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Abstract

In this work, the problem of reducing the Peak to Average Power Ratio (PAPR) in an

Orthogonal Frequency Division Multiplexing (OFDM) system is considered. We design a cubic

constellation, called the Hadamard constellation, whose boundary is along the bases defined by

the Hadamard matrix in the transform domain. Then, we further reduce the PAPR by applying

the Selective Mapping technique. The encoding method, following the method introduced in

[1], is derived from a decomposition known as the Smith Normal Form (SNF). This new

technique offers a PAPR that is significantly lower than that of the best known techniques

without any loss in terms of energy and/or spectral efficiency and without any side information

being transmitted. Moreover, it has a low computational complexity.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is a multi-carrier transmission

technique which is widely adopted in different communication applications. OFDM pre-

vents inter symbol interference by inserting a guard interval and mitigates the frequency
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selectivity of a multi-path channel by using a simple equalizer. This simplifies the design

of the receiver and leads to inexpensive hardware implementations. Also, OFDM offers

some advantages in higher order modulations and in the networking operations. These

advantages position OFDM as the technique of choice for the next generation of wireless

networks. However, OFDM systems suffer from a large Peak to Average Power Ratio

(PAPR) of the transmitted signals, requiring power amplifiers with a large linear range.

Fig. 1 shows a basic block diagram of an OFDM transmitter and its receiver. Let

x = [x0, x1, · · · , xN−1]
T denote a vector of 2N Dimensional (2N -D) constellation points.

This vector is selected from a set of N identical 2-D sub-constellations, {s1, · · · , sK},

and it is transmitted by using one OFDM vector of size N ; namely, y.
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Fig. 1. Basic OFDM transmitter and receiver

The discrete time samples of the OFDM signal can be expressed as

yn =
1√
N

N−1∑

k=0

xke
j2π nk

N . (1)

The matrix representation of this signal is

y = FNx, (2)
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where y = [y0 · · · yN−1]
T , x = [x0 · · ·xN−1]

T , and FN is the IFFT matrix,

FN =
1√
N


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
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N
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...

1 · · · ej2π
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N · · · ej2π
(N−1)2

N













. (3)

The 2-D constellation points, {x0, x1, · · · , xN−1}, may add constructively and produce

a time domain signal with a large amplitude. Thus, the output signal y may have high

output levels, which leads to the requirement of an expensive analog front end.

Usually, the level of the amplitude fluctuation of the discrete time OFDM signal is

measured in terms of the ratio of the peak power to the average envelope power of the

signal as

PAPR(y) =
‖y‖2

∞

Ey

[
1
N
‖y‖2

] . (4)

The continuous time PAPR is typically estimated by the discrete time PAPR by employing

the IFFT of length LN for the zero padded sequence of length LN derived from the

sequence {x0, x1, · · · , xN−1} in (1) [2]–[4]. Therefore,

yn =

√
L√

LN

LN−1∑

k=0

x′ke
j2π nk

LN , (5)

where

x′k =







xk, for k < N,

0, for k ≥ N,
(6)

and L is the oversampling factor.

In the sequel, we concentrate on matrices and equations with real entries and

complex equations like (2) are represented by real matrices as



R(y)

I(y)



=




R(FN ) −I(FN )

I(FN ) R(FN )








R(x)

I(x)



 , (7)

where R(.) and I(.), respectively, denote the real and the imaginary parts of a matrix or

vector. In [1], this model is used for representing the OFDM signal by real matrices.



4

A large number of methods for the PAPR reduction has been proposed [1], [4]–[20].

In [5], [6], coding techniques are used for PAPR reduction; however, codes offering a low

PAPR can be constructed only at the cost of sacrificing the data rate. Clipping the OFDM

signal before amplification is a simple and typical method for the PAPR reduction [7]–[9].

The effects of over-sampling and clipping for an OFDM signal are analyzed in [4], [7],

[9]. The authors in [15] propose a new lattice-based multicarrier modulation technique

for Digital Subscriber Line (DSL) applications with a low PAPR; however, this technique

is not based on a sinusoidal modulation that is usually employed for OFDM systems.

