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Abstract

In this paper, a downlink scenario in which a single-antenna base station communicates

with K single antenna users, over a time-correlated fading channel, is considered. It is shown

that using the conventional scheduling that transmits to the user with the maximum signal

to noise ratio, a gap of Θ(
√

log log log K) exists between the achievable throughput and the

maximum possible throughput of the system. We show that by using a simple scheduling that

considers both the signal to noise ratio and the channel time variation, this gap approaches

O(1). Finally, the delay of the system under the proposed strategies are compared.

I. INTRODUCTION

In wireless networks, diversity is a means to combat the time varying nature of

the wireless communication link. Conventional diversity techniques over point-to-point

links, such as spatial diversity and frequency diversity, offer performance improvements.

In multiuser wireless systems, there exists another form of diversity, called multiuser di-

versity [1]. In a broadcast channel where users have independent fading and feedback their
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Signal to Noise Ratio (SNR) to the Base Station (BS), system throughput is maximized

by transmitting to the user with the strongest SNR.

Multiuser diversity was introduced first by Knopp and Humblet [2]. It is shown that

the optimal transmission strategy in the uplink of multiuser system using power control

is to only let the user with largest SNR transmit. The similar result is shown to be valid

for the downlink [3]. Bender et al. [4] examined practical aspects of downlink multiuser

diversity in the context of IS-95 CDMA standard.

In wireless mobile networks, the rate of channel variations is characterized by

maximum Doppler frequency which is proportional to the velocity. Utilizing multiuser

diversity in such an environment needs to be revised since the throughput depends not

only on the received SNR, but also on how fast the channel varies over time.

In this paper, we consider a broadcast channel in which a BS transmits data to a

large number of users in a time correlated flat fading environment. It is assumed that the

Channel State Information (CSI) is perfectly known to the receivers, while BS only knows

the statistical characteristics of the fading process for all the users (which is assumed

to be constant during a long period). Moreover, each user feeds back its channel gain

to the BS at the beginning of each frame. Based on this information, BS selects one

user for transmission in each frame, in order to maximize the throughput. For the case of

Additive White Gaussian Noise (AWGN) or block fading, it is well known that increasing

the codeword length results in improving the achievable throughput. However, in a time

varying channel, it is not possible to obtain arbitrary small error probability by increasing

the codeword length. In fact, increasing the codeword length also results in increasing

the fading fluctuation over the frame, and consequently, the throughput will decrease.

Therefore, it is of interest to find the optimum codeword length which maximizes the

throughput.

We analyze different user selection strategies; i) the BS transmits data to the user

with the strongest SNR using fixed length codewords (conventional multiuser scheduling),

ii) the BS transmits data to the user with the strongest SNR using variable length code-

words, and iii) the BS transmits data to the user that achieves the maximum throughput
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using variable length codewords. We show that in all cases the achievable throughput

scales as log log K. Moreover, in cases (i) and (ii), the gap between the achievable

throughput and the maximum throughput scales as
√

log log log K , while in case (iii),

this gap behaves like O(1).

The rest of the paper is organized as follows. In Section II, the model of time

correlated fading channel is described. In Section III, different user selection strategies

are discussed and the corresponding throughput of the system is derived for each strategy,

for K → ∞. Section IV is devoted to the delay analysis of the system for each strategy.

Finally in Section V, we conclude the paper.

Throughout this paper, E{.} represents the expectation, “log” is used for the natural

logarithm, and the rates are expressed in nats. For any functions f(N) and g(N),

f(N) = O(g(N)) is equivalent to limN→∞

∣

∣

∣

f(N)
g(N)

∣

∣

∣
< ∞, f(N) = o(g(N)) is equivalent

to limN→∞

∣

∣

∣

f(N)
g(N)

∣

∣

∣
= 0, f(N) = ω(g(N)) is equivalent to limN→∞

f(N)
g(N)

= ∞, and

f(N) = Θ(g(N)) is equivalent to limN→∞
f(N)
g(N)

= c, where 0 < c < ∞.

