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Abstract

In this paper, the problem of maximizing the number of active users satisfying a

required quality of service (QoS) in n-user interference channels is investigated. This

problem is known as an NP-complete problem. We introduce an efficient suboptimal

algorithm, relying on the results for the boundary of the rate region, we derived in [1].

The algorithm is developed for different sorts of constraints on the transmit powers,

including constraint on the power of the individual transmitters and constraint on the

total power of the transmitters. Simulation results show that the performance of the

proposed algorithm is very close to the optimal solution, and outperforms alternative

algorithms.

I. Introduction

High spectral efficiency wireless technology is relied greatly on channel sharing

schemes. While such a scheme increases the capacity and the coverage area of com-
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munication systems, it suffers from the interference of the concurrent links over each

other, known as the co-channel interference. Consequently, the signal-to-interference-

plus-noise-ratio (SINR) of the links are upper-bounded, even if there is no constraint

on the transmit powers.

There have been some effort to evaluate the maximum achievable SINR in the

interference channels. In [2], the maximum achievable SINR in a satellite network with

no power constraint is presented in terms of the Perron-Frobenius (PF) eigenvalue

of a non-negative matrix. This result was deployed in many other applications by

[3]–[6], afterwards.

Recently, the authors have extended this result to the case that the power of

the transmitters are subject to some constraints, including the constraints on power

of the individual transmitters, and the constraint on the total transmit power [1].

Furthermore, this result is generalized to the time-varying channels.

In practical scenarios, it is desired that the active users satisfy a required QoS.

On the other hand, due to the deteriorative effect of the co-channel interference, it is

not possible for all users to satisfy such a requirement. Therefore, some of the users

should be removed to the advantage of the others. Finding a feasible subset of users

(i.e., a subset of users which satisfy the required QoS) with maximum cardinality is

claimed to be an NP-complete problem [7]. In the literature, some heuristic algorithms

are presented for this problem. In [4], a stepwise removal algorithm (SRA) has been

proposed for the case that the transmit power is unbounded. In this algorithm, in each

iteration, for each user, the maximum of the aggregation of the normalized channel

gains from that user to the others and the aggregation of the normalized channel

gains from the other users to that user is computed. Then, the user with the largest

of the computed parameter is removed from the set of active users. The removal

algorithm continues in an iterative manner until the maximum achievable signal-

to-interference-ratio (SIR) meets the required threshold. Later, in [5], a distributed

balancing algorithm (DBA) for noiseless systems was proposed. The DBA algorithm

is utilized to develop a new algorithm known as limited information SRA (LI-SRA).
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In this algorithm, the user to be removed is the one with the smallest SIR, while all

the users are allocated a fixed power. Then, in [5], an algorithm known as limited

information SRA (LI-SRA) which utilizes a partial information to remove the users

is presented. In [8], another algorithm, named as stepwise-maximum-interference-

removal-algorithm (SMIRA) is proposed, in which the maximum of the aggregate

interference power from each user to the other ones and from the other users to

that user is computed and the user with maximum computed value is removed.

This procedure continues iteratively until the maximum achievable SIR meets the

target SIR. It is shown that this algorithm outperforms SRA. For congested systems

with constraint on the power of the individual transmitters, an algorithm known as

gradually-removal-distributed-constrained-power-control (GRX-DCPC) is presented

in [7]. In this algorithm, the power of the transmitters are updated based on DCPC

algorithm presented in [9], [10] and the removal is performed based on a predetermined

criterion. The presented removal algorithm can be performed in a restricted or non-

restricted fashion. In the restricted algorithm known as GRR-DCPC, the user to

be removed is selected from the users attaining the maximum power in the power

updating procedure. Whereas, in the non-restricted algorithm (GRN-DCPC), the

user to be removed is selceted from the all active users. The removal criterion can

be based on SMIRA or some other presented alternatives in that work. GRX-DCPC

can be performed in a distributed fashion in which a user is removed with a certain

probability in each iteration. In addition, this algorithm is capable of removing

a multiple users at each iteration. The simulation results show that GRN-DCPC

(centralized non-restricted) outperforms other mentioned schemes in [7].

