′(p1) is determined by its

numerator. Note thatA, B ≥ 0. If C ≥ 0, the numerator (and thusf ′(p1)) is always

non-negative forp1 ≥ 0. Thus,f(p1) is increasing inp1 and achieves its maximum at

p1 = 1. If C < 0, the numerator has exactly one positive (p′1) and one negative (p′′1) roots.

Thus,f(p1) has a minimum atp′1 and attains its maximum at 0 or 1.

2After the authors published this result in [26], it was independently reported in [27].



9

Obviously, if in the optimum solution only one link is active, it should be the link

with the largest direct channel coefficient.

Special case 3 (low SINR regime):If we know that theSINRof all links is small,

we can use the approximationlog(1 + x) ≈ x to write (4) as follows

max
p

n∑
i=1

γi(p),

s.t. 0n ≤ p ≤ a. (9)

Although this problem is again non-convex, the following result can be concluded that

allows for obtaining the optimum solution by enumerating the vertices of the hypercube

of the power domain.

Proposition 3: In the optimum solutionp∗ of (9), all transmit powers are either

zero or the maximum allowed value, i.e.,p∗i ∈ {0, ai} for all i ∈ Nn.

Proof: Define the objective function

T (p) =
n∑

i=1

γi(p). (10)

If for some i ∈ Nn, p∗−i = 0n−1, clearly p∗i = ai maximizes the sum-rate and the proof

is complete. Ifp∗−i 6= 0n−1, by substituting the values ofγi(p) from (2) in the objective

function (10) and computing the second order partial derivative with respect topi we

obtain
∂2T (p)

∂p2
i

= 2
∑

j 6=i

G2
ij

γj(p)

d2
j(p)

, (11)

which is positive for allp−i 6= 0n−1. Thus,T (p) is convex with respect topi. As a result,

the maximizing value ofpi lies on one end of the interval[0, ai].

The low SINRscenario is of special interest in this paper. In fact, when there are

many links sharing a wireless channel, most likely they should operate in the lowSINR

regime. In this case, Proposition 3 suggests anon-off strategy to maximize the sum-rate.

This strategy is the basis of our proposed method in the next section.
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III. A L OWER BOUND ON SUM-RATE

It is interesting to know how the throughput of a wireless network scales with the

number of nodes, when this number is large. In this section, we present a simple heuristic

power allocation scheme, which yields to a lower bound on the average sum-rate of the

wireless network described before. Motivated by the special cases listed at the end of

Section II, particularly Proposition 3, this scheme is based on theon-off power allocation

strategy.

Definition 1: A power allocation is called anon-off strategyif the power of link i

is selected from the set{0, ai}.
We provide a power allocation strategy and obtain the sum-rate which isasymptotically

almost surely(a.a.s.) achievable by this scheme. In the following, we assume all links

have power constraints equal toP , i.e., a = P1n. Furthermore, the noise powers at all

receivers are limited and the same, i.e.,ηi = η < ∞.

Consider a thresholdt and assume that linki is activated and transmits with full

power if Gii > t; otherwise, it remains silent. Note that the performance of this on-off

strategy depends on the value of the thresholdt; if t is very large, the quality of the

selected links will be very good, but the number of such links is small and as a result

the achieved sum-rate will be small; on the other hand, ift is very small, many links are

chosen, but it causes a large interference and again the sum-rate will be small. Thus, it

is crucial to choose a proper value fort.

Let k denote the number of active links. Without loss of generality, we assume that

the active links are indexed by1, 2, · · · , k. The corresponding sum-rate is equal to

R =
k∑

i=1

log


1 +

Gii

ρ +
∑k

j=1
j 6=i

Gji


 , (12)

whereρ = η/P . Considering the fact thatGii > t for the selected links and by defining

the interference termIi =
∑k

j=1
j 6=i

Gji for all i = 1, 2, · · · , k, we obtain the following
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lower bound on the sum-rate

R ≥
k∑

i=1

log

(
1 +

t

ρ + Ii

)
. (13)

This lower bound can be further simplified by using the Jensen’s inequality, i.e.,

R ≥ k log

(
1 +

t

ρ + 1
k

∑k
i=1 Ii

)
, (14)

Let’s defineI = 1
k

∑k
i=1 Ii, which is the empirical average of the interference terms.

