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Abstract

M-ary signal transmission over AWGN channel with additive two-level interference where

the sequence of i.i.d. interference symbols is known causally at the transmitter is considered.

Shannon’s theorem for channels with side information at the transmitter is used to formulate

the capacity of the channel. It is shown that by using at most 2M − 1 out of M
2 inputs

of the associated channel the capacity is achievable. We consider the maximization of the

transmission rate over input probability assignments for the associated channel that induce

uniform distribution on the input to the actual channel, for which we show that by using

exactly M out of M
2 inputs of the associated channel the maximum is achievable. Based on

this, the general structure of a communication system with optimal precoding is proposed.

I. INTRODUCTION

Information transmission over channels with known interference at the transmitter

has recently found applications in various communication problems such as digital water-

marking [1] and broadcast schemes [2]. A main result on such channels was obtained by
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Costa who showed that the capacity of additive white Gaussian noise (AWGN) channel

with additive Gaussian i.i.d. interference, where the sequence of interference symbols is

known non-causally at the transmitter, is the same as the capacity of AWGN channel

[3]. Therefore, the interference does not incur any loss in the capacity. This result was

extended to non-Gaussian interference in [4]. The result obtained by Costa does not hold

for the case that the sequence of interference symbols is known causally at the transmitter.

Channels with known interference at the transmitter are special case of channels

with side information at the transmitter which were considered by Shannon [5] in causal

knowledge setting and by Gel’fand and Pinsker [6] in non-causal knowledge setting.

This paper is organized as follows. Section II, provides some background on chan-

nels with causally-known interference at the encoder. In section III, we introduce the

channel model. In section IV, we investigate the capacity of the channel introduced in

section III. In section V, we consider maximizing the transmission rate when the channel

input is uniform. The general structure of a communication system for the channel with

causally-known discrete interference is given in section VI. We conclude this paper in

section VII.

II. PRELIMINARIES

Shannon considered a discrete memoryless channel (DMC) whose transition matrix

depends on the channel state. A state-dependent discrete memoryless channel (SD-DMC)

is defined by a finite input alphabet X , a finite output alphabet Y , and transition prob-

abilities p(y|x, s), where the state s takes on values in a finite alphabet S. The block

diagram of a state-dependent channel with state information at the encoder is shown in

fig. 1.

In the causal knowledge setting, the encoder maps a message w into X n using

functions

x(i) = fi (w, s(1), . . . , s(i)) , 1 ≤ i ≤ n. (1)
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Fig. 2. The associated regular DMC.

Shannon [5] showed that the capacity of an SD-DMC where the i.i.d. state sequence

is known causally at the encoder is equal to the capacity of an associated regular (without

state) DMC with an extended input alphabet T and the same output alphabet Y . The

input alphabet of the associated channel is the set of indices of all functions from the

state alphabet to the input alphabet of the state-dependent channel. There are a total of

|X ||S| of such functions, where |.| denotes the cardinality of a set. Any of the functions

can be represented by a |S|-tuple (xi1 , xi2 , . . . , xi|S|
) of elements of X , implying that the

value of the function at state s is xis , s = 1, 2, . . . , |S|.
The transition probabilities for the associated channel are given by [5]

p(y|t) =

|S|
∑

s=1

p(s)p(y|xis, s), (2)

where t denotes the index of the function represented by (xi1 , xi2 , . . . , xi|S|
). Also,

p(y(1) · · ·y(n)|t(1) · · · t(n)) =
n

∏

k=1

p(y(k)|t(k)). (3)
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The capacity is given by [5]

C = max
p(t)

I(T ; Y ), (4)

where the maximization is taken over the probability mass function (pmf) of the random

variable T .

Any encoding and decoding scheme for the associated channel can be translated into

an encoding and decoding scheme for the original state-dependent channel with the same

probability of error [5]. An encoder for the associated channel encodes a message w to

(t(1), . . . , t(n)). The translated encoding scheme for the original state-dependent channel

is to map the message w to (x(1), x(2), . . . , x(n)), where x(k) = sth component of t(k)

if the state at time k is s, s = 1, 2, . . . , |S|, and k = 1, 2, . . . , n. The block diagram of

the associated regular DMC is shown in fig. 2.