In this paper, we exploit the relationship between the maximum achievable SINR

and the PF-eigenvalue of some non-negative matrices, presented in [1], to develop a

suboptimal algorithm for the problem of user removal. The algorithm is proposed for

different constraints on power. cases including (i) when there is no constraint on the

transmit power, (ii) when the power of each user is upper-bounded, and (iii) when the
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total transmit power is upper-bounded. Simulation results show that the proposed

algorithm outperforms the alternative schemes in all cases in terms of the number of

active users.

Notation: All boldface letters indicate column vectors (lower case) or matrices

(upper case). xij and xi represent the entry (i, j) and the column i of the matrix

X, respectively. A matrix Xn×m is called non-negative if xij ≥ 0, for all i and

j [11]. det(X), Tr(X), and X′ denote the determinant, the trace, and the transpose

of the matrix X, respectively. ψ(X,y,S) is a matrix defined as a function of three

parameters, which are respectively a matrix, a vector and a set of indices. It is defined

as

ψ(X,y,S) = Z = [zj], zj =





xj + y j ∈ S
xj otherwise

In addition, Xi− is the matrix X whose ith column and row is removed. We use a

similar notation for a vector whose ith element is removed.

II. System Model and Previous Results

The Gaussian interference channel, including n links (users), is represented by

the gain matrix G = [gij]n×n where gij is the attenuation gain of the power from

transmitter j to receiver i. This attenuation can be the result of fading, shadowing,

or the processing gain of the CDMA system. A white Gaussian noise with zero mean

and variance σ2
i is added to the received signal at the receiver i terminal. The SINR

of each user, denoted by γi, is obtained by

γi =
giipi

σ2
i +

n∑
j=1
j 6=i

gijpj

, ∀i ∈ {1, . . . , n},

where pi is the power of transmitter i. The users are required to attain a minimum

SINR denoted by γ i.e., γi ≥ γ. We define the normalized gain matrix, A, as

A = [aij]n×n, aij =





gij

gii

i 6= j

0 i = j
(1)
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Based on this definition, the objective is presented as,

pi

ηi +
n∑

j=1

aijpj

≥ γ, ∀i ∈ {1, . . . , n}, (2)

where ηi =
σ2

i

gii

, η = [ηi]n×1. Inequalities in (2) can be reformulated in a matrix form

as

(
1

γ
I−A)p ≥ η. (3)

Characterization of maximum achievable SINR in an intefrence channel is based

on the Perron-Frobenius theorem. This theorem states some properties about the

eigenvalues of a primitive matrix. A square non-negative matrix X is said to be

primitive if there exists a positive integer k such that Xk > 0 [11].

Theorem 1 [11] (The Perron-Frobenius Theorem for primitive matrices) Suppose

X is an m×m non-negative primitive matrix. Then there exists an eigenvalue λ∗(X)

(Perron-Frobenius eigenvalue or PF-eigenvalue) such that

(i) λ∗(X) > 0 and it is real.

(ii) there is a positive vector v such that Xv = λ∗(X)v.

(iii) λ∗(X) > |λ(X)| for any eigenvalue λ(X) 6= λ∗(X).

(iv) If X ≥ Y ≥ 0, then λ∗(X) ≥ |λ(Y)| for any eigenvalue of Y.

(v) λ∗(X) is a simple root of the characteristic polynomial of X.

When there is no constraint on the power vector (rather than the trivial con-

straint of p ≥ 0), the maximum achievable γ in (3), shown as γ∗, is characterized

as

γ∗ =
1

λ∗(A)
, (4)

where λ∗(A) is the PF-eigenvalue of A. This paradigm was first deployed in [2] for

SINR balancing in a satellite network.
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For the case that the total power of a subset of users is constrained, the authors

showed that the maximum achievable SINR for a system is computed through the

following theorem [1].

Theorem 2 The maximum achievable γ in an interference channel with n links and

gain matrix A, with the constraints on power,

p ≥ 0,
∑
i∈Ω

pi ≤ pΩ

is equal to

γ∗ =
1

λ∗
(
ψ(A,

η

pΩ

,Ω)
) ,

where Ω ⊆ {1, 2, . . . , n} is an arbitrary subset of the users.