Another types of PAPR reduction methods are the probabilistic schemes. These

schemes are classified in two known groups. One is the Partial Transmit Sequence (PTS)

[11] in which each sub-block of subcarriers is multiplied by a constant phase factor, and

these phase factors are optimized to minimize the PAPR. The other scheme is Selective

Mapping (SLM) in which multiple sequences are generated from the same information,

and the sequence with the lowest PAPR is transmitted [12]–[14]. Typically, the receiver

needs to know which sequence is selected in order to recover the data. However, the

methods introduced in [11]–[14] eliminate the need for this explicit side information.

Constellation shaping is another important technique in PAPR reduction. In the

method proposed in [16], the outer constellation points are extended to minimize the

PAPR of the OFDM symbol. The idea of applying the trellis shaping technique to reduce

PAPR in OFDM systems is introduced in [17]. This line of research is further investigated

in [18] by exploiting the property that the autocorrelation of the data sequence in the

frequency domain and the power spectrum in the time domain form a Fourier transform

pair. Therefore, minimizing the sidelobe of the autocorrelation of the data sequence is

equivalent to reducing the PAPR of the OFDM signal. We will later provide a comparison

with [18]. In [1], [19], [20], another constellation shaping technique is proposed to reduce

the PAPR of the OFDM signals. The encoding and decoding algorithms of this method are

based on the relations and generators in a free Abelian group. Due to the large complexity

of this algorithm, its practical implementation, in the case of Fourier transformation in

OFDM systems, is very challenging.
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In this paper, we propose a constellation shaping method in an OFDM system

with a considerable PAPR reduction. The boundary of this cubic constellation, called

the Hadamard constellation, is along the bases defined by the Hadamard matrix in the

transform domain. In addition, this constellation can be employed in conjunction with

another PAPR reduction method. Here, an SLM method is applied in conjunction with the

proposed Hadamard constellation to further reduce the PAPR. The encoding method for

this shaping technique, following the method introduced in [1], is derived from the Smith

Normal Form (SNF) decomposition, and has a minimal complexity. This new technique

offers a PAPR that is significantly lower than that of the best known techniques reported

in the literature without any loss in terms of the energy and/or spectral efficiency and

without any side information being transmitted.

The rest of the paper is organized as follows. In Section II, the constellation shaping

technique is introduced. A brief description of the work in [1] is also given. Section III

describes the Hadamard constellation as a shaping method in OFDM systems. Some

issues regarding the encoding and decoding algorithms are also investigated. An SLM

method is applied to the Hadamard constellation in Section IV. Section V is devoted

to some numerical results and a comparison of the proposed method with some recent

works. The paper is concluded in Section VI.

II. CONSTELLATION SHAPING

In the constellation shaping technique, a constellation in the frequency domain must

be found such that the resulting shaping region in the time domain has a low PAPR. A new

constellation shaping method is introduced in [1], [19], [20] by Kwok and Jones. Based

on the encoding algorithm introduced in [1], [19], [20], we propose a cubic constellation,

along with an SLM method to reduce the PAPR in an OFDM system.

In a PAPR reduction problem, the peak value of the signal vector is bounded by

a specified value ‖y‖∞ ≤ β (without loss of generality we assume β = 1). If the time

domain signal is related to the frequency domain constellation point by y = Ax, this
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inequality on the time domain boundary translates to a parallelotope1 in the frequency

domain, defined by A−1. Indeed, the constellation boundary is a parallelotope, defined

by QN = [αA−1], where [.] denotes rounding. The parameter α is the smallest value that

guarantees the number of points in the shaped constellation is the same as the number

of points in unshaped constellation. The rounding operation is required to impose the

constraint that the parallelotope corners lie in an integer lattice. The main challenge in

constellation shaping is to find a unique way to map the input data to the constellation

points such that the mapping (encoding) and its inverse (decoding) can be implemented

by a reasonable complexity. Kwok in [1] proved that the shaped constellation for an

OFDM system is the points inside the quotient group Z
N/Λ(QN), where Z

N is the N -D

integer space and Λ(QN) is the lattice defined by QN , which is based on rounding off

the scaled version of the IFFT matrix. The points inside this parallelotope are used as the

constellation points in transmitting the OFDM signals. Using the relations and generators

in a free Abelian group, the points inside this constellation are encoded (labeled) in [1].

The following theorem provides the mathematical tool for the encoding procedure of

these points [1]:

Theorem 1: Any relation matrix QN can be decomposed into QN = UDV, where

D is diagonal with the entries {σi}N

i=1 such that σ1 | σ2 | · · · | σN , and U and V are

unimodular matrices2.

The decomposition of the relation matrix QN is performed via column and row

operations [1], which is impractical for an OFDM system.

