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Abstract

A simple signaling method for broadcast channels with multiple transmit multiple

receive antennas is proposed. In this method, for each user, the direction in which the user

has the maximum gain is determined. The best user in terms of the largest gain is selected.

The corresponding direction is used as the modulation vector (MV) for the data stream

transmitted to the selected user. The algorithm proceeds in a recursive manner where in

each step, the search for the best direction is performed in the null space of the previously

selected MVs. It is demonstrated that with the proposed method, each selected MV has

no interference on the previously selected MVs. Dirty paper coding is used to cancel the

remaining interference. To analyze the performance of the scheme, an upper-bound on the

outage probability of each sub-channel is derived which is used to establish the diversity

order and the asymptotic sum-rate of the scheme. It is shown that the diversity order of

the jth data stream, 1 ≤ j ≤ M , is equal to N(M − j + 1)(K − j + 1), where M , N ,

and K indicate the number of transmit antennas, the number of receive antennas, and

the number of users, respectively. Furthermore, it is proven that the throughput of this
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scheme scales as M log log(K) and asymptotically (K −→∞) tends to the sum-capacity

of the MIMO broadcast channel. The simulation results indicate that the achieved sum-

rate is close to the sum-capacity of the underlying broadcast channel.

Index Terms

Multiuser system, multiple-antenna arrays, MIMO broadcast channel, dirty paper

coding, space-division-multiple-access, multiuser diversity, wireless communications.

I. Introduction

Recently, multiple input multiple output (MIMO) systems have received consid-

erable attention as a promising solution to provide reliable and high data rate com-

munication [1]–[3]. More recently, the work on MIMO systems has been extended to

MIMO multi-user channels [4]–[7]. In [4], [5], a duality between the broadcast channel

and the multiple access channel is introduced. This duality is applied to characterize

the sum-capacity of the broadcast channel as a convex optimization problem. In [6], a

reformulation of the sum-capacity as a min-max optimization problem is introduced

and a signaling method which achieves the sum-capacity is presented. It is shown

that in an optimal signaling (maximizing the sum-rate), the power is allocated to,

at most, M2 uses (active users), where M is the number of transmit antennas [8]. In

practical systems, the number of users is large. In this case, finding the set of active

users by solving the optimization problem is a complex operation. In addition, to

perform such a computation, all the channel state information is required at the base

station which necessitates a high data rate feedback link.

The duality and signaling method introduced in [4]–[6] are based on a result,

known as dirty paper coding, on cancelling known interference at the transmitter [9].

Dirty paper coding states that in an AWGN channel with interference, if the trans-

mitter non-causally knows the interference, the capacity of the channel is the same

as the capacity of the channel without interference. A method for approximate im-

plementation of the dirty paper coding is presented in [10], [11].

A number of research works have focused on practical methods for signaling
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over MIMO broadcast channels. In [12], a simple method that supports one user at

a given time is presented. This method exploits a special kind of diversity, multiuser

diversity, which is available in the multiuser system with independent channels [13].

To exploit multiuser diversity, the transmission resources are allocated to the user(s)

which result in the highest throughput for the given channel condition. Unlike [12],

the signaling method presented in other related works support multiple users at a

given time. In [14], a variation of channel inversion method is used, where the inverse

of the channel matrix is regularized and the data is perturbed to reduce the energy

of the transmitted signal. However, in this method, the pre-coding matrix depends

on the data, and therefore, the method is computationally extensive.

In addition, no method for selecting active users is suggested. In [15], a signaling

method based on the QR decomposition and dirty paper coding is introduced. The

QR decomposition converts the channel matrix, and consequently the interference

matrix1, to a lower triangular form. Dirty paper coding eliminates the remaining

interference. By modifying the QR decomposition, a greedy method for selecting

active users which exploits multiuser diversity is presented in [16]. References [14]–

[16] present methods to support M simultaneous users, each with one receive antenna.

When there is more than one antenna at the receiver, a generalized version of

the zero forcing method is utilized in [17], [18]. However, the methods of [17], [18]

are highly restrictive in the sense that the number of transmit antennas must be

greater than the total number of the receive antennas. In addition, similar to the

conventional zero forcing, the method presented in [17], [18] degrades the signal-to-

noise-ratio (SNR).