As a result of this theorem, when the total power of all users is constrained as
n∑

i=1

pi ≤
pt, the maximum achievable SINR is

γ∗ =
1

λ∗
(
ψ(A,

η

pt

, {1, . . . , n}))
. (5)

We can use Theorem 2 to show that if pi ≤ pi, ∀i ∈ {1, . . . , n}, the maximum

achievable SINR is

γ∗ = min
i
{ 1

λ∗
(
ψ(A,

η

pi

, {i}))
}. (6)

In a congested system, all the users can not satisfy the QoS requirement. Therefore,

some of the users should be dropped in order to reduce effective interference on the

active users and consequently ameliorate the achievable SINR. As a result, we are

interested to find the maximum subset of the users which can meet the minimum

required QoS. Unfortunately, this problem is claimed to be NP-complete [7]. In what

follows, we propose a suboptimal algorithm for obtaining a subset of the users with

maximum cardinality satisfying the rate requirement, based on the equations (4), (5),

and (6) .
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III. Removal Algorithm

To find the optimal set of active users, satisfying the QoS requirement, we

have to examine all the combinations of the users and select the feasible one with

the maximum cardinality. Clearly, this scheme is computationally exponential. As a

suboptimal alternative scheme, we conjecture that removing the users in a greedy

manner yields a result which is very close to the optimum solution. Based on this

assumption, we develop an efficient algorithm for user removal. The main idea behind

the presented algorithm is as follows. At each step, if the active users do not satisfy

the required SINR, one user is removed. This user is the one which provides the

highest increase in the maximum achievable SINR if it is removed. We call this user

the worst user. The proposed algorithm is presented for different sorts of constraints

on the transmit powers.

According to (4) and Theorem 2, in general, the maximum γ is equal to the

inverse of the PF-eigenvalue of a matrix X, i.e.,

γ∗ =
1

λ∗(X)
.

In a system with a large number of users, computing the PF-eigenvalue is computa-

tionally extensive. In this case, we use an approximation of the PF-eigenvalue. When

a matrix is raised to a power, its eigenvalues are raised to the same power as well

[12], i.e.,

λ(Xq) = λq(X).

On the other hand, the trace of a matrix is equal to the summation of the eigenvalues

of that matrix [12]; therefore,

Tr(Xq) =
∑

i

λq
i .

Since the PF-eigenvalue of a primitive non-negative matrix has the largest norm

among all the eigenvalues of that matrix [12], we can approximate λ∗q(X) with the

Tr(Xq), i.e.,

λ∗q(X) ≈ Tr(Xq).
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This approximation is stronger if the power q is larger. However, the simulation results

show that q = 2 yields a very good approximation of the exact value in our problem.

Therefore, we use

γ∗ ≈ 1√
Tr(X2)

(7)

as an approximate value for γ∗. In what follows, we investigate the problem of user

removal for different power constraints and give an efficient algorithm for each case.

Case One: No Power Constraint

Based on the previous discussions on the worst link determination and using (4),

when there is no power constraint the index of the user to be removed, î, is obtained

as

î = arg max
i
{ 1

λ∗(Ai−)
}.

If this link is removed and still the maximum achievable SINR computed through

(4) does not meet the required SINR, additional links are removed in a recursive

manner till the remaining users become feasible. This algorithm is called the Removal

Algorithm I-A throughout this paper.

Algorithm I-A

1) Set A as in (1), m = n, R = ∅, and v = [1, 2, . . . , n]′.

2) Find the maximum achievable SINR as γ∗ =
1

λ∗(A)
.

3) If γ∗ ≥ γth, stop.

4) Find the worst link as î = arg max
i

1

λ∗(Ai−)
.

5) Set R← R∪ {vî}, A← Aî− , v← vî− , m← m− 1, and go to step 2.

where ← is a substitution notation.

To avoid the complexity of computing PF-eigenvalues in each iteration, we

present the following algorithm which is an approximate version of algorithm I-A.



9

According to (4) and (7) for the unconstrained power scenario, we have

γ∗ =
1

λ∗(A)
≈ 1√

Tr(A2)
=

1√√√√
n∑

i=1

n∑
j=1

aijaji

. (8)

We define vector w as

w = [wi]n×1, wi =
n∑

j=1

aijaji .