We observe that this decomposition is known as the Smith Normal Form (SNF)

decomposition of an integer matrix [21] in the mathematical literature, and the matrix D

is called the SNF of the matrix QN . The SNF decomposition is a diagonalization of a

matrix in the integer domain. Introduced by Smith [22], this concept has been used in

many applications such as solving linear diophantine equations, finding the permutation

1The parallelotope bases are defined along the columns of A
−1.

2The condition σ1 | σ2 | · · · | σN in Theorem 1 is defined for finding a unique decomposition and can be ignored

in the encoding procedure.
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equivalence and similarity of matrices, determining the canonical decomposition of the

finitely generated Abelian groups, integer programming, computing additional normal

forms, including Frobenius and Jordan normal forms, and separable computing of the

discrete Fourier transform. For more historical remarks and applications of the SNF, see

[23]–[25].

The major contributions to the computational complexity in [1] are the decom-

position of the matrix QN , the off-line procedure, and the encoding algorithm for this

constellation, the online procedure. The interpretation of the column and row operations

as SNF of an integer matrix links the problem to a rich body of knowledge developed in

the context of SNF decomposition. Unfortunately, computing the SNF decomposition for

an OFDM system is impractical due to the rapid growth in the size of the intermediate

integer values. Moreover, in [1], it is shown that the complexity of the encoding procedure

is O(N2), i.e. for a realistic OFDM system the online complexity remains very high as

well.

If the SNF decomposition of the matrix QN is given, the encoding algorithm for

the shaped constellation can be represented by [1]

x̂ = Uλ

γ =
⌊
Q−1

N x̂
⌋

x = x̂−QNγ,

(8)

where N = 2n, λ is the canonical representation of an integer I which represents the

data to be sent, and x is the constellation point corresponding to I . The time domain

signal is computed using the IFFT operation. The canonical representation of an integer

I can be calculated by the recursive modulo operation; namely,

λ1 = I mod σ1

I1 =
I − λ1

σ1

λi = Ii−1 mod σi

Ii =
Ii−1 − λi

σi

,

(9)
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where 1 ≤ i ≤ N .

Also, the reverse operation for finding I from the N -D vector x is [1]

λ = U−1x = (λ1, λ2, · · · , λN)T ,

λ̃i = λi mod σi ,

I = λ̃1 + σ1(λ̃2 + σ2(· · · (λ̃N−1 + σN−1λ̃N) · · · )).
(10)

In [19], it is shown that if the matrix QN is replaced by the Hadamard matrix, H2n , the

corresponding encoding and decoding algorithms for the constellation can be implemented

by a butterfly structure that uses only bit shifting and logical AND. This simplicity is

due to the following recursive formula for the Hadamard matrix:

H2n =




H2n−1 H2n−1

H2n−1 −H2n−1



 , where H1 = [1] . (11)

The SNF decomposition of (11) can be easily computed as H2n = U2nD2nV2n , where

U2n =




U2n−1 0

U2n−1 U2n−1



 D2n =




D2n−1 0

0 2D2n−1





(12)

V2n =




V2n−1 V2n−1

0 −V2n−1



U−1
2n =




U2n−1 0

−U2n−1 U2n−1



,

and U1 = U−1
1 = D1 = V1 = [1].

III. HADAMARD CONSTELLATION IN OFDM SYSTEMS

As mentioned in Section II, in OFDM systems, the boundary of the constellation that

leads to a low PAPR is along the bases of the IFFT matrix. However, the corresponding

SNF decomposition required in the encoding procedure cannot be computed. If the IFFT

operation is replaced by the Hadamard operation, a simple encoding algorithm results.

However, this type of multicarrier modulation is not very popular because it does not

offer the advantages of the conventional OFDM [26].

We propose to replace the conventional constellation in OFDM systems by a cubic

constellation, called the Hadamard constellation, whose boundary is along the bases
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defined by the Hadamard matrix in the transform domain. Fig. 2 shows the boundaries of

these two constellations. The solid line represents the boundary of the constellation which

is based on the IFFT matrix. The dashed line shows the boundary of the Hadamard con-

stellation. The IFFT and the Hadamard are both orthogonal matrices, and; therefore, the

constellation boundaries along these orthogonal bases are a rotated version of each other.