In this paper, an efficient sub-optimum method for selecting the set of active

users and signaling over such users is proposed. This method converts the interference

matrix – but not necessarily the channel matrix – to a lower-triangular form. This is

in contrast to the earlier method proposed in [15], [16] which uses QR decomposition

to triangularis the channel matrix. In the proposed method, first, the direction in

which each user has the maximum gain is determined. The base station selects the

1The entry (p, q) of the interference matrix denotes the interference of user p over user q
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best user in terms of the largest maximum gain, where the corresponding direction

is used as the modulation vector (MV) for that user. The algorithm proceeds in a

recursive manner where in each step, the search for the best direction is performed

in the null space of the previously selected MVs. Finally, the transmitted signal is

formed as a linear combination over the selected MVs. It is shown that in this method,

data stream j has no interference on data stream i, i = 1, · · · , j − 1. Dirty paper

coding is used to eliminate the remaining interference. Thus, the underlying sub-

channels can be treated independent of each other in terms of encoding/decoding

and provision of QoS. In addition, this method offers other desirable features such

as: (i) accommodating users with different number of receive antennas, (ii) exploiting

multi-user diversity, and (iii) requiring low feedback rate. It is easy to see that for the

special case of N = 1, the proposed algorithm is the same as the methods presented

in [15], [16].

To analyze the performance of the scheme, an upper-bound on the outage proba-

bility of each sub-channel is derived which is used to establish the diversity order and

the asymptotic sum-rate of the scheme. It is shown that the diversity order of the jth

data stream, 1 ≤ j ≤ M , is equal to N(M−j+1)(K−j+1). Furthermore, it is proven

that the throughput of this scheme scales as M log log(K) and asymptotically (K −→
∞) tends to the sum-capacity of the MIMO broadcast channel. The simulation results

indicate that the achieved sum-rate is close to the sum-capacity of the underlying

broadcast channel.

The rest of the paper is organized as follows: In Section II, the system model

and the proposed signaling method are presented. In Section III, an algorithm to

select the active users and the corresponding MVs is developed. The performance

analysis of the system is presented in Section IV. In this section, an upper-bound

on the outage probability of each sub-channel is derived which is used to establish

the diversity order and the asymptotic sum-rate of the scheme. In Section V, the

simulation results and comparisons with the sum-capacity of the MIMO broadcast

are discussed. Some concluding remarks are provided in Section VI.

Notation: All boldface letters indicate vectors (lower case) or matrices (upper
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case). [a(p,q)]
m×n
(p,q) represents an m× n matrix where a(p,q) is entry (p, q). (.)† denotes

transpose conjugate operation, and C represents the set of complex numbers. Fj:K(.)

denotes the cumulative distribution function (CDF) of the jth largest variable (rep-

resented by z(j) = jth max{z1, . . . , zK}) among K variables.

II. Preliminaries

Consider a MIMO broadcast channel with M transmit antennas and K users,

where the rth user is equipped with Nr receive antennas. In a flat fading environment,

the baseband model of this system is given by,

yr = Hrs + wr, 1 ≤ r ≤ K, (1)

where Hr ∈ CNr×M denotes the channel matrix from the base station to user r,

s ∈ CM×1 represents the transmitted vector, and yr ∈ CNr×1 signifies the received

vector by user r. The vector wr ∈ CNr×1 is white Gaussian noise with a zero-mean

and unit-variance.

The base station supports M simultaneous data streams, distributed among at

most M users (active users), indexed by π(j), j = 1, . . . , M . The transmitted vector

s is equal to:

s =
M∑

j=1

djvj, (2)

where vj ∈ CM×1, j = 1, . . . , M , is the modulation vector (MV) corresponding to

user π(j), π(j) ∈ {1, 2, . . . , K}, and dj contains the information for user π(j). Note

that with this formulation, a given user may receive multiple data streams. Vectors

vj, j = 1, . . . ,M , form an orthonormal set. Dirty-paper coding is used such that for

i > j, the interference of data stream i over data stream j is canceled.