In the capacity formula (4), we can alternatively replace T with (X1, . . . , X|S|),

where Xs is the input to the state-dependent channel when the state is s, s = 1, . . . , |S|.

III. THE CHANNEL MODEL

We consider M-ary signaling over channel

Y = X + S + N, (5)

where X is the channel input, which takes on values in the real set X = {x1, x2, . . . , xM},

where x1 < x2 < · · · < xM , Y is the channel output, N is additive white Gaussian noise

with power PN , and the interference S is a discrete random variable that takes on values

in S = {s1, s2}, where s1 < s2, with probabilities r1, r2, respectively. The sequence of

i.i.d. interference symbols is known causally at the encoder. The above channel can be

considered as a special case of state-dependent channels considered by Shannon with

one exception that the channel output alphabet is continuous. In our case, the likelihood

function f(y|x, s) is used instead of the transition probabilities. We denote the input to

the associated channel by T , which can also be represented as the pair (X1, X2), where

X1 and X2 take values in X .
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The likelihood function for the associated channel is given by

fY |T (y|t) = r1fY |T,S(y|t, s1) + r2fY |T,S(y|t, s2)

= r1fY |X,S(y|xi, s1) + r2fY |X,S(y|xj, s2)

= r1fN(y − xi − s1) + r2fN (y − xj − s2), (6)

where fN denotes the pdf of noise N , and t represents (xi, xj). The pdf of Y is then

given by

fY (y) =
M

∑

i=1

M
∑

j=1

pij ( r1fN(y − xi − s1) + r2fN(y − xj − s2))

= r1

M
∑

i=1

p
(1)
i fN (y − xi − s1) + r2

M
∑

j=1

p
(2)
j fN(y − xj − s2), (7)

where pij = Pr{X1 = xi, X2 = xj}, p
(1)
i = Pr{X1 = xi}, and p

(2)
j = Pr{X2 = xj}, i, j =

1, 2, . . . , M .

IV. THE CAPACITY

The capacity of the associated channel, which is the same as the capacity of the

original channel defined in section III, is the maximum of I(T ; Y ) = I(X1X2; Y ) over

the joint pmf values pij = Pr{X1 = xi, X2 = xj}, where xi and xj belong to X , i.e.,

C = max
pij

I(X1X2; Y ). (8)

The mutual information between T and Y is the difference between differential entropies

h(Y ) and h(Y |T ). It can be seen from (7) that fY (y), and hence h(Y ), are uniquely

determined by the marginal pmfs {p(1)
i }M

i=1 and {p(2)
j }M

j=1. The conditional entropy h(Y |T )

is given by

h(Y |T ) = h(Y |X1X2)

=

M
∑

i=1

M
∑

j=1

pijh(Y |X1 = xi, X2 = xj)

=

M
∑

i=1

M
∑

j=1

pijhij, (9)
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where hij = h(Y |X1 = xi, X2 = xj).

There are M2 variables involved in the maximization problem (8). Each variable

represents the probability of an input symbol of the associated channel. The following

theorem regards the number of nonzero variables required to achieve the optimal value

of (8).

Theorem 1: The capacity of the associated regular channel is achieved by using at

most 2M − 1 out of M 2 inputs with nonzero probabilities.

Proof: Denote by {p̂(1)
i }M

i=1 and {p̂(2)
i }M

i=1 the pmf of X1, and X2, induced by a

capacity-achieving joint pmf {p̂ij}M
i,j=1. We limit the search for a capacity-achieving joint

pmf to those joint pmfs that yield the same marginal pmfs as {p̂ij}M
i,j=1. By limiting the

search to this smaller set, the maximum of I(X1X2; Y ) remains unchanged since the

capacity-achieving joint pmf {p̂ij}M
i,j=1 is in the smaller set. But all joint pmfs in the

smaller set yield the same h(Y ) since they induce the same marginal pmfs on X1, X2.

Therefore, the maximization problem in (8) reduces to the linear minimization problem

min
pij

M
∑

i=1

M
∑

j=1

hijpij

subject to
M

∑

j=1

pij = p̂
(1)
i , i = 1, 2, . . . , M,

M
∑

i=1

pij = p̂
(2)
j , j = 1, 2, . . . , M,

pij ≥ 0, i, j = 1, 2, . . . , M. (10)

There are 2M equality constraints in (10) out of which 2M −1 are linearly independent.