As a result, it is expected that a large number of points within these boundaries will be

the same, as shown in Fig. 2. Therefore, by substituting the constellation along the IFFT

matrix with a constellation along the Hadamard matrix, the resulting PAPR is reduced.

Moreover, the encoding of this new constellation, based on the SNF decomposition of

the Hadamard matrix, is simple and practical.

Integer Lattice Points
Constellation Boundary Based on FFT Matrix
Constellation Boundary Based on Hadamard Matrix

Fig. 2. N -D signal constellation for IFFT and Hadamard matrix.

Note that in this work, the time domain signal, y, is obtained by the IFFT trans-

formation of the constellation point, x. This results in a traditional OFDM signal based

on IFFT/FFT operation. In other words, only the constellation boundary is determined

using the Hadamard matrix, i.e. QN = H2n in (8).

To further reduce the PAPR, the Hadamard constellation can be concatenated with

other methods for PAPR reduction. This motivates us to apply a Selective Mapping (SLM)

technique [27], [28] to the Hadamard constellation. In typical SLM methods [27], [28],
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the major PAPR reduction is achieved by the first few redundant bits. Employing more

redundant bits necessitates a high level of complexity to obtain modest improvements in

the PAPR. However, in the proposed SLM method, employing the Hadamard constellation

causes a considerable PAPR reduction by itself. As a result, by using just one or two

redundant bits in SLM, this method significantly outperforms the other PAPR reduction

techniques reported in the literature. Note that, it is also possible to apply a PTS method

[12] to the Hadamard constellation.

A. Complex Representation

As stated in Section I, (7) can be applied to change the complex equations of an

OFDM system to real equations. This leads to the change of the constellation boundary.

Generally, we can distinguish between two classes of boundaries [29], [30]: 1) the

Cartesian boundary that results by viewing the real and imaginary parts of the signal

as two separate real signals, and 2) the Polar boundary that considers the envelope and

phase of the OFDM signal in a complex plane. The Cartesian boundary limits each

component of the complex signal within a square, while the Polar boundary limits this

component within a circle. In this paper, we avoid the complex representation of the

OFDM signal by treating the real and the imaginary parts of the signal separately, which

is equivalent to using a Cartesian boundary.

B. Encoding Procedure

The points inside the Hadamard constellation are mapped to the input data by the

encoding procedure, introduced in (8)–(10). The number of these points inside the shaped

constellation is determined by the determinant of the Hadamard matrix, det (H2n) [31].

Theorem 2: The size of the shaped constellation defined by a 2n × 2n Hadamard

matrix is det (H2n) = 2n2n−1
.

Proof: Based on (12), det (H2n) = det (D2n), because the matrices U2n and V2n

are unimodular and their determinants are one. To prove this theorem, we use induction.
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For a 2× 2 Hadamard matrix,

det (D2) = det








1 0

0 2







 = 2 = 21×21−1

. (13)

It is assumed that the claim is valid for a 2k × 2k Hadamard matrix. Based on (12), for

a 2k+1 × 2k+1 Hadamard matrix,

D2k+1 =




D2k 0

0 2D2k





⇒ det (D2k+1) = det (D2k)× 22k × det (D2k)

= 22k × (det (D2k))2

= 22k ×
(

2k2k−1
)2

= 2(k+1)2(k+1)−1
.

(14)

According to the large Hadamard constellation size, in (9), the canonical representation

of the large numbers should be computed. The canonical representation of the integer

numbers can be simplified based on the fact that digital communication systems deal

with binary input streams. Based on (10), an integer I can be represented by

I = λ1 + σ1λ2 + σ1σ2λ3 + · · ·+ σ1 . . . σN−1λN , (15)

where N = 2n, and {λi}N

i=1 is the canonical representation of I , given in (9), with λ1 = 0.

According to (12), for a 2n × 2n Hadamard matrix, all {σi}N

i=1 are powers of 2, i.e.,

{σi}N

i=1 = {1, 2, 2, 4, 2, 4, 4, 8, · · · , 2n} . (16)

Let ki = log2 σi; therefore,

I = 2k1λ2 + 2k1+k2λ3 + 2k1+k2+k3λ4

+ · · ·+ 2k1+···+kN−1λN

= λ2 + 2λ3 + 22λ4 + 24λ5 + · · ·+ 2n2n−1
−nλN .

(17)
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The representation of d = 2n2n−1
integer numbers corresponding to the Hadamard con-

stellation points necessitate that nb = log2(d) = n2n−1 bits represent these numbers.