From the definition ofIi, we conclude that

E[I] = (k − 1)µ (15)

Var[I] =
k − 1

k
σ2. (16)

Since the mean ofIi grows withk, the classical form of the strong law of large numbers

can not be applied to conclude thatI tends to its mean ask →∞. However, the following

Lemma indicates thatI is in some sense concentrated around its mean.

Lemma 1:AssumeIi (i = 1, 2, · · · , k) are i.i.d. random variables with mean(k−
1)µ and variance(k − 1)σ2. Then, forI = 1

k

∑k
i=1 Ii, we have

|I − (k − 1)µ| < ψk, a.a.s., (17)

for any ψk →∞ ask →∞.

Proof: By using the mean and variance ofI from (15) in the Chebyshev inequality,

we obtain

P{|I − (k − 1)µ| < ψk} ≥ 1− k − 1

k

σ2

ψ2
k

> 1− σ2

ψ2
k

. (18)

If ψk →∞ ask →∞, the right hand side of the above inequality tends to 1. This proves

the lemma.

According to Lemma 1, the lower bound in (14) can be written as

R ≥ k log

(
1 +

t

µk + ψk

)
, a.a.s., (19)
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for any ψk → ∞ as k → ∞. Note that the constantρ − µ is absorbed in the function

ψk. This lower bound is only a function oft and k. Parametert is a constant to be

chosen optimaly later, however,k is a random variable. Assume the probability of a link

being active isq. Due to our link activation strategy, which selects links independently

and with probabilityq, the number of active links,k, is a binomial random variable with

parametersn andq. The following lemma indicates thatk is asymptotically almost surely

concentrated around its mean.

Lemma 2: If k is a binomial random variable with parametersn and q, then we

have

|k − nq| < ξn
√

nq, a.a.s. (20)

for any ξn →∞ asn →∞.

Proof: Since k is binomial with parametersn and q, its mean and variance are

equal tonq andnq(1− q), respectively. Using these values in the Chebyshev inequality,

we obtain

1− 1

ξ2
n

≤ P
{
|k − nq| < ξn

√
nq(1− q)

}

≤ P{|k − nq| < ξn
√

nq} , (21)

where the second inequality is due to the fact that1− q < 1. If ξn →∞ asn →∞, the

left hand side of the above inequality tends to 1. This proves the lemma.

As mentioned before, Lemmas 1 and 2 are valid for anyψk andξn that grow unboundedly

with k andn, respectively. However, to benefit from these results, in the following, we

are only interested in such cases that the growth rate of these two functions is slower

than some certain order.

Now, we are ready to prove the main result of this section, which is an achievability

result on the sum-rate of wireless networks under consideration.

Theorem 1:Consider a wireless network withn links and i.i.d. random chan-

nel coefficients with pdff(x), cdf F (x), and meanµ. Choose anyt > 0 and define
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q = 1− F (t). Then, a sum-rate of

R(t) = (nq − ξn
√

nq) log

(
1 +

t

µ(nq − ξn
√

nq) + ϕn

)
(22)

is a.a.s. achievable for anyξn = o(
√

nq) that approach infinity asn → ∞ and any

ϕn = ψ(nq − ξn
√

nq), whereψ(n) makes the function

n log

(
1 +

c

µn + ψ(n)

)
(23)

increasing ink for any constantc, andψ(n) →∞ asn →∞.

Proof: By applying the on-off power allocation strategy, we obtained a lower bound

on the achievable sum-rate in (19). According to condition (23), this lower bound is

increasing ink. Thus, if we replace the number of active links,k, by its possible lower

bound, the achievability result remains valid. However, from Lemma 2 we know that

k > nq − ξn
√

nq, a.a.s. (24)

By the assumptionξn = o(
√

nq), the lower bound in (24) is non-negative and can replace

k in (19) to give (22) withϕn = ψ(nq − ξn
√

nq).