Then we have

γ∗ ≈ 1√
n∑

i=1

wi

.

It is easy to show that by removing user i, 2wi is subtracted from the trace of A2.

An immediate conclusion is that if we want to remove one link to obtain the largest

increase in the maximum achievable SINR, the best choice (worst link) is to remove

the one with the largest wi. Therefore, î = arg max
i
wi. Based on this result, an efficient

algorithm for gradually removing the users is presented as follows. In each iteration,

we find the maximum achievable γ using (4) and if this amount is greater than γth,

all the links can be active. Otherwise, the worst link is determined and removed. This

algorithm repeats iteratively until the remaining users satisfy the required threshold.

Algorithm I-B

1) Set A as in (1), m = n, R = ∅, and v = [1, 2, . . . , n]′.

2) Find the maximum achievable SINR as γ∗ =
1

λ∗(A)
.

3) If γ∗ ≥ γth, stop.

4) Update the vector wm×1 as wi =
m∑

j=1

aijaji.

5) Determine the worst link as î = arg max
i
wi.

6) Set R← R∪ {vî}, A← Aî− , v← vî− , m← m− 1, and go to step 2.
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Case Two: Constraints on the Power of Individual Transmitters

When the power of each transmitter is subject to an upper-bound constraint,

based on (6) we design an efficient suboptimal algorithm to find the maximum

cardinality subset of the users satisfying a minimum SINR requirement. We define

the matrix ψi−(A,
η

pj

, {j}) as the matrix ψ(A,
η

pj

, {j}) whose ith column and row are

removed. Therefore, the worst link is

î = arg max
i

min
j

j 6=i

1

λ∗
(
ψi−(A,

η

pj

, {j}))
. (9)

The users are removed one by one based on (9) until all of the active users satisfy

the rate requirement. We call this algorithm the Removal Algorithm II-A.

Algorithm II-A

1) Set A as in (1), p, m = n, R = ∅, and v = [1, 2, . . . , n]′.

2) Find the maximum achievable as SINR γ∗ = min
i

1

λ∗(ψ(A,
η

pi

, i))
.

3) If γ∗ ≥ γth, stop.

4) Find the worst link as î = arg max
i

min
j

1

λ∗(ψi−(A,
η

pj

, j))
.

5) Set R ← R ∪ {vî}, A ← Aî− , v ← vî− , p ← pî− , η ← η î− , and m ← m − 1,

and go to step 2.

To reduce the complexity of this algorithm, we use the following approximation

scheme. According to (6) and (7), we have

γ∗ = min
i

1

λ∗
(
ψ(A,

η

pi

, {i}))
≈ min

i

1√
Tr

(
ψ2(A,

η

pi

, {i}))
,

which can be rewritten as

γ∗ ≈ min
i

1√√√√(
ηi

pi

)
2

+
n∑

k=1

n∑

l=1

aklalk + 2
n∑

k=1

ηk

pk

aik

.
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We define the matrix W as W = [wij]n×n,

wij =





(
ηi

pi

)
2

+
n∑

k=1
k 6=j

n∑

l=1
l 6=j

aklalk + 2
n∑

k=1
k 6=j

ηk

pk

aik i 6= j

0 i = j

We can show that (9) can be simplified to î = argj min
j

max
i
wij. Based on this result,

the following algorithm is developed.

Algorithm II-B

1) Set A as in (1), p, m = n, R = ∅, and v = [1, 2, . . . , n]′.

2) Find the maximum achievable as SINR

γ∗ = min
i

1

λ∗
(
ψ(A,

η

pi

, {i}))
.

3) If γ∗ ≥ γth, stop, otherwise go to the next step.

4) Update Wm×m as

wij =





(
ηi

pi

)
2

+
m∑

k=1
k 6=j

m∑

l=1
l 6=j

aklalk + 2
m∑

k=1
k 6=j

ηk

pk

aik i 6= j

0 i = j

.

5) Determine the worst link as î = argj min
j

max
i
wij.

6) Set R ← R ∪ {vî}, A ← Aî− , v ← vî− , p ← pî− , η ← η î− , and m ← m − 1,

and go to step 2.