From the theory of linear programming, the minimum of (10), and hence the maximum

of I(X1X2; Y ), is achieved by a feasible solution with at most 2M −1 nonzero variables.

Theorem 1 states that at most 2M−1 out of M 2 inputs of the associated channel are

needed to be used with positive probability to achieve the capacity. However, in general



7

one does not know which of the inputs must be used to achieve the capacity. If we knew

the marginal pmfs for X1 and X2 induced by a capacity-achieving joint pmf, we could

obtain the capacity-achieving joint pmf itself by solving the linear program (10).

We consider a special case where the noise power is zero in (5), for which we will

obtain the capacity. In the absence of noise, the channel output Y can take on at most

2M different values. If Y takes on exactly 2M different values, then it is easy to see that

the capacity is log2 M bits even if the interference sequence is unknown to the encoder:

The decoder just needs to partition the set of all possible channel outputs into M subsets

of size 2 corresponding to M possible inputs, and decide that which subset the current

received symbol belongs to.

In general, where the cardinality of the channel output alphabet can be less than

2M , the same result holds:

Theorem 2: The capacity of the noise-free channel

Y = X + S, (11)

where the sequence of interference symbols is known causally at the encoder equals

log2 M bits.

Proof: We show that there exists a coding scheme that uses just M inputs of the

associated channel with probability 1
M

and achieves the rate log2 M bits in one use of the

channel. It is sufficient to show that there exist M pairs (xi, xj) of elements of X , such

that the corresponding (multi-)sets, {xi + s1, xj + s2}, are mutually disjoint. Denote by

Y (i) the set of the possible sums when the interference symbol is si, i = 1, 2. We must

match the elements of Y (1) to the elements of Y (2) such that the resulting M (multi-)sets

of size 2 are mutually disjoint. This can be done by matching those elements of Y (1) and

Y (2) that are equal and matching the other elements of the two sets arbitrarily. Once the

mutually disjoint (multi-)sets are found, we can obtain the corresponding pairs.

It is worth mentioning that in the proof of theorem 2, we did not use the assumption

that the interference sequence is i.i.d.. In fact, the interference sequence could be an
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arbitrary varying sequence of s1s and s2s.

As an example of the noise-free case, consider a channel with input alphabet X =

{−3,−1, +1, +3} and interference alphabet S = {−2, +2}. The output alphabet will be

Y = {−5,−3,−1, +1, +3, +5}. Based on the algorithm given in the proof of theorem

2, we may choose 4 pairs (−3, +1), (−1, +3), (+1,−3), (+3,−1). We use these pairs

to send any of four different messages A, B, C, D, respectively. Message A can produce

the outputs −5 or +3. Message B can produce −3 or +5. Message C produces −1,

and message D produces +1. So, the output alphabet is partitioned into four mutually

disjoint sets corresponding to four different messages. Therefore, error-free transmission

is possible in one use of the channel.

In the noise-free case, to achieve the capacity log2 M , the M pairs must be chosen

with equal probabilities. This induces uniform distribution on X1 and X2.

V. UNIFORM TRANSMISSION

In the sequel, we study the maximization of the transmission rate I(X1X2; Y ) over

joint pmfs {pij}M
i,j=1 that induce uniform marginal distributions on X1 and X2, i.e.,

p
(1)
i = p

(2)
i =

1

M
, i = 1, 2, . . . , M, (12)

for which we show how to obtain the optimal input probability assignment. We call

a transmission scheme that induces uniform distribution on X1 and X2 as uniform

transmission. Uniform distribution for X1 and X2 implies uniform distribution for X ,

the input to the state-dependent channel defined in (5).

The optimality of uniform pmfs for X1 and X2 was established for the asymptotic

case of noise-free channel in the previous section. Furthermore, we will show that (12)

results in simplification of the encoding scheme (mapping the message to the set of

indices T ) for the associated channel. In fact, we will show that the rate-maximizing

joint pmf with the constraints in (12) is uniform on a subset of size M of T , which

simplifies the encoding operation.