We can conclude the following corollaries from the above discussion and from the

proof of Theorem 1.

Corollary 1: In the on-off strategy that achieves the sum-rate given in Theorem 1,

the number of active links scales as

k ∼ nq a.a.s. (25)

Proof: The proof is starightforward by using the assumptionξn = o(
√

nq) in Lemma 2.

An important parameter in a wireless network is the rate at which each scheduled

link can transmit its own data stream. We refer to this parameter asrate per link and

denote it byλ. The following corollary quantifies this parameter for the proposed method.

Corollary 2: In the on-off strategy that achieves the sum-rate given in Theorem 1,

the rate per link scales as

λ ∼ log

(
1 +

t

µ(nq − ξn
√

nq) + ϕn

)
a.a.s. (26)



14

Proof: The result is simply obtained by dividing the sum-rateR(t) from (22) by

the number of usersk from (25).

As specified in (22), the achievable sum-rate in Theorem 1 is a function of the

parametert. Thus, t can be chosen such that the achievable sum-rate in Theorem 1 is

maximized. Let’s define

t∗ = arg max
t

R(t), (27)

and

R∗ = max
t

R(t) (28)

to be the optimum threshold and the maximum achievable sum-rate, respectively.

Corollary 3: In the on-off strategy, the average achieved sum-rate satisfies

E[R] ≥ R∗, (29)

whereR∗ is as defined in (28).

Note that Corollary 3 expresses a deterministic statement, in contrary to previous state-

ments which hold asymptotically almost surely.

Proof: By definition of conditional expectation, we have

E [R] = E [R|R ≥ R∗] Pr[R ≥ R∗]

+E [R|R < R∗] Pr[R < R∗]

≥ R∗ × Pr[R ≥ R∗] + 0× Pr[R < R∗]

= R∗, (30)

where the last equality holds asymptotically by choosingt = t∗ in Theorem 1.

It is worth mentioning that in the suggested on-off strategy, no coordination is

required between the links. All one transmitter needs to know is wether its direct channel

coefficient is above the thresholdt∗. Based on this information, it decides wether to

transmit with full power or remain silent. In general, the values oft∗ andR∗ are functions

of n, but how they scale withn strongly depends on the channel distribution function
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f(x). Specifically, one needs to know the relation betweenq and t as well as the value

of µ to obtaint∗ andR∗. In the next Section we provide some examples and show how

the achievable sum-rates depend on the fading model.

IV. CASE STUDY

In this section, we provide some examples of fading channels and show how to

apply the method and result of the previous section to each case. We start with the

popular channel model of Rayleigh fading and study it in detail. We also adopt two

more models from [11], i.e., shadow fading and log-normal fading models. The results

mention that the scaling laws of the sum-rate drastically depend on the fading channel

model under consideration. It also turns out that the sum-rate scaling law achieved by

our decentralized scheme is the same as what is obtained in [11] for the case of Rayleigh

fading and log-normal fading models. However, it is smaller in the case of shadow fading

model. This observation points out the need for multihop in cases where the interference

term is strong.

A. Rayleigh Fading

In a Rayleigh fading channel, the coefficientsGji are exponentially distributed with

f(x) = e−x and µ = 1. Thus, using the corresponding cumulative distributed function,

the relation betweenq and t is described asq = e−t. By substituting this value in (22),

we obtain the function to be maximized as

R(t)=
(
ne−t − ξn

√
ne−t

)
log

(
1 +

t

ne−t − ξn

√
ne−t + ψ̂n

)
. (31)

Lemma 3: In a wireless network with Rayleigh fading channels andn links, the

optimum threshold for the on-off strategy is equal to

t∗ = log n− 2 log log n + log 2 +
4 log log n

log n
+ O

(
ξn

log n

)
, (32)

whereξn = o(log n).
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Proof: see Appendix A.