To detect the data stream j, user π(j) multiplies the received vector by a

demodulation vector u†j. In the next section, we propose a method to select the

set of active users {π(1), π(2), . . . , π(M)} ⊂ {1, 2, . . . , K} , modulation vectors vj,

and demodulation vectors uj, for j = 1, . . . , M .
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III. Selecting active users, modulation, and demodulation vectors

Assuming channel state information (CSI) is available at the base station, the

proposed algorithm works as follows. First, for each user, the maximum gain and

the corresponding direction are determined2. Next, the best user in terms of the

largest gain is chosen as an active user. The MV for the selected user is along the

corresponding direction. These steps are repeated recursively until the M MVs and

the set of active users are determined. In each step, the search for the best direction

is performed in the null space of the previously selected MVs. It is shown that in this

manner, any given MV has no interference over the previously selected MVs. In the

following, the proposed algorithm is presented in details.

1) Set j = 1 and Ξ = [0]M×M .

2) Find σ2
j , where

σ2
j = max

r
max

x
x†H†

rHrx.

s.t. x†x = 1

Ξ†x = 0. (3)

Set π(j) and vj equal to the optimizing parameters r and x, respectively.

3) Set

uj =
1

σj

Hπ(j)vj. (4)

4) Substitute vj in column j of matrix Ξ.

5) Set j ← j + 1. If j ≤ M , move to step two; otherwise, stop.

In Step 2 of the algorithm, maximization over r selects the best user, and

therefore, exploits the multiuser diversity. Maximization over x determines the best

MV for each user, and at the same time converts the interference matrix to a lower

triangular form, implying that data stream j has no interference over data stream i,

i = 1, . . . , j − 1. This property has been proven in the following theorem.

2The gain of the channel H along the direction (unit vector) x is defined as the square root of x†H†Hx.
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Theorem 1 Consider the following optimization problem:

max
x

x†H†Hx,

s.t. x†x = 1

Ξ†x = 0, (5)

where H and Ξ = [ξ1, ξ2, . . . , ξ%] are complex matrices. Let v be the vector that

maximizes (5) and σ2 be the corresponding optimum value. Define vector u as follows:

u =
Hv

σ
. (6)

If there exists a vector v̂ such that Ξ†v̂ = 0 and v†v̂ = 0, then

u†Hv̂ = 0. (7)

Proof: According to (6),

u†Hv̂ =

(
Hv

σ

)†
Hv̂ =

1

σ
v†H†Hv̂. (8)

To optimize the cost function in (5), Lagrange multipliers technique is adopted.

L(x, λ,Θ) = −x†H†Hx + λ(x†x− 1) + Θ Ξ†x, (9)

where λ and Θ = diag([θ1, θ2, . . . , θ%]) are Lagrange multipliers. The gradient of

L(x, λ,Θ), corresponding to the vector x, is

∇xL(x, λ,Θ) = −2H†Hx + 2λx +

%∑
τ=1

θτξτ . (10)

Since v maximizes the cost function, v satisfies (10). Therefore,

∇xL(v, λ,Θ) = −2H†Hv + 2λv +

%∑
τ=2

θτξτ = 0. (11)

Multiplying both sides of (11) by v̂† results in

v̂†∇xL(v1, λ,Θ) = −2v̂†H†Hv + 2λv̂†v + v̂†
%∑

τ=2

θτξτ = 0. (12)

If v̂†v = 0 and v̂†ξτ = 0 for τ = 1, . . . , % are substituted into in (12),

v̂†H†Hv = 0. (13)
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Finally, (8) and (13) result in

u†Hv̂ = 0. (14)

The interference of data stream i over data stream j is equal to u†jHπ(j)vi. Noting

(3) which derive vj and according to v†jvi = 0, Theorem 1 implies that u†jHπ(j)vi = 0,

for i > j. This means that data stream i has no interference over data stream j,

j = 1, . . . , i − 1. Note that if i < j, the interference of data stream i over data

stream j is canceled by dirty paper coding. Therefore, the MIMO broadcast channel

is effectively reduced to a set of parallel sub-channels with gains σj, j = 1, . . . , M .