II. SYSTEM MODEL

A single-antenna broadcast channel with K users is considered. The channel of

any given user is modelled as a time-correlated fading process. It is assumed that the

channel gain is constant over each channel use (symbol) and varies from symbol to

symbol following a Markovian random process. Assume the fading gain of user k is

hk = [h1,k, . . . , hNk,k]
T where hi,k, 1 ≤ i ≤ Nk are complex Gaussian random variables

with zero mean and unit variance and Nk is the codeword length of user k. Dropping

the time index for simplicity, the received signal for the kth user is given by

rk = Skhk + nk, (1)

where Sk = diag(s1,k, s2,k, . . . , sNk,k) is the transmitted codeword with the power con-

straint1
E{|si,k|2} ≤ P , nk is AWGN with zero mean and covariance matrix I . Assume

h0,k is the fading gain at the time instant before Sk is transmitted. The sequence ui,k =

1Obviously, for maximizing throughput, the energy constraint translates to E{|si,k|
2} = P .
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|hi,k|, 0 ≤ i ≤ Nk, is assumed to be a stationary ergodic chain with the following

probability density function [5]:

p(u0,k) =







2ue−u2
u ≥ 0

0 otherwise
, (2)

p(u1,k, u2,k, · · · , uNk,k|u0,k) =

Nk
∏

i=1

pk(ui,k|ui−1,k), (3)

where,

pk(u|v) =







2u
(1−α2

k)
exp{−u2+α2

kv2

(1−α2
k)

}I0(
2αkuv
(1−α2

k)
) u ≥ 0

0 otherwise

in which 0 < αk < 1 describes the channel correlation coefficient for user k. It is assumed

that αk, 1 ≤ k ≤ K, are i.i.d random variables which remain fixed during the whole

transmission, and I0(.) denotes the modified Bessel function of order zero.

It is assumed that the CSI is perfectly known at each receiver, while the statistical

characteristics of the fading process and u0,k, 1 ≤ k ≤ K are known to the transmitter.

III. THROUGHPUT ANALYSIS

In this section, we derive the achievable throughput of the system in the asymptotic

case of K → ∞. We define the user k’s throughput per channel use, denoted by Tk, as

Tk , Rk(1 − pe(k)), (4)

where Rk is the transmitted rate and pe(k) is the decoding error probability for this user.

Using the concept of random coding exponent [6], pe(k) can be upper-bounded as

pe(k) ≤ inf
0≤ρ≤1

e−N(Ek(ρ)−ρRk). (5)

For simplicity of analysis, we use this upper-bound in evaluating the throughput.

Assuming si,k, 1 ≤ i ≤ Nk, are Gaussian and i.i.d., it is shown that the random

coding error exponent for user k, Ek(ρ), is given by [7],

Ek(ρ) = − 1

Nk
log Euk

{

Nk
∏

i=1

(

1

1 + P
1+ρ

u2
i,k

)ρ}

. (6)
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where uk = [u1,k, . . . , uNk,k].

Theorem 1 For the channel model described in the previous section, and assuming u0,k

is known, we have

Ek(ρ) =
1

Nk

Nk
∑

i=1

ρ log

(

1 +
Pu2

0,kα
2i
k

(1 + ρ)

)

+ O

(

1
√

u0,k

)

. (7)

Proof: See Appendix A.

It follows that the value of ρ which minimizes the right hand side of (5) is 1. Since

K → ∞, Pr(u0,k = log K) → 1. It is easy to show that for large values of u0,k, ρ = 1

maximizes the throughput in (7). Using (4), (5), and (7), we have

Tk = Rk



1 − e
−Nk

 

log

 

Pu2
0,k
2

!

−(Nk+1) log(αk)+Rk

!


 . (8)

It is easy to show that Tk is a convex function of variables Rk and Nk, and the values

of Rk and Nk which maximize the throughput (Ropt
k and Nopt

k ) satisfy the following

equations:

Ropt
k = log

(

Pu2
0,k

2

)

+ (2Nk,opt + 1) log(αk), (9)

Nopt
k =

√

log (1 + Nk,optRk,opt)

log(α−1
k )

. (10)

It follows that

Tk = log

(

Pu2
0,k

2

)

− 2

√

log(α−1
k ) log log

(

Pu2
0,k

2

)

×
(

1 + O

(

log log log(u0,k)

log log(u0,k)

))

. (11)

From the above equation, it is concluded that the throughput not only depends on

the initial fading gain, u0,k, but also on the fading correlation coefficient. Moreover,

throughput is an increasing function of the channel correlation coefficient.

In the following, we introduce three scheduling strategies in order to maximize the

throughput; i) Traditional scheduling in which the user with the largest channel gain



7

(SNR-based scheduling) is selected and the codeword length is assumed to be fixed. ii)

SNR-based scheduling with optimized codeword length regarding the channel condition

of the selected user, and iii) Scheduling which exploits both the channel gain and channel

correlation coefficient of the users. The asymptotic throughput of the system is derived

under each strategy for K → ∞.