Corollary 4: In a wireless network with Rayleigh fading channels andn links, we

have

R∗ = log n− 2 log log n + O(1), a.a.s. (33)

Proof: Substitute the value oft∗ from (32) in (31).

By applying the result of Lemma 3 to Corollaries 1, 2, and 3, we obtain the following

corollary.

Corollary 5: In a wireless network withn links and under Rayleigh fading channel

model, on-off strategy yields

k ∼ 1

2
log2 n− 2 log log n× log n + O(ξn log n), a.a.s., (34)

λ ∼ 2

log n
, a.a.s., (35)

E[R] ≥ log n− 2 log log n + O(1). (36)

In the above, we analyzed the scaling laws of the wireless network, when the the

thresholdt and the number of usersk are optimaly chosen. However, a natural question

is how the scaling laws change when the network serves more or less users (links) than

the optimum obtained above. The following Lemma addresses this issue.

Lemma 4: In a wireless network with Rayleigh fading channels, if thek best

links (links with largest self channel coefficients) are permitted transmission, then, the

achievable sum-rateR is related to the number of active linksk according to

R ∼





o(log n) if k = o(log n)

α log
(
1 + 1

α

)
log n if k ∼ α log n for someα > 0

log n if k = ω(log n) andk = o(nα), ∀ 0 < α < 1

(1− α) log n if k ∼ nα+εn for some0 < α < 1 and someεn → 0

o(log n) if k ∼ n1−εn for someεn → 0+

,

(37)

asymptotically almost surely, where the limits are taken asn →∞.
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Proof: The proof relies on the following two equations, that we have already seen,

but are repeated here for simplicity

k ∼ ne−t (38)

R = ne−t log

(
1 +

t

ne−t

)
. (39)

The first equation describes the relation betweent andk, and the second one gives the

sum-rateR in terms oft. We proceed by the proof in a case by case basis.

1) If k = o(log n), we can writek =
log n

ζn

, whereζn →∞ asn →∞. Hence, we

obtain

t = log n− log log n + log(ζn), (40)

Consequently, from (39) we obtain

R ∼ log n

ζn

log

(
log n
log n
ζn

)

=
log ζn

ζn

log n

= o(log n) (41)

2) If k ∼ α log n for some constantα > 0, we have

t ∼ log n− log log n− log α. (42)

As a result, we obtain

R ∼ α log n log

(
1 +

log n

α log n

)

= α log

(
1 +

1

α

)
log n (43)

3) If k = ω(log n) andk = o(nα) for all 0 < α < 1, we should have

t ∼ log n. (44)

Hence, we obtain

R ∼ ω(log n) log

(
1 +

log n

ω(log n)

)

∼ log n, (45)
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where the last equality is based on the approximationlog(1 + x) ≈ x for small values of

x.

4) If k ∼ nα+εn for some0 < α < 1 and someεn → 0, we should have

t ∼ log n− log nα+εn

= (1− α− εn) log n

∼ (1− α) log n (46)

Substituting these values ofk and t in (39) gives

R ∼ (1− α) log n. (47)

5) If k ∼ n1−εn for someεn → 0+, we have

t ∼ log n− log n1−εn

= εn log n

= o(log n) (48)

Substituting these values ofk and t in (39) gives

R = o(log n). (49)

This lemma points out that there is a vast range for values ofk that can result in

sum-rates of orderlog n. This range starts fromΘ(log n) and includes all values ofk as

long ask = o(n). This effect is shown in Fig. 1, whereR is depicted versusk for three

different values ofn. It is seen that while decreasingk from its optimum value rapidly

decreases the sum-rate, the rate of variations in larger values ofk is fairly slow. The

range of logarithmic variations of sum-rate is also of interest to us due to the rate per

link issue to be discussed in Section V.
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Fig. 1. Sum-rate vs. number of active links forn = 1000, 10000, 100000.