9

Theorem 3: The maximum of I(X1X2; Y ) over {pij}M
i,j=1 with uniform marginal

pmfs for X1 and X2 is achieved by using exactly M out of M 2 inputs of the associated

channel with probability 1
M

.

Proof: Considering the constraints in (12), the maximization of I(X1X2; Y ) is

reduced to the linear minimization problem

min
pij

M
∑

i=1

M
∑

j=1

hijpij

subject to
M

∑

j=1

pij =
1

M
, i = 1, 2, . . . , M,

M
∑

i=1

pij =
1

M
, j = 1, 2, . . . , M,

pij ≥ 0, i, j = 1, 2, . . . , M. (13)

The equality constraints of (13) can be written in matrix form as

Ap = 1, (14)

where A is a zero-one 2M×M 2 matrix, p = M
[

pT
1 pT

2 . . .pT
M

]T
, where pm = [pm1pm2 . . .

pmM ]T , m = 1, 2, . . . , M , and 1 is the all-one 2M × 1 vector. It is easy to check that

A is the vertex-edge incidence matrix of KM,M , the complete bipartite graph with 2M

vertices. Therefore, A is a totally unimodular matrix [7]. Hence, the extreme points of

the feasible region F = {p : Ap = 1,p ≥ 0} are integer vectors. Since the optimal value

of a linear optimization problem is attained at one of the extreme points of its feasible

region, the minimum in (13) is achieved at an all-integer vector p∗. Considering that p∗

satisfies (14), it can only be a zero-one vector with exactly M ones.

It turns out from the proof of theorem 3 that the optimum solution of the linear

optimization problem, p∗, is a zero-one vector. So, if we add the integrality constraint

to the set of constraints in (14), we still obtain the same optimal solution. The resulting

integer linear optimization problem is called the assignment problem [7], which can be

solved using low-complexity algorithms such as the Hungarian method [8].
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Fig. 3. Optimal solution for 4-PAM input with parameters r1 = r2 = 1

2
s1 = −2, s2 = +2, PN = 1.

According to theorem 3, to achieve the maximum of I(X1X2; Y ) over {pij}M
i,j=1

with uniform marginal pmfs for X1 and X2, we need to use only M out of M 2 inputs

of the associated channel with probabilities 1
M

. This result is independent of the value of

the coefficients {hij}. However, which probability assignment with M nonzero elements

is optimum depends on the coefficients {hij}. The coefficient hij is determined by the

interference levels s1, s2, the probability of interference levels r1, r2, the noise power PN ,

and the signal points x1, x2, . . . , xM .

As example, the optimal solutions for two different scenarios with 4-PAM constel-

lation (X = {−3,−1, +1, +3}) are illustrated in figs. 3 and 4. The points circled in

the array correspond to the inputs to the associated channel that must be chosen with

probability 1
4
.

Fig. 5 depicts the maximum mutual information (for uniform transmission) vs.

SNR for the channel with X = S = {−1, +1} and equiprobable interference symbols.

The mutual information vs. SNR curve for the interference-free AWGN channel with
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Fig. 4. Optimal solution for 4-PAM input with parameters r1 = r2 = 1

2
, s1 = −2.5, s2 = +2.5, PN = 9.

equiprobable input alphabet {−1, +1} is plotted for comparison purposes. As it can

be seen, for low SNRs, the input probability assignment p11 = p22 = 1
2

is optimal,

whereas at high SNRs, the input probability assignment p12 = p21 = 1
2

is optimal. The

maximum achievable rate for uniform transmission is the upper envelope of the two

curves corresponding to different input probability assignments. Also, it can be observed

that the achievable rate approaches log2 2 = 1 bit per channel use as SNR increases

complying with the fact that we established in section IV for the noise-free channel.

Fig. 6 depicts the maximum mutual information vs. SNR for the channel with

X = {−3,−1, +1, +3}, and equiprobable interference symbols from the alphabet S =

{−2, +2}.