A. Strategy I: SNR-based scheduling with fixed codeword length

The BS transmits to the user with the maximum initial fading gain and N1 = N2 =

· · · = NK = N while adapting the data rate in order to maximize the throughput of

the selected user. The following theorem gives the throughput of the system under this

scheduling.

Theorem 2 The asymptotic throughput of the system under strategy I scales as

T1 ∼ log

(

P log K

2

)

− 2
√

E{log(α−1)}
√

log log(
P log K

2
), (12)

as K → ∞.

Proof: For simplicity of notation, we define υk , u2
0,k. Let υ = max1≤l≤K υl and α be

the corresponding correlation coefficient of the selected user. Using (8), we find the rate

of the selected user as follows:

R = log

(

Pυ

2

)

+ (N + 1) log(α) − log(1 + NR)

N
. (13)

Substituting (13) in (8), we have

Tυ,α =

(

log(
Pυ

2
) + (N + 1) log(α) − log(1 + NR)

N

)

×
(

1 − 1

1 + NR

)

, (14)

where Tυ,α is the system throughput, conditioned on υ and α. It is easy to see that

pυ(x) = e−xu(x). Having the fact that Pr{υ ∼ log(K) + O(log log K)} → 1 as K tends
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to infinity [8], the throughput of the system is computed as,

T1 = E{Tυ,α}

= log

(

P log K

2

)

+ NE{log(α)}

− log log
(

P log K
2

)

N
+ O

(

log N

N

)

+ O

(

log log K

log K

)

.

(15)

The codeword length N is computed such that the system throughput achieved in (15)

is maximized. It can be easily shown that the maximizing value of N scales as

Nopt ∼

√

log log
(

P log K
2

)

E{log(α−1)} . (16)

The proof is completed by substituting (16) in (15). �

B. Strategy II: SNR-based scheduling with adaptive codeword length

In this scheme, the BS transmits to the user with the maximum initial fading gain.

The rate and codeword length are adapted to maximize the throughput of the selected

user.

Theorem 3 Assuming K → ∞, the asymptotic throughput of the system under strategy

II scales as follows:

T2 ∼ log

(

P log K

2

)

− 2E{
√

log(α−1)}
√

log log

(

P log K

2

)

. (17)

Proof: Given υ = maxk u2
0,k and α (the channel correlation coefficient of the selected

user) similar to (11), the throughput is computed as

Tυ,α ∼ log

(

Pυ

2

)

− 2

√

log(α−1) log log(
Pυ

2
) ×

(

1 + O

(

log log log(υ)

log log(υ)

))

. (18)
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Noting that υ ∼ log K + O(log log K), and υ and α are independent, we have

T2 = E{Tυ,α}

∼ log

(

P log K

2

)

− 2E{
√

log(α−1)}
√

log log

(

P log K

2

)

×

O

(

log log log log K√
log log log K

)

. (19)

�

Remark 1- Since E{√x} ≤
√

E{x}, for x > 0, it is concluded that the achievable rate

of Strategy II is higher than that of Strategy I. More precisely,

T2 − T1 ∼ 2
(

√

E{log(α−1)} − E{
√

log(α−1)}
)

×
√

log log log K. (20)

For the case of uniform distribution for α, we have

T2 − T1 ∼ 0.228
√

log log log K. (21)

Remark 2- Although limK→∞
T1

Tmax
= limK→∞

T2

Tmax
= 1, where Tmax ∼ log (P log K) is

the maximum achievable throughput in a quasi-static fading channel [8], there exists a

gap of Θ(
√

log log log K) between the achievable throughput of Strategies I and II, and

the maximum throughput. As we show later, this gap is due to the fact that the channel

correlation coefficients of the users is not considered in the scheduling. In fact, this gap

approaches O(1) by exploiting the channel correlation, which is discussed in Strategy

III.

C. Strategy III: Scheduling based on both SNR and channel correlation coefficient with

adaptive codeword length

To maximize the throughput of the system, the user which maximizes the expression

in (11) should be serviced. Here, for simplicity of analysis, we propose a sub-optimum

scheduling that considers the effect of both SNR and channel correlation in the user

selection. In this strategy, each user is required to feed back its initial fading gain only if
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it is greater than a pre-determined threshold
√

Υ, where Υ is a function of the number of

users. Among these users, the BS selects the one with the maximum channel correlation

coefficient. The data rate and codeword length are adapted to maximize the throughput of

the selected user. The following theorem gives the system throughput under this strategy.