Case Three: Total Transmit Power Constraint

When the total power is constrained by pt, the maximum achievable SINR is

computed through (5). In this case, the worst user is determined as

î = arg max
i
{ 1

λ∗
(
ψi−(A,

η

pt

, {1, 2, . . . , n}))
}. (10)

We call this algorithm the Removal Algorithm III-A. Algorithm III-A
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1) Set A as in (1), p, m = n, R = ∅, and v = [1, 2, . . . , n]′.

2) Find the maximum achievable SINR as γ∗ =
1

λ∗(ψ(A,
η

pt

, {1, 2, . . . ,m}))
.

3) If γ∗ ≥ γth, stop.

4) Find the worst link as î = arg max
i
{ 1

λ∗(ψi−(A,
η

pt

, {1, 2, . . . ,m}))
}.

5) Set R ← R∪ {vî}, A← Aî− , v ← vî− , η ← η î− , m← m− 1, and go to step

2.

To reduce the complexity of the algorithm III-A, we use the following method.

According to (5) and (7), we have

γ∗ =
1

λ∗(ψ(A,
η

pt

, {1, 2, . . . , n}))
≈ 1√

Tr(ψ2(ψ(A,
η

pt

, {1, 2, . . . , n}))
.

Therefore, we have

γ∗ ≈ ( n∑
i=1

(
ηi

pt

)2 +
n∑

i=1

n∑
j=1

aijaji + 2
n∑

i=1

ηi

pt

n∑
j=1

aji +
n∑

i=1

n∑
j=1
j 6=i

ηiηj

pt
2

)− 1
2 .

We define w as

wi =(
ηi

pt

)2 + 2
n∑

j=1

aijaji + 2
ηi

pt

n∑
j=1

aji

+ 2
n∑

j=1

ηj

pt

aij + 2
ηi

pt

n∑
j=1
j 6=i

ηj

pt

.

We can show that the worst user can be found by,

î = arg max
i
wi.

According to this result, we have the following algorithm.

Algorithm III-B

1) Set A as in (1), pt, m = n, R = ∅, and v = [1, 2, . . . , n]′.

2) Find the maximum achievable SINR as

γ∗ =
1

λ∗
(
ψ(A,

η

pt

, {1, . . . ,m}))
.
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3) If γ∗ ≥ γth, stop; otherwise go to the next step.

4) Update the vector wm×1 as wi = (
ηi

pt

)2 +2
m∑

j=1

aijaji +2
ηi

pt

m∑
j=1

aji +2
m∑

j=1

ηj

pt

aij +

2
ηi

pt

m∑
j=1
j 6=i

ηj

pt

.

5) Determine the worst link as î = arg max
i
wi.

6) Set R ← R∪ {vî}, A← Aî− , v ← vî− , η ← η î− , m← m− 1, and go to step

2.

In the following section, we will demonstrate the performance of the proposed al-

gorithms via simulation and compare the results with the performance of the other

schemes.

IV. Numerical Results

The simulation results are presented for two environments of cellular networks

and Rayleigh fading channels. In each environment, three cases are considered; (i)

No constraint on the power, (ii) Constraint on the power of individual users, and (iii)

Constraint on the total transmit power. The proposed algorithms are compared with

other schemes for the aformentioned environments and constraints on power.

We focus on the uplink ISI-free transmission in a diamond structure cellular

network. We consider one channel which is a certain time slot or a frequency interval

and discuss the inter-cell interference on the co-channel users in that specific channel.

We assume that in each cell there is one user that desires to send data to that cell’s

base station. The location of each user is uniformly distributed over the assigned

cell. We define a cluster as a group of cells with different frequencies in which all

the available frequencies are used and no two cells have the same frequency, i.e., the

cluster size in Fig.2 and Fig.1 is 4. We used the diamond-shaped (square) clusters

in the simulations. In this case, all the co-channel cells are placed symmetrically in

a sparse square pattern (Fig. 2). To generate the link gains, we use a simple model

which is well accepted in the analysis of cellular networks [5], [7], and [13]. gij which
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Fig. 1. An 8X8 cellular network with cluster size 4

Fig. 2. A hexagonal cellular network with cluster size 4,

is the gain of power from transmitter j to the receiver i is modelled as

gij =
βij

να
ij

,

where βij is the shadow fading term which models the irregularities in the terrain,

such as mountains, hills, buildings, etc. 1/να
ij models the large scale propagation

loss in which νij is the distance between transmitter j and receiver i and α is the

propagation constant. For the simulations, we consider the shadow fading term as a
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log-normal random variable, where

E[10 log νij] = 0 (11)

V ar[10 log νij] = ς2. (12)

The parameters ς and α depend on the environment and change in the range of

4− 10 dB and 3− 5, respectively. We assume ς = 6 dB and α = 3 in our simulations.