Thus, the binary representation of I is expressed as

I = b0 + 2b1 + 22b2 + 23b3 + · · ·+ 2nb−1bnb−1

= b0 + 2b1 + 22(b2 + 2b3) + 24b4 + 25(b5 + 2b6)

+ · · ·+ 2n2n−1
−n(bnb−n + · · ·+ 2n−1bnb−1)

(18)

A comparison of (17) and (18) is depicted in Fig. 3. Each λi consists of ki = log2 σi

bits of the input binary data. This representation will simplify the encoding algorithm.

Moreover, the problem of using large numbers in the encoding procedure will be avoided.

b0 b1 b2 b3 b4 b5 b6 b7 b8 · · · bnb−n · · · bnb−1

︸︷︷︸︸︷︷︸︸ ︷︷ ︸︸︷︷︸︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸

λ2 λ3 λ4 λ5 λ6 λ7 · · · λN

Fig. 3. Mapping between binary representation of the information and {λi}.

Theorem 2 shows that the size of the Hadamard constellation for a 2n×2n Hadamard

matrix is 2n2n−1
. Therefore, the transmission rate is related to the number of subcarriers

N = 2n in the OFDM system3. This rate is unacceptable not only because it depends

on N , but also because it is usually higher than the required value. Therefore, a subset

of the points inside the shaped constellation are selected for transmission such that they

form a constellation with the desired rate. Also, the selected points should be uniformly

distributed in the original Hadamard constellation in order to maintain the same peak

as well as average energy values (assuming continuous approximation). Note that the

Hadamard constellation is called the root constellation for the aforementioned set of the

uniformly distributed points in the sequel.

Noting (8) and (9), there is an isomorphism between the integer set

S =
{

0, 1, · · · , 2n2n−1 − 1
}

(19)

3For N = 2n, the rate for each real component is log2(2
n2n−1

)/N =
n

2
.
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and the set of the points within the Hadamard constellation. Equivalently, the set S can be

considered as a label group for the constellation points (refer to [32] for the definition).

A subgroup of the constellation points results in a uniformly distributed subset of the

Hadamard constellation points. Consequently, this subgroup of constellation points is

isomorphic to a subgroup in the label group S. This subgroup can be selected such that

its elements are congruent to zero modulo c, namely

P = {I ∈ S | I = 0 mod c} , (20)

where c is determined by the ratio of the size of the Hadamard constellation, 2n2n−1
,

and the size of the constellation, 2rN , with the desired rate, r. Employing (8) and (9),

the labels in the subgroup P determine the set of uniformly distributed points in the

Hadamard constellation. By relying on the continuous approximation, such a uniform

distribution affects neither the probabilistic behavior of the PAPR nor the average energy

of the constellation points.

The Hadamard constellation has almost the same average energy as the constellation

resulted by employing QAM signalling in an OFDM system. It can be easily seen that the

Hadamard constellation points in (8) can be represented by x = HNc, where − 1
2
≤ c < 1

2
.

Therefore, the Hadamard constellation contains all the integer points inside a hyper-

cube whose boundary is along the columns of the Hadamard matrix. By considering

HNH′

N = NIN , while FNF′

N = IN , the Hadamard constellation is N times smaller than

a cubic constellation whose sides are the columns of the Hadamard matrix. Then, it is

straightforward that the average energy per each dimension of the Hadamard constellation

is

Eave(
n

2
) =

1

12

22n − 1

2n
. (21)

Note that (21) shows the average energy per dimension for the root constellation, i.e. the

transmission rate is n
2
. This energy is 2n+1

2n times the average energy of the equivalent

constellation in an OFDM system employing QAM signalling with the same transmission

rate.
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In the case that the transmission rate is r, as mentioned in (20), the constellation

points form a subgroup of the Hadamard constellation points (uniformly distributed

subset). Therefore, the constellation has the same energy as in (21); however, the distance

among the points is increased by a factor of 2n−2r. Therefore,

Eave(r) =
1

2n−2r
Eave(

n

2
). (22)

Note that the average energy in (22) is 22n
−1

22n × 22r

22r−1
times the average energy of the

equivalent constellation in an OFDM system employing QAM signalling with the same

transmission rate. This justifies our earlier claim that the average energy remains almost

constant.