Theorem 4 Let αk, k = 1, · · · , K, be i.i.d random variables with uniform distribution.

Using strategy III, with threshold Υ (Υ � 1), the throughput of system scales as

T3 & log

(

PΥ

2

)

− 2
√

µ(Υ, K)

√

log log

(

PΥ

2

)

×

O

(

log log log(Υ)
√

log log(Υ)

)

, (22)

where

µ(Υ, K) ,
K
∑

n=1

1

n
(1 − e−Υ)K−n − (1 − e−Υ)K

K
∑

n=1

1

n
.

Moreover, for values of Υ satisfying

Υ ∼ log K − o(log K),

Υ ∼ log K − log log log log K − ω(1), (23)

we have

lim
K→∞

Tmax − T3 = O(1). (24)

Proof- Define A , {k|υk ≥ Υ} and αmax , maxk∈A αk. Let υ be the squared initial

fading gain of the user corresponding to αmax. Using (11) and noting that Tk in (11) is
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an increasing function of u0,k, we have

T = E

{

log(
Pυ

2
) − 2

√

log(α−1
max)

√

log log(
Pυ

2
)

[

1 + O

(

log log log(υ)

log log(υ)

)]

}

≥ log(
PΥ

2
) − 2E{

√

log(α−1
max)}

√

log log(
PΥ

2
)

[

1 + O

(

log log log(Υ)

log log(Υ)

)]

≥ log(
PΥ

2
) − 2

√

E{log(α−1
max)}

√

log log(
PΥ

2
)

[

1 + O

(

log log log(Υ)

log log(Υ)

)]

. (25)

E{log(α−1
max)} can be evaluated as

E{log(α−1
max)} =

K
∑

n=1

E{log(α−1
max)

∣

∣ |A| = n}Pr{|A| = n}

(26)

Since αk, k = 1, · · · , K, are i.i.d random variables with uniform distribution over [0, 1],

we can write

Fαmax(α ||A| = n) = αn

⇒ E{log(α−1
max)

∣

∣ |A| = n} =

∫ 1

0

log(α−1)nαn−1dα

=
1

n
, (27)

where FX(.) denotes the cumulative density function of the random variable X . Indeed,

|A| is a binomial random variable with parameters K and e−Υ. Note that Pr(υk ≥ Υ) =

e−Υ. Hence,

Pr{|A| = n} =

(

K

n

)

e−nΥ(1 − e−Υ)K−n (28)

Substituting (27) and (28) in (26), we have

E{log(α−1
max)} =

∑K
n=1

(

K
n

)

1
n
e−nΥ(1 − e−nΥ)K−n. (29)
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Define µ(Υ, K) , E{log(α−1
max)}. After some manipulations, we obtain

µ(Υ, K) = (1 − e−Υ)µ(Υ, K − 1) +
1

K
− (1 − e−Υ)K

K
(30)

Solving the recursive function in (30) and noting µ(Υ, 1) = e−Υ, we have

µ(Υ, K) =

K
∑

n=1

1

n
(1 − e−Υ)K−n − (1 − e−Υ)K

K
∑

n=1

1

n
. (31)

By Substituting (31) in (25), the first part of the theorem easily follows. From (22), it is

easy to see that for values of Υ satisfying

Υ ∼ log K − o(log K),

µ(Υ, K) log log Υ ∼ o(1), (32)

we have limK→∞ Tmax − T3 = O(1), where Tmax ∼ log(P log K) is the maximum

achievable throughput of the system. For large values of K, we can approximate (31) as

µ(Υ, K)

= (1 − e−Υ)K

(
∫ K

1

(1 − e−Υ)−xdx

x
−
∫ K

1

dx

x

)

=
1

K log(1 − e−Υ)

(

1 + O

(

1

K log(1 − e−Υ)

))

+

(1 − e−Υ)K(Υ − log K)

w
1

Ke−Υ

(

1 + O

(

1

Ke−Υ

))

+ e−Ke−Υ

(Υ − log K).

(33)

From the above equation, it is realized that having Υ ∼ log K − log log log log K −ω(1),

results in having µ(Υ, K) log log Υ ∼ o(1), which completes the proof of the second part

of the theorem. �

Remark 1- The uniform distribution of the correlation coefficients is not a necessary

condition for Theorem 4. In fact, Theorem 4 is valid if E{log(α−1
max)|A| = n} = o( 1

n
).