In the sequel, we further investigate the optimal solution of (13). It can be easily

shown that the conditional entropy hij = h(Y |X1 = xi, X2 = xj) is a function of xi−xj ,

i.e.,

hij = g(xi − xj), (15)
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Fig. 5. Maximum mutual information vs. SNR for the channel with X = S = {−1, +1} and r1 = r2 = 1

2
.

where g(.) is given by

g(u) = −
∫ +∞
−∞

[

r1√
2πPN

exp
(

− (z−u+s2−s1)2

2PN

)

+ r2√
2πPN

exp
(

− z2

2PN

)]

×

log2

[

r1√
2πPN

exp
(

− (z−u+s2−s1)2

2PN

)

+ r2√
2πPN

exp
(

− z2

2PN

)]

dz. (16)

The plot of g(.) for r1 = 1
2
, r2 = 1

2
, s1 = −2, s2 = +2, PN = 1 is shown in fig. 7. In

part A of the Appendix, it has been shown that g is lower bounded by the differential

entropy of the noise, h(N), and is upper-bounded by h(N) + H(S), where H(S) is the

entropy of the two-level interference.

Theorem 4: If g is convex in the interval [x1 − xM , xM − x1], then

p̃ij =







1
M

, if i = j

0, otherwise.
(17)

is the optimal solution to (13).
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2
.

Proof: Define random variable U = X1 − X2. The objective function in (13) can
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be written as
M

∑

i=1

M
∑

j=1

pijhij =

M
∑

i=1

M
∑

j=1

Pr{X1 = xi, X2 = xj}g(xi − xj)

=
∑

k

M
∑

i=1

Pr{X1 = xi, X2 = xi − uk}g(uk)

=
∑

k

M
∑

i=1

Pr{X1 = xi, X1 − X2 = uk}g(uk)

=
∑

k

M
∑

i=1

Pr{X1 = xi, U = uk}g(uk)

=
∑

k

Pr{U = uk}g(uk)

= E[g(U)],

where E[.] denotes the expectation operator. Now, considering the convexity of g, apply

the Jensen’s Inequality

E[g(U)] ≥ g (E[U ])

= g(0). (18)
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Equality holds when U ≡ 0, or equivalently,

X1 = X2. (19)

The joint pmf in (17) satisfies both (19) and the constraints of (13). Therefore, it is the

optimal solution.

It can be shown that g is convex in the interval [x1 − xM , xM − x1] if and only if

xM − x1 ≤ s1 − s2 + u0

√

PN , (20)

where u0 u 1.636. See the Appendix, part B.

Theorem 4 has an interesting interpretation. Given the condition of theorem 4

satisfied, the optimal precoder sends the same signal in the channel regardless of the

current interference symbol. In other words, the optimal precoder for uniform transmission

ignores the interference. In fact, any transmission scheme that forces X1 and X2 to have

the same statistical average does not benefit from the causal knowledge of interference

symbols at the transmitter if the condition of theorem 4 holds. Note that this might not

hold true for a capacity achieving coding scheme without any constraints on the marginal

pmfs of X1 and X2.

The following theorem holds when the input alphabet X is symmetric w.r.t. the

origin, i.e.,

xi = −xM+1−i, i = 1, . . . , M. (21)

For example, a regular PAM constellation satisfies (21).

Theorem 5: If the input alphabet X is symmetric w.r.t. the origin, and if g is concave

in the interval [x1 − xM , xM − x1], then

p̃ij =







1
M

, if i + j = M + 1

0, otherwise.
(22)

is an optimal solution to (13).

Proof: We first make the observation that if {pij}i,j=1,2,...,M
is a feasible solution

of (13), then {qij}i,j=1,2,...,M
, where qij = p(M+1−j)(M+1−i), will also be a feasible
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solution of (13). Furthermore, due to (21), {pij} and {qij} yield the same objective

value. Therefore, if {pij} is an optimal solution of (13), {qij} will be an optimal solution

too. The convex combination of these two optimal solutions, {θij = 1
2
pij + 1

2
qij}, is also

an optimal solution which has the following symmetry property

θij = θ(M+1−j)(M+1−i). (23)

Suppose that a symmetric optimal solution to (13) has nonzero entries

pij = p(M+1−j)(M+1−i) = p, (24)

where i + j 6= M + 1. Now, if we add p to the main diagonal entries p(M+1−j)j and

pi(M+1−i) and turn pij and p(M+1−j)(M+1−i) to zero, the constraints of (13) are not violated.