C. Decoding Procedure

At the receiver end, the time domain signal is filtered by a low pass filter and sampled

at the Nyquist rate. The samples are processed by an FFT to recover the constellation

point in the frequency domain. For an Additive White Gaussian Noise (AWGN) channel,

the received vector is given by

z = y + n, (23)

where y is the transmitted time domain signal in (8) and n is a zero-mean complex

AWGN. The approximated constellation point is written as

x̂ = FFT(z) = x + FFT(n) = x + n′, (24)

where x is the transmitted constellation point, and n′ is a zero-mean complex AWGN.

The maximum likelihood decoder simply rounds off the received constellation point x̂ in

the integer domain. Then, the resulting constellation point is replaced in (10) to decode

the transmitted signal.

D. Example

To further clarify the algorithm, we compute the constellation points in an OFDM

system with 16 sub-carriers. Theorem 2 states that there are 232 points inside the Hadamard



15

constellation, i.e. the real and imaginary parts of the signal can be one of these points

(equivalent to using a 16-QAM in the OFDM system). The Hadamard matrix and its SNF

decomposition are calculated by (11) and (12). Then, the input data is encoded using (8).

In Table I, we have computed some of the constellation points.

data b0b1b2 · · · b31 λ1λ2 · · ·λ16 x1x2 · · · x16

0 00000000000000000000000000000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 10000000000000000000000000000000 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0

2 01000000000000000000000000000000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0

3 11000000000000000000000000000000 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 -1 0 0 1 -1 0 0 1 -1 0 0 1

4 00100000000000000000000000000000 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

5 10100000000000000000000000000000 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0

6 01100000000000000000000000000000 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0

7 11100000000000000000000000000000 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

8 00010000000000000000000000000000 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 -2 0 0 0 -2 0 0 0 -2 0 0 0 -2 0 0 0

9 10010000000000000000000000000000 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0

10 01010000000000000000000000000000 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 -1 1 0 0 -1 1 0 0 -1 1 0 0
...

. . .
. . .

...

103 00010111110000000000000000000000 0 0 0 2 0 3 3 1 0 0 0 0 0 0 0 0 -1 1 1 1 -1 0 0 0 -1 1 1 1 -1 0 0 0
...

. . .
. . .

...

106 00000010010000101111000000000000 0 0 0 0 0 2 0 1 0 2 2 7 0 0 0 0 0 0 0 0 0 -2 0 -1 -2 0 0 1 -2 -2 0 0
...

. . .
. . .

...

232
− 1 11111111111111111111111111111111 0 1 1 3 1 3 3 7 1 3 3 7 3 7 7 15 2 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 1 1 3

TABLE I

AN EXAMPLE OF THE ENCODING PROCEDURE FOR THE CONSTELLATION POINTS IN THE HADAMARD

CONSTELLATION IN AN OFDM SYSTEM WITH 16 SUB-CARRIERS EMPLOYING 16-QAM

The SNF decomposition of the matrix QN based on the IFFT matrix, even for this

small case, is difficult.

IV. SELECTIVE MAPPING

SLM is a method to reduce the PAPR in an OFDM system, which involves generat-

ing a large set of data vectors that represent the same information, where the data vector

with the lowest PAPR is used for the transmission. Here, we present a method to apply

the SLM technique to further reduce the PAPR in the constellation developed earlier.
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Assume that the data rate is r bits per block of length-N FFT symbols. Let rs denote

the number of redundant bits specified for SLM (rs � r and r = log2(constellation size)).

Therefore, there are Ns = 2rs constellation points representing the same information for

transmission in SLM. In the proposed SLM method, the input integers, I , are mapped

to the Hadamard constellation points, and the constellation points corresponding to the

integers with the same rs Most Significant Bits (MSBs) are classified in the same subset.

Note that the constellation points in each subset represent the same information. The

time domain signals corresponding to the frequency domain constellation points are

computed by the IFFT transformation, and the constellation point with the lowest PAPR

is transmitted.

The details of this scheme are described in the following. In the first step, the

input binary sequence is divided into blocks of r − rs bits. Then, rs bits of zeros are

added to each information block, and these blocks are divided into subblocks of lengths

log2 σi, i = 1, · · · , N , bits (refer to Fig. 3). The binary representations of these subblocks

form the vector λ which leads to the calculation of the constellation point using (8).

The other data vectors are obtained by changing the rs MSBs of the binary information

sequence. Therefore, Ns Hadamard constellation points with different values for the PAPR

is calculated. Finally, the constellation point with the lowest PAPR is selected for the

transmission.