B. Log-Normal Fading

Consider a network with channel strengths drawn i.i.d. from a log-normal distribu-

tion with pdf

f(x) =
1√

2πSx
e
−
(log x−M)2

2S2 , x ≥ 0 (50)

with S andM being the parameters of the distribution [11]. The following proposition

establishes the relation betweenq and t in the log-normal fading model for large values

of t.

Proposition 4: AssumeX is a log-normal random variable with the pdf given in

(50) and letq = Pr[X > t]. Then, for large values oft we have

q ≈ S√
2π(log t−M)

e
−
(log t−M)2

2S2 . (51)
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Proof: By the definition ofq, we have

q =

∫ ∞

t

1√
2πSx

e−
(log x−M)2

2S2 dx (52)

=

∫ ∞

log t

1√
2πS

e−
(x−M)2

2S2 dx (53)

=
1

2
erfc

(
log t−M√

2S

)
, (54)

where erfc(x) =
2√
π

∫∞
x

e−z2
dz is the complementary error function. By using the

approximationerfc(x) ≈ 1√
πx

e−x2
for large values ofx, the result is obtained.

By substituting the value ofq from Proposition 4 in (22), the sum-rate, as a function of

t, is obtained as

R(t) =
S√
2π

n

u
e−

u2

2S2 log


1 +

Bueue
u2

2S2

n


 , (55)

where, for the brevity of notation, we have definedu = log t−M . Also, B is a constant

depending on the distribution parameters.

Lemma 5: In a wireless network with log-normal fading channels andn links, the

optimum threshold for the on-off strategy satisfies

t∗ ∼ eM−S2

e
√

2S
√

log n. (56)

Proof: See Appendix B.

Corollary 6: In a wireless network with log-normal fading channels andn links,

we have

R∗ ∼ e−
3S2

2 e
√

2S
√

log n a.a.s. (57)

Proof: Substitute the value oft∗ from (56) in (55).

By applying the result of Lemma 5 to Corollaries 1, 2, and 3, we obtain the following

corollary.
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Corollary 7: In a wireless network withn links and under log-normal fading chan-

nel model, on-off strategy yields

k ∼ e−
3S2

2√
8S

√
log ne

√
2S
√

log n, a.a.s. (58)

λ ∼
√

8S√
log n

, a.a.s. (59)

E[R] ≥ e−
3S2

2 e
√

2S
√

log n. (60)

The sum-rate scaling order ofe
√

2S
√

log n is the same as what is obtained in [11].

C. Shadow Fading

Consider a network whose channels coefficients are drawn i.i.d. from the pdf [11]

f(x) = (1− p) · δ(x) + p · δ(x− 1), (61)

where δ(·) is the Dirac’s delta function. For this distributionµ = p. This pdf simply

models a shadow fading environment in which, for any links, with probability1−p there

exists an obstacle that completely suppresses the signal and with probabilityp such an

obstacle does not exist and the transmitted signal is received without any fading effect.

For a constantp, since there is only two possibilities for the channel coefficients,

the threshold optimization is trivial; one should chooset∗ = 1 to maximize the sum-rate.

This givesq = p and consequently,

R = np log

(
1 +

1

np2

)
. (62)

An interesting scenario is when it is possible to choosep as a function ofn such that

the sum-rate is maximized. Intuitively, whenp is very small, the effect of interference

is low, but the number of unblocked links is low as well resulting in a small sum-rate.

On the other hand, ifp is very large, there are many unblocked links but the number

of links interfering with each link is also high and the achieved sum-rate will be small

again. Thus, there should be some optimum value forp in between.
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Lemma 6: In a wireless network with shadow fading channels andn links, the

optimum value ofp for the on-off strategy is equal to

p∗ =
c√
n

, (63)

wherec ≈ 0.5050 is a constant.

Proof: See Appendix C.

Corollary 8: In a wireless network with shadow fading channels andn links, under

optimum channel conditions, i.e.,p = p∗, we have

R∗ ∼ c log

(
1 +

1

c2

)√
n, a.a.s. (64)

Proof: Substitute the value ofp∗ from (63) in (62).