Hence, there exists a larger class of distributions that satisfy the requirements for this

theorem.
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IV. DELAY ANALYSIS

In this section, we analyze the delay of the system under the mentioned scheduling

strategies. The delay is defined as the minimum value of D that satisfies the following:

Pr{BD} → 1, (34)

where BD is the event that all users receive at least one packet during D blocks of

transmission.

Since in the Strategies I and II, the user with the best channel condition is serviced,

by the same argument as in [9] the delay of the system can be shown to scale at least

as K log K. More precisely,

D1 = D2 ∼ K log K + ω(1), (35)

where D1 and D2 stand for the delay of the system under the strategies I, and II,

respectively. The following theorem gives the scaling law for the delay of the system

using strategy III:

Theorem 5 Under the condition of Theorem 4, we have

D3 & eΥ+Ke−Υ+log Υ, (36)

where D3 denotes the delay of the system under the strategy III.

Proof- Without loss of generality assume α1 ≤ α2 · · · ≤ αK . Note that for large number

of users Υ � 1. First, we obtain the probability of selecting the k th user in each frame,

denoted by pk.

pk =
Pr(υk ≥ Υ)

∏K
i=k+1 Pr(υi ≤ Υ)

1 − p0

=
e−Υ(1 − e−Υ)K−k

1 − (1 − e−Υ)K
, (37)

where p0 = (1− e−Υ)K is the probability of existing no users with channel norm above

the threshold, which is negligible 2. Hence,

pk ' e−Υ(1 − e−Υ)K−k. (38)

2It is assumed that Ke
−Υ � 1.
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Defining FD,i as the event that user i is not serviced during D blocks of transmission

and ηD , Pr{BD}, we have

ηD = 1 −
K
∑

k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤K

Pr{
k
⋂

m=1

FD,im}

= 1 −
K
∑

k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤K

(

1 −
k
∑

m=1

pim

)D

. (39)

A lower-bound and upper-bound for ηD can be given as,

ηD ≥ 1 −
K
∑

k=1

(1 − pk)
D, (40)

and

ηD ≤ 1 −
K
∑

k=1

(1 − pk)
D +

∑

1≤i<j≤K

(1 − pi − pj)
D

≤ 1 −
K
∑

k=1

(1 − pk)
D +

1

2

(

K
∑

k=1

(1 − pk)
D

)2

. (41)

From the above equations, it is realized that in order to get Pr{BD} → 1, we must have
∑K

k=1(1 − pk)
D → 0. Φ ,

∑K
k=1(1 − pk)

D can be computed as follows:

Φ =
K
∑

i=1

(

1 − e−Υ(1 − e−Υ)K−i
)D

w

∫ K

1

exp{−De−Υ(1 − e−Υ)K−x}dx

∼ eΥ e−De−(Υ+Ke−Υ)

De−(Υ+Ke−Υ)
. (42)

Noting (42), in order to have Φ → 0, the following condition must be satisfied:

D ∼ eΥ+Ke−Υ

(Υ + log Υ + ω(1)), (43)

which incurs

D3 & eΥ+Ke−Υ+log Υ. (44)
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�

Assuming Υ ∼ log K−ϕ(K), where ϕ(K) = o(log K), it can be easily shown that D3

D1
=

eeϕ(K)−ϕ(K). It follows from Theorem 4 that in order to achieve limK→∞ Tmax − T3 = 0,

ϕ(K) must be greater than log log log log K. Hence,

D3

D1
>

log log K

log log log K
. (45)

In other words, although using strategy III one can approach the maximum throughput

of the system, it produces much more delay in the system than the strategies I and II.

V. CONCLUSION

A multiuser downlink communication over a time-correlated fading channel has

been considered. We have proposed three scheduling schemes in order to maximize

the throughput of the system. Assuming a large number of users in the system, we

show that using SNR-based scheduling, a gap of Θ(
√

log log log K) exists between the

achievable throughput and the maximum throughput of the system. We propose a simple

scheduling considering both the SNR and channel correlation of the users. We show that

the throughput of the proposed scheme reaches the maximum throughput of the system

as the number of users tends to infinity. Moreover, the delay of the system under the

proposed strategies are compared. It is realized that the third strategy, despite achieving

the maximum throughput of the system, produces much more delay than the conventional

scheduling.

VI. APPENDIX A

Noting (6), we define E0(ρ) = − 1
N

log IN where

IN =

∫

uN

...