As a result, the sum-rate of the system is equal to

R =
M∑

j=1

log(1 + σ2
j Pj) Nat/Sec/Hz, (15)

where Pj is the power allocated to data stream j, and
∑M

j=1 Pj ≤ P . Note that (15)

is based on the channel model (1), where the power of the noise is normalized. To

maximize (15), the power can be allocated using water-filling [19].

In the proposed algorithm, it is assumed the CSI is available at the transmit-

ter which necessitates a high-data-rate feedback link. In Appendix I, the proposed

algorithm is modified to reduce the rate of the feedback at the cost of adding some

hand-shaking steps to the algorithm.

IV. Performance Analysis

In this section, the performance of the proposed algorithm is investigated. To

simplify the analysis, we assume: (i) available power P is divided equally among the

active users, (ii) at most one data stream is assigned to each user. To impose the

second restriction, we can simply eliminate a user, whenever that user is allocated

one data stream in Step 2 of the algorithm. It is apparent that the sum-rate of the

system with these two restrictions lower-bounds the maximum sum-rate achievable

by the proposed algorithm. Although these assumptions simplify the derivations, it

is shown that the results dealing with the asymptotic sum-rate remain valid even if

we relax these restrictive assumptions.
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To study the performance of the system, we first derive an upper-bound on the

outage probability of each sub-channel. Using the derived upper-bound, we study the

diversity and asymptotic sum-rate achieved by the proposed algorithm. In this study,

it is assumed that all users are equipped with N receive antennas.

A. Outage Probability

The outage probability of sub-channel j is defined as Pr(σ2
j < z), j = 1, . . . , M ,

for a given z. For σ2
1, the derivation of the outage probability Pr(σ2

1 < z) is strait-

forward. In the proposed algorithm, for j = 1, we have Ξ = [0]M×M . From (3), we

have

σ2
1 = max

1≤r≤K
max

x
x†H†

rHrx. (16)

s.t. x†x = 1

Referring to [20], maxx x†H†
rHrx subject to x†x = 1 is equal to the maximum

eigenvalue of the matrix H†
rHr. Therefore, (16) can be written as

σ2
1 = max

{
λmax(H

†
1H1), . . . , λmax(H

†
KHK)

}
, (17)

where λmax(H
†
rHr) denotes the maximum eigenvalue of H†

rHr. By assuming Rayleigh

fading channel, the entries of Hr, r = 1, . . . , K, have independent normal distribu-

tion with zero-mean and unit-variance. Therefore, H†
rHr follows a Wishart distri-

bution [21]. The distribution of the maximum eigenvalue of a Wishart matrix is

formulated in the following lemma.

Lemma 1 [21], [22] Assume that the entries of A ∈ Cm̃×ñ have a zero mean, unit

variance Gaussian distribution; then, the cumulative distribution function (CDF) of

the maximum eigenvalue of the matrix A†A is equal to

Gm̃,ñ(z) = Pr
{
λmax(A

†A) ≤ z
}

=
1∏n

k=1 Γ(m− k + 1)Γ(n− k + 1)
det(Ψ), (18)

where n = min{m̃, ñ}, m = max{m̃, ñ}, and Ψ is an n× n Hankel matrix which is a

function of z ∈ [0,∞) defined as

Ψ = [γ(m− n + p + q − 1, z)]n×n
(p,q) , p, q = 1, . . . , n, (19)
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and γ is incomplete gamma function

γ(n + 1, z) = n!

(
1− e−z

n∑

k=1

zk

k!

)
. (20)

Since λmax(H
†
rHr) for different r’s, 1 ≤ r ≤ K, are i.i.d random variables, using

(17) and Lemma 5 in Appendix II, we obtain

Pr(σ2
1 ≤ z) = GK

N,M(z). (21)

Unlike Pr(σ2
1 ≤ z), the derivation of the outage probability for σ2

j , j = 2, . . . , M ,

is not simple. Alternatively, we derive an upper-bound for the outage probability of

each sub-channel using the CDF of the axillary variables σ̂2
j , j = 2, . . . , M , defined as

follows. Let us order the values of maxx x†H†
rHrx, r = 1, . . . , K, subject to x†x = 1

and Ξ̂†
jx = 0, where Ξ̂j is a unitary matrix, j = 2, . . . , M , selected randomly from

AM×(j−1), the set of M × (j − 1) complex unitary matrices. σ̂2
j is selected as the jth

largest element at this ordered set, i.e.