As observed, the sum-rate scales as
√

n, which is smaller than the linear scaling with

n that was obtained in [11]. This shows the necessity of a multihop scheme to achieve

higher orders of sum-rate.

By applying the result of Lemma 6 to Corollaries 1, 2, and 3, we obtain the following

corollary.

Corollary 9: In a wireless network withn links and under shadow fading channel

model withp∗ given in (63), the on-off strategy yields

k ∼ c
√

n, (65)

λ ∼ log

(
1 +

1

c2

)
, (66)

E[R] ≥ c log

(
1 +

1

c2

)√
n. (67)

It should be noted that under optimum channel conditions, the rate per link does

not go to zero.

V. TRADEOFF BETWEENSUM-RATE AND RATE PERL INK

We have seen that in the proposed scheme, when the number of users is chosen

properly such that the sum-rate is maximized, rate per link scales as2
log n

and
√

8S√
log n

for

Rayleigh fading and log-normal fading models, respectively. In both cases, rate per link
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approaches zero asn →∞, which is not desirable in practice where each link requires

a reasonable amount of rate in the order of 1. Fortunately, the proposed strategy allows

for having rates per users equal toΘ(1), while still keeping the scaling of the sum-rate

as Θ(R∗
n). For example, accrding to Lemma 4 for the Rayleigh fading model, when

k = Θ(log n), sum-rate isΘ(log n) as well. In this case, rate per link scales asΘ(1). The

same scenario also holds for the log-normal fading model. In the following, we address

this issue for Rayleigh and log-normal fading channels.

Assume in a network withn links for some thresholdt and the corresponding

number of active usersk, a sum-rateRn is achievable. We define the scaling factor as

α = lim
n→∞

Rn

R∗
n

, (68)

whereRn and R∗
n are as defined before, but we have added a subscriptn to stress the

functionality of n. We are interested in values ofα for which α = Θ(1). In Rayleigh

and log-normal fading channels,R∗
n is obtained in a situation wheret∗ À µk∗, which

results inR∗
n and

t∗

µ
having the same order. On the other hand, in both cases, if we

decrease the order of the number of users such thatk = β
t∗

µ
, for some constantβ > 0,

the correspondingt will still have the same order ast∗. Consequently, we achieveRn =

β log
(
1 + 1

β

) t∗

µ
, which means

α = β log

(
1 +

1

β

)
, (69)

and

λ = log

(
1 +

1

β

)
. (70)

As a result of (69) and (70), at the range ofRn = Θ (R∗
n), the scaling factor and the rate

per link are related as

α =
λ

eλ − 1
. (71)

This equation reveals a tradeoff between rate per linkλ and the scaling factorα; one can

increase rate per link by decreasing the scaling factor and vice versa. Figure 2 illustrates

the tradeoff between the scaling factor and the rate per link.
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Fig. 2. Tradeoff between the scaling factor and the rate per link.

VI. SUMMARY

In this paper, power allocation was considered to improve the sum-rate of wireless

networks with fading channels. A decentralized single-hop scheme based on on-off

strategy was proposed and analyzed for a general fading model. The analysis resulted

in a sum-rate which is asymptotically almost surely achievable. It was observed that in

the popular models of Rayleigh and log-normal fading the achievable sum-rate of this

simple method is the same as what was obtained previously in other works by complex

centralized multihop methods. We also showed that the proposed method is capable of

providing each active link an arbitrary large constant rate, while keeping the sum-rate

at the same order as its maximum. In this case,we could identify an interesting tradeoff

between the rate per link and the scaling factor of the sum-rate.