The different constellation points that represent the same information have the same

r − rs bits. Thus, at the receiver end, the constellation point is decoded by (10), and

the rs extra bits are discarded. Therefore, this method can be expressed as a variant

of SLM in which no side information on the choice of the transmit signal needs to be

transmitted. The degradation in the data rate can be ignored, since a significant PAPR

reduction is obtained by using only one or two redundant bits. To be fair in viewing

the potential loss in the data rate, we have to include the impact of using the SLM

method on the average energy of the constellation as well. The Hadamard constellation
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has a zero shaping gain4 due to its cubic boundary (shaping gain is computed using

continuous approximation [33]). Numerical results show that applying the SLM method

to the resulting cubic constellation results in a reduction in the average energy, reflected

in a small, but positive shaping gain. This justifies our earlier claim that the reduction in

the PAPR is achieved at no extra cost in terms of a reduction in the spectral efficiency

and/or an increase in the average energy of the constellation.

V. SIMULATION RESULTS

In this section, we present simulation results for a complex baseband OFDM system

with N = 128 subchannels employing 16-QAM by using 107 randomly generated OFDM

symbols. First, we show the PAPR performance of the Hadamard constellation. The next

step is then to show the capability of the SLM technique, when it is applied to the

Hadamard constellation to achieve further PAPR reduction. The simulation results are

presented as the Complementary Cumulative Density Function (CCDF) of the PAPR of

the OFDM signals, expressed as follows:

CCDF {PAPR(y)} = P {PAPR(y) > γ} . (25)

This equation can be interpreted as the probability that the PAPR of a symbol block

exceeds some clip level γ (it is referred to symbol clip probability [16]).

According to (5) and (6), the continuous PAPR can be estimated by the IFFT of the

zero padded sequence of length LN . Results for the oversampling to L = 1, 2, and 4 are

shown in Fig. 4. The continuous PAPR can be approximated by an oversampling factor

of L = 4. As mentioned in [2]–[4], further oversampling will result in minor changes.

We have a PAPR reduction of more than 4dB at 10−5 symbol clip probability.

Fig. 5 shows the PAPR of an OFDM signal using the Hadamard constellation

with different numbers of block length N . The effect of the constellation size is also

investigated. It is observed that the achieved PAPR is rather insensitive to the constellation

4Shaping gain is defined as the relative reduction in the required average energy for a given number of constellation

points with respect to a cubic constellation [33].



18

size, see Fig. 6. The Symbol Error Rate (SER) of the proposed method and that of a

conventional OFDM system are compared. As shown in Fig. 8, the gap is minimal.

Fig. 7 shows the simulation results of applying SLM technique to the Hadamard

constellation. As illustrated in Fig. 7, using only one bit of redundancy in 4 × 128 bits

per block of a 128 FFT symbol5 results in a 5.6dB reduction in the PAPR. Simulation

results show that by employing more redundant bits the PAPR approaches its optimal

value for a cubic constellation6, namely 10 log10(3).

A. Some Insight to the Achieved Performance

In a conventional OFDM system with N different subcarriers, the time domain

samples can be approximated by zero mean Gaussian random variables, based on adopting

the central limit theorem. Therefore, the amplitude of these samples has a Rayleigh

distribution, and the CCDF of the PAPR of the OFDM signal can be approximated as

follows [34]:

P {PAPR(y) > γ} = 1− (1− e−γ)N . (26)

The use of Ns statistically independent vectors that have the same information for

transmission in the SLM method changes the CCDF of the PAPR of the OFDM signal

such that

P {PAPR(y) > γ} =
(
1− (1− e−γ)N

)Ns

. (27)

Therefore, in the logarithmic CCDF vs. PAPR graph, the slope of the curve is proportional

to Ns (see Fig. 9). By increasing the number of vectors with the same information, the

corresponding slope increases. Thus, the major PAPR reduction is achieved by the first

few redundant bits, as shown in Fig. 9 (∆1 > ∆2 > · · · ). In other words, we have a

saturation effect on the PAPR reduction by increasing rs. This is the reason that we have

applied the SLM technique to the Hadamard constellation. As mentioned in Section IV,

the method employing only the Hadamard constellation considerably reduces the PAPR.