σ̂2
j = jth max

r, 1≤r≤K
max

x
x†H†

rHrx.

s.t. x†x = 1

Ξ̂†
jx = 0 (22)

Lemma 2 The outage probability of the sub-channel j is upper-bounded by the CDF

of σ̂2
j . In other word,

Pr(σ2
j ≤ z) ≤ Pr(σ̂2

j ≤ z). (23)

Proof: Assume that users π(1), . . . , π(M) corresponding to the MVs v1, . . . ,vM

have been selected. According to the proposed algorithm, vj, j = 1, . . . , M , is in the

M − j + 1 dimensional hyperplane Ωj which is the intersection of the null spaces of

the previously selected MVs, i.e.

vj ∈ Ωj =
{
x | v†1x = 0, . . . ,v†j−1x = 0

}
(24)

Fix the hyperplane Ωj, and multiply the channel matrix Hπ(i), for i = 1, . . . , j − 1,

with a unitary matrix Φ̃i selected randomly and uniformly from AM×M , the set of

M ×M complex unitary matrices.

H̃π(i) = Hπ(i)Φ̃i, i = 1, . . . , j − 1. (25)
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It is apparent that H̃π(i) has the gain of σ2
i in the direction ṽi = Φ̃†

ivi.

Let us define σ̄2
j as follows:

σ̄2
j = jth max

r, 1≤r≤K
max

x
x†H̃†

rH̃rx.

s.t. x†x = 1

x ∈ Ωj (26)

where H̃r = Hr, for r = 1, . . . , K, r /∈ {π(1), . . . , π(j − 1)}.
Let us define the set D, with cardinality of K−j +1, of: maxx x†H†

rHrx subject

to x†x = 1, x ∈ Ωj for r = 1, . . . , K, r /∈ {π(1), . . . , π(j − 1)}. Similarly, let us define

the set D, with cardinality of K, of: maxx x†H̃†
rH̃rx subject to x†x = 1, x ∈ Ωj for

r = 1, . . . , K. Regarding (3) and (26), we have σ2
j = maxD, and σ̄2

j = jth maxD. Since

H̃r = Hr for r /∈ {π(1), . . . , π(j − 1)}, the set D is equal to the union of D and j − 1

values of maxx x†H̃†
rH̃rx subject to x†x = 1, x ∈ Ωj for r ∈ {π(1), . . . , π(j − 1)}. It

follows that σ2
j ≥ σ̄2

j . Consequently, for a given real number z, Pr(σ2
j ≤ z) ≤ Pr(σ̄2

j ≤
z).

We claim that σ̄2
j in (26) has the same distribution as σ̂2

j in (22). As mentioned

before, Ωj is the intersection of the null spaces of vi, i = 1, . . . , j−1. Since the channel

matrices Hπ(i), i = 1, . . . , j − 1, are randomized using the unitary random matrices

Φ̃†
i , the vector space Ωj is a random and independent hyperplane with respect to

H̃r, r = 1, . . . , K. Furthermore, since the channel matrices Hr, r = 1, . . . , K, are

multiplied with unitary matrices (Φ̃†
i , for Hπ(i), i = 1, . . . , j − 1, and identity matrix

for the rest), the entries of H̃r, r = 1, . . . , K, have the same distribution as the

entries of Hr (normal i.i.d distribution with zero mean and unit variance). Therefore,

in both (22) and (26), we have K matrices with the same distribution while the inner

maximization is performed in an M − j +1 dimensional hyperplane which is random

and independent of the channel matrices. Thus, each realization in problem (22)

corresponds to a realization in problem (26) with the same probability. Consequently,

σ̄2
j and σ̂2

j have the same distribution.