Moreover, the radius of each micro-cell is assumed to be 1 km [7].

In the Rayleigh fading channel, we assume that the parameters gij follow an

exponential distribution with average and variance one for the forward gains, and

average 10−2 and variance 10−4 for the cross gains.

We define Outage Probability as the ratio between the number of the inactive

users to the total number of the users. This probability shows the percentage of the

users that fail to attain the required QoS. We use this function as a metric to compare

different algorithms, as it is used in [4], [5].

For the case that there is no constraint on the users’ power, the curves of the

outage probability for different user removal algorithms are depicted in Fig. 3, Fig. 4,

and Fig. 5. Since in SMIRA and SRA algorithms the noise power is considered zero, we

assigned a very small value to the noise power to be able to compare all algorithms.

As shown in Fig. 5, in Rayleigh fading channel which has strong cross gains and

consequently high interference, algorithms I-A and I-B outperform SMIRA and SRA

algorithm. In addition, in Fig. 3 and Fig. 4, it is easy to see that algorithms I-A,

I-B and SMIRA have a very close-to-optimal outage probability while SRA is very

far from the optimal value, compared to the others. Another observation is that the

performance of algorithm I-B is very close to that of algorithm I-A, while it enjoys

much less operational complexity.

In [7], a number of removal algorithms when the power of transmitters are indi-

vidually constrained are proposed. We selected centralized GRN-DCPC to compare it

with our results since according to [7], it outperforms the other presented algorithms

in that work. The simulation results in Fig. 6, Fig. 7, and Fig. 8 show a significant
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Fig. 3. No Constraint on the Power in an 8×8 Cellular Network with Cluster Size= 4, n = 16, σi
2 =

10−16 ∀i

improvement in the outage probability of the algorithms II-A and II-B compared to

GRN-DCPC.

As depicted in Fig. 9, Fig. 10, and Fig. 11, when the total power is bounded,

the performance of algorithms III-A and IIII-B is very close to the optimal result.

Up to our knowledge, there is no alternative algorithms for the case that the total

power is upper-bounded.

V. Conclusion

In this paper, we address the problem of user removal in an interference chan-

nel with certain constraints on the power. We utilize the relationship between the

maximum achievable SINR and the PF-eigenvalue of some non-negative matrices in

bounded power [1] and unbounded power cases to develop a suboptimal algorithm

to find the feasible set with maximum number of users. Simulation results show that

the proposed algorithm surpasses the available algorithms in the literature.
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Fig. 4. No Constraint on the Power in a 4×4 Cellular Network with Cluster Size= 1, n = 16, σi
2 =
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Fig. 5. No Constraint on the Power in a Rayleigh Fading Channel, n = 8, σi
2 = 10−16 ∀i
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Fig. 6. Constraints on the Power of Individual Transmitters in an 8 × 8 Cellular Network with

Cluster Size= 4, n = 16, σi
2 = 10−12, pi = 1w ∀i
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Fig. 7. Constraints on the Power of Individual Transmitters in a 4×4 Cellular Network with Cluster

Size= 1, n = 16, σi
2 = 10−12, pi = 1w ∀i
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Fig. 8. Constraints on the Power of Individual Transmitters in a Rayleigh Fading Channel, n =

8, σi
2 = 10−2, pi = 1w ∀i
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Fig. 9. Constraint on the Total Power in an 8 × 8 Cellular Network with Cluster Size= 4, n =

16, σi
2 = 10−12 ∀i, pt = 1w
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Fig. 10. Constraint on the Total Power in a 4 × 4 Cellular Network with Cluster Size= 1, n =

16, σi
2 = 10−12 ∀i, pt = 1w
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