However, the change in the objective function will be proportional to

h(Y |X1 = xi, X2 = xM+1−i) + h(Y |X1 = xM+1−j , X2 = xj)

−h(Y |X1 = xi, X2 = xj) − h(Y |X1 = xM+1−j , X2 = xM+1−i),

which is equal to g(2xi) + g(−2xj) − 2g(xi − xj) which is non-positive by concavity

of g. Hence, we have not increased the objective value by the process described above.

Therefore, (22) is an optimal solution of (13).

It can be shown that g is concave in the interval [x1 − xM , xM − x1] if and only if

xM − x1 ≤ s2 − s1 − u0

√

PN . (25)

See the Appendix, part B.

VI. OPTIMAL PRECODING

The general structure of a communication system for the channel (5) is shown in fig.

8. In fact, fig. 8 is the same as fig. 2 for the special case of the state-dependent channel

defined in (5). Any encoding and decoding scheme for the associated channel can be

translated to an encoding and decoding scheme for the original channel (5). A message

w is encoded to a block of length n of indices t ∼ (xi, xj). According to theorem 3,
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Fig. 8. General structure of a communication system for channels with causally-known discrete interference.

only M of the indices are needed to achieve the maximum rate for uniform transmission.

Those M indices are obtained by solving the linear programming problem (13). For each

t, the precoder sends either xi (if S = s1) or xj (if S = s2). Based on the received signal

Y , the receiver decodes ŵ as the transmitted message.

VII. CONCLUSION

In this paper, we investigated M-ary signal transmission over AWGN channel with

additive two-level interference, where the sequence of i.i.d. interference symbols is known

causally at the transmitter. According to the Shannon’s theorem for channels with side

information at the transmitter, the associated channel has an input alphabet of size M 2.

We proved that by using at most 2M − 1 inputs the capacity is achievable. Then we

focused on transmission schemes that induce uniform marginal pmfs on X1 and X2. For

this so called uniform transmission, the maximum rate is obtained by using only M inputs

of the associated channel with probability 1
M

. The optimal M inputs can be obtained by

solving the linear optimization problem (13). In some special cases where the function

g(u) is concave or convex in the interval [x1−xM , xM −x1], the optimal solution is given

by theorems 4 and 5. The optimal solution determines the optimal precoding to be used

in the general structure of a communication system for the channel with causally-known

two-level interference.
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APPENDIX

A.

Denote by S̃ the random variable that takes on xi +s1 and xj +s2 with probabilities

r1 and r2, respectively. Also, denote by Ỹ the random variable Y |X1 = xi, X2 = xj .

Then

Ỹ = S̃ + N. (26)

Since

0 ≤ I(Ỹ ; S̃) ≤ H(S̃), (27)

we have

0 ≤ h(Ỹ ) − h(Ỹ |S̃) ≤ H(S̃), (28)

or equivalently,

h(N) ≤ h(Ỹ ) ≤ h(N) + H(S̃)

= h(N) + H(S). (29)

B.

The function g(u) given in (16) can be considered as a function of u and parameters

s1, s2, PN . We have

g(u) = g(u, s1, s2, PN)

= g(u + s1 − s2, 0, 0, PN)

= g

(

u + s1 − s2√
PN

, 0, 0, 1

)

+ log2

√

PN . (30)

We can obtain the inflection points of g(u, 0, 0, 1) numerically as u0 and −u0, where

u0 u 1.636. Therefore, the inflection points of g(u) are

α1 = s2 − s1 − u0

√

PN , (31)

α2 = s2 − s1 + u0

√

PN , (32)
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The function g is convex in the interval [α1, α2] and is concave anywhere else.

The function g is convex in the interval [x1 − xM , xM − x1] if and only if [x1 −
xM , xM − x1] ⊆ [α1, α2]. This gives (20).

The function g is concave in the interval [x1 − xM , xM − x1] if and only if [x1 −
xM , xM − x1] ⊆ (−∞, α1] or [x1 − xM , xM − x1] ⊆ [α2,∞). This gives (25).
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