∫

u1

N
∏

i=1

(
1

1 + a
1+ρ

u2
i

)ρ/2p(u|u0)dui. (46)

Using 4, we have

IN =

∫

uN

...

∫

u1

N
∏

i=1

2ui

1 − α2
exp{−u2

i + α2u2
i−1

1 − α2
}I0(

2αuiui−1

1 − α2
)(

1

1 + a
1+ρ

u2
i

)ρdui (47)
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Substituting vi = ui

u0

√
(1−α2)/2

, 0 ≤ i ≤ N , we have

IN =

∫

vN

...

∫

v1

N
∏

i=1

u2
0vie

−
v2
i +α2v2

i−1

2/u2
0 I0(αu2

0vivi−1)f(vi)dvi

=

∫

vN

...

∫

v1

N
∏

i=1

u2
0vie

−
(vi−αvi−1)2

2/u2
0 e−αu2

0vivi−1I0(αu2
0vivi−1)f(vi)dvi, (48)

where,

f(vi) = (
1

1 +
au2

0(1−α2)

2(1+ρ)
v2

i

)ρ. (49)

Since K → ∞, then Pr(u0 = log K) → 1. For large values of u0, we evaluate the

following integral.

I =

∫ ∞

0

vu2
0I0(u

2
0vµ)e−u2

0vµf(v)e
−

(v−µ)2

2/u2
0 dv

=

∫ µ+ 1
√

u0

µ− 1
√

u0

vh2
0I0(u

2
0vµ)e−u2

0vµf(v)e
−

(v−µ)2

2/u2
0 dv + ε (50)

where ε can be bounded as follows:

ε =

∫ µ− 1
√

u0

0

vh2
0I0(u

2
0vµ)e−u2

0vµf(v)e
−

(v−µ)2

2/u2
0 dv +

∫ ∞

µ+ 1
√

u0

vh2
0I0(u

2
0vµ)e−u2

0vµf(v)e
−

(v−µ)2

2/u2
0 dv

≤ c√
µ

∫ µ− 1
√

u0

0

√
v

√

2π/u2
0

e
−

(v−µ)2

2/u2
0 dv +

c√
µ

∫ ∞

µ+ 1
√

u0

√
v

√

2π/u2
0

e
−

(v−µ)2

2/u2
0 dv

≤ 2c√
µ

∫ ∞

µ+ 1
√

u0

√
v

√

2π/u2
0

e
−

(v−µ)2

2/u2
0 dv

≤ 2ce−u0

√
µ

(
√

µ +
u0
√

u0√
µ

) = O(u0

√
u0e

−u0) (51)

In deriving (51), we use the facts that f(v) ≤ 1, v ≥ 0 and I0(z)e−z
√

2πz ≤ c where c

is a constant [10].

Defining g(v) =
√

2πvu0I0(u
2
0vµ)e−u2

0vµf(v) and using (50), we have

I =

∫ µ+ 1
√

u0

µ− 1
√

u0

g(v)
e
−

(v−µ)2

2/u2
0

√

2π/u2
0

dv + ε

= g(µ) + O(
g′(µ)√

u0
) + ε (52)
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Since I0(z)e−z
√

2πz = 1 + O( 1
z
) [10], then

g(µ) = f(µ)(1 + O(
1

u2
0

)), (53)

and

O(g′(µ)) = O(g(µ)). (54)

Using (52), (53) and (54), we have

I = f(µ)(1 + O(
1√
u0

)) + ε (55)

Applying (55) in (48), we have

IN =

∫

vN−1

...

∫

v1

f(αvN−1)(1 + O(
1√
u0

)) ×

N−1
∏

i=1

u2
0vie

−
(vi−αvi−1)2

2/u2
0

−αu2
0vivi−1I0(αu2

0vivi−1)f(vi)dvi

=

∫

vN−2

...

∫

v1

f(α2vN−2)f(αvN−2)(1 + O(
1√
u0

))2 ×

N−2
∏

i=1

u2
0vie

−
(vi−αvi−1)2

2/u2
0

−αu2
0vivi−1I0(αu2

0vivi−1)f(vi)dvi

=
N
∏

i=1

f(αiv0)(1 + O(
1√
u0

)) (56)

Substituting v0 = 1√
(1−α2)/2

, we have

IN =

N
∏

i=1

f(

√
2αi

√

(1 − α2)
)(1 + O(

1√
u0

)). (57)

Using (57) and noting the definition E0(ρ) = − 1
N

log IN , we conclude Theorem (1).
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