APPENDIX A

OPTIMUM THRESHOLD FORRAYLEIGH FADING MODEL

The optimum value of the threshold,t∗, is the value that maximizes the achievable

sum-rate in (31). As it is seen,R(t) is a complicated function oft. However, sinceξn
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can grow as slow as desired, we can setξn = 0 to obtain a more tractable form forR(t)

from which azero order approximationof the solution is obtained. In the next stage, we

will improve the solution using this zero order approximation.

a) Zero order approximation:By settingξn = 0, the objective function in (31)

is transformed to

R̂(t) = ne−t log

(
1 +

t

ne−t

)
. (A.72)

Using the approximationlog(1 + x) ≈ x− x2

2
, the above function can be approximated

as

R̂(t) ≈ t− t2

2ne−t
. (A.73)

The maximum of this function can be found using the first derivative test as follows. By

taking derivative of both sides of (A.73), we obtain

R̂′(t) ≈ 1− t

ne−t
− t2

2ne−t
, (A.74)

which is an increasing function int. Consequently, the root of the equation̂R′(t) = 0

gives the valuet∗(0). This equation is equivalent to

2ne−t = 2t + t2. (A.75)

Noting that the solution to this equation is increasing withn (i.e. t∗(0) is large), by taking

logarithm of both sides of (A.75) we arrive at the following equation

t = log n− 2 log t + log 2− 2

t
, (A.76)

whose solution can be verified to be

t∗(0) = log n− 2 log log n + log 2 + O

(
log log n

log n

)
. (A.77)
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b) First order approximation:Using t∗(0) in (A.77), the term containingξn in

(31) is approximated as3

ξn

√
ne−t = ξn log n. (A.78)

Since ψ̂n can be chosen of ordero(log n), it is negligible in comparison withξn log n.

Thus, the function to be maximized takes the form

R(1)(t) =
(
ne−t − ξn log n

)
log

(
1 +

t

ne−t − ξn log n

)
. (A.79)

Assumingξn = o(log n), and taking the same approach as for obtainingt∗(0) in the zero

order approximation, we can obtain

t∗(1) = log n− 2 log log n + log 2 +
4 log log n

log n
+ O

(
ξn

log n

)
. (A.80)

As it is observed, as long asξn = o(log n), the parameterξn does not contribute in the

dominant terms oft∗. Thus, we have

t∗ = log n− 2 log log n + log 2 +
4 log log n

log n
+ O

(
ξn

log n

)
. (A.81)

APPENDIX B

OPTIMUM THRESHOLD FORLOG-NORMAL FADING MODEL

The function to be maximized is given in (55). We first consider it as a function of

u. Once we have obtainedu∗, the value that maximizes this function, we will be able to

find t∗ from

t∗ = eu∗+M . (B.82)

Using the approximationlog(1 + x) ≈ x− 1
2
x2, the objective function is written as

g(u) =
SB√
2π


eu − Bue2ue

u2

2S2

n


 . (B.83)

3With a little abuse of notation we have replaced
ξn√
2

by ξn. This is acceptable because we are only interested in

the order of the term thatξn introduces to the solution.
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By taking the derivative ofg(u) and setting it equal to zero, we obtain

Beue
u2

2S2

(
1 + 2u +

u2

S2

)
= n. (B.84)

Since the right hand side of this equatin isn, which is assumed to be large, the solution

u∗ should be large as well. Thus, we can simplify the equation as

Bu2eue
u2

2S2

S2
= n. (B.85)

By taking logarithm of both sides of this equation and rearranging the terms, we obtain

u2

2S2
= log n− u− 2 log u− log

B

S2
. (B.86)

The solution of this equation can be verified to be

u∗ =
√

2S
√

log n− S2 + O

(
log log n√

log n

)
. (B.87)

Then, from (B.82),t∗ is obtained as given in (56).

APPENDIX C

OPTIMUM p FOR SHADOW FADING MODEL

By definingx = np, the function to be maximized is

g(x) = x log
(
1 +

n

x2

)
. (C.88)

The first derivative ofg(x) equals

g′(x) = log
(
1 +

n

x2

)
− 2n

x2 + n
. (C.89)

The equationg′(x) = 0 holds when
x2

n
= c2 or equivalently

p =
c√
n

, (C.90)

wherec ≈ 0.5050 is a constant. It is easy to verify that for the aforementioned value of

x, g′′(x) > 0. Thus,p given in (C.90) gives the maximum value of the function under

consideration.
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