5By using 16-QAM in a 128 channel OFDM system, there are 16128 = 24×128 constellation points.
6The PAPR of a cubic constellation is computed using continuous approximation.
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By adopting the Hadamard constellation in the proposed SLM method, not only can we

lower the PAPR considerably, but also we can approximately maintain the slope of the

CCDF vs. PAPR curve. This results in a considerably lower PAPR by using a small

number of redundant bits before reaching the saturation.

B. Comparison

In numerical simulations, we have selected the system parameters to be compatible

with some recent works on PAPR reduction reported in [11], [12], [30], [34], [35].

As a complexity measurement, the main complexity of the proposed method is due

to the encoding algorithm and the multi-IFFT computations in the SLM technique. The

complexity of the encoding algorithm is in the matrix multiplications of (8). As mentioned

in section III, all the elements of the Hadamard matrix and its SNF decomposition

matrices are +1,−1, or 0, and consequently, these operations can be easily implemented

using a butterfly structure. Note that in the SLM technique, for each of the Ns time

domain signals, we shall compute one IFFT .

In [12], an SLM method based on multiplying the constellation point by Ns different

pseudo-random but fixed vectors is introduced. For the same system as ours, with Ns = 4

different vectors, a PAPR reduction of 3dB is gained at the symbol clip probability close

to 10−5. However, for the same symbol clip rate and Ns = 4, we have a 6dB reduction by

using the proposed SLM method. Also, the complexity of this algorithm is comparable

with the method in [12]. Note that in [12] some side information (with high sensitivity

to channel error) needs to be transmitted.

Another approach, similar to [12], is introduced for the SLM in [34]. The authors

have introduced this method for MIMO7-OFDM systems. The simulation results in [34]

are similar to [12] (the relative comparison between the proposed method and the one in

[12] is explained earlier).

The tone reservation [35] is a well known method for PAPR reduction in multi-

carrier systems, provided that it can quickly converge to a good solution. An efficient

7Multiple-Input Multiple-Output
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approximation for the tone reservation approach with a faster convergence is developed

in [30]. The complexity of [30] is comparable with ours; however, we have about 3dB

lower PAPR than that in [35] or [30] for similar system parameters. Note that in the

tone reservation method, some tones are reserved for the PAPR reduction and some of

the tones are not used for data transmission, implying a loss in the data rate. Note that

[30] reduces the PAPR by solving a mini-max problem. This problem is solved by an

interior-point method which requires a descent direction and a constraint to find the

solution recursively.

Recently, we became aware of the work by Ochiai [18]. For a 256 complex channel

OFDM system employing 256-QAM, a 4.5dB reduction in the PAPR is obtained using

a trellis shaping technique. In our method, for a 128 complex channel OFDM system

employing a 128-QAM, a 6dB reduction is gained. In [18], the main complexity is

in finding the path with minimum cost through a trellis diagram (this complexity is

considerably higher than that of a Viterbi decoder). However, the author investigates

methods to reduce this complexity by window truncation and sacrificing PAPR reduction,

but still the overall complexity in [18] is significantly higher as compared to the method

proposed here.

We have not provide any comparison with [1], as the method in [1] relies on using the

SNF of the IFFT matrix which is not known. Indeed, computing this SNF decomposition

would be an interesting open problem. If this matrix were available, the resulting PAPR

reduction in [1] would be asymptotically equal to the optimum value of 10 log10(3). Also,

as mentioned in Section II, the computational complexity of the encoding algorithm of the

constellation based on the IFFT matrix is O(N 2), while the complexity for the encoding

of the Hadamard constellation in the butterfly structure is O(
3

2
log2(N)) [1].

VI. CONCLUSION

We have proposed a constellation shaping method that achieves a substantial re-

duction in the PAPR in an OFDM system with a low complexity. The boundary of the

proposed constellation is along the basis defined by the Hadamard matrix in the transform
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domain. An SLM technique is applied to this constellation to further reduce the PAPR of

the OFDM signal. The proposed scheme significantly outperforms other PAPR reduction

techniques reported in the literature, without any loss in terms of the energy and/or

spectral efficiency.
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Fig. 4. CCDF of PAPR for a Hadamard constellation with different over-sampling factors (128 channel OFDM

system with 16-QAM constellation).
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Fig. 6. CCDF of PAPR for a Hadamard constellation in a 128 channel OFDM system employing different QAM

constellations and L = 1.
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Fig. 9. CCDF of PAPR in a 128 channel OFDM system with SLM method using different number of redundant bits,

L = 1.