The following lemma helps to derive Pr(σ̂2
j ≤ z).
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Lemma 3 Consider a vector space Ω̂ defined by

Ω̂ = {x | x ∈ CM×1, Ξ̂†x = 0}, (27)

where Ξ̂ is a complex matrix. Assume that Ω̂ is spanned by a set of orthogonal vectors

{φ1,φ2, . . . , φν}, where ν ≤ M . Then, given the complex matrix H, the result of the

following optimization,

max
x

x†H†Hx,

s.t. x†x = 1

x ∈ Ω̂, (28)

is equal to λmax(Ĥ
†Ĥ), the maximum eigenvalue of matrix Ĥ†Ĥ, where

Ĥ = HΦ (29)

and

Φ = [φ1,φ2, . . . , φν ]. (30)

Proof: λmax(Ĥ
†Ĥ), the maximum eigenvalue of matrix Ĥ†Ĥ is equal to [20],

λmax(Ĥ
†Ĥ) = max

y
y†Ĥ†Ĥy.

s.t. y†y = 1 (31)

If (29) is substituted into (31), we obtain

λmax(Ĥ
†Ĥ) = max

y
y†Φ†H†HΦy.

s.t. y†y = 1. (32)

Let x = Φy = y1φ1 + . . . + yνφν . Since {φ1,φ2, . . . , φν} is an orthogonal vector set,

then y†y = x†x. Also, x is a linear combination of vectors {φ1,φ2, . . . , φν}; therefore,

x ∈ Ω̂. Consequently,

λmax(Ĥ
†Ĥ) = max

x
x†H†Hx.

s.t. x†x = 1

x ∈ Ω̂. (33)
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According to Lemma 3, σ̂2
j in (22) is equal to

σ̂2
j = jth max

{
λmax(Ĥ

†
1,jĤ1,j), . . . , λmax(Ĥ

†
K,jĤK,j)

}
, (34)

where λmax(Ĥ
†
r,jĤr,j) is the maximum eigenvalue of Ĥ†

r,jĤr,j, Ĥr,j = HrΦj, and Φj is

a matrix with orthogonal columns which span the complex vector space Ωj = {x|x ∈
CM×1, Ξ̂†

jx = 0}. Note that in (22), Ξ̂j has j − 1 non-zero orthogonal columns.

Therefore, the dimension of the complex vector space Ωj is M − (j − 1), resulting

in Φj ∈ CM×(M−j+1). Since the columns of Φj are orthonormal and the entries of

Hr have independent unit variance Gaussian distributions (Rayleigh channel), the

entries of Ĥr,j ∈ CN×(M−j+1) have independent unit variance Gaussian distributions.

Furthermore, it is easy to see that Ĥr,j, r = 1, . . . , K, are independent for different

r. Consequently, according to the definition, Ĥ†
r,jĤr,j, r = 1, . . . , K, have Wishart

distribution. Therefore, by using Lemma 1, we obtain

Pr
{

λmax(Ĥ
†
r,jĤr,j) ≤ z

}
= GN,M−j+1(z). (35)

Using (34), (35), Lemma 5 in Appendix II, and regarding the independency of Ĥr,j

for different r’s, we obtain

Pr(σ̂2
j ≤ z) =

K∑
i=K−j+1

(
K

i

)
Gi

N,M−j+1(z)[1−GN,M−j+1(z)]K−i. (36)

By using (21), (36), and Lemma 2, we have

Theorem 2

Pr(σ2
j ≤ z) ≤

K∑
i=K−j+1

(
K

i

)
Gi

N,M−j+1(z)[1−GN,M−j+1(z)]K−i (37)

with equality if j = 1.

Theorem 2 provides a lower-bound on the performance of the proposed method.

In the following, we use the above result to investigate the achieved diversity and the

asymptotic sum-rate.
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B. Diversity Analysis

The diversity order in a wireless channel is equal to the asymptotic slope (z → 0)

of the outage probability curve. This quantity determines the asymptotic slope of the

curve of the symbol error rate versus signal-to-noise-ratio. In the following theorem,

we use this definition to establish the diversity order of the jth data stream.

Theorem 3 Sub-channel j achieves the diversity order at least equal to (K − j +

1)(M − j + 1)N .

Proof: To derive the minimum diversity of the sub-channel j, we first obtain the

limiting function (z → 0) of the introduced upper-bound on Pr(σ2
j ≤ z). In Appendix

III, it is shown that

lim
z→0

Gm̃,ñ(z) = cm̃,ñzm̃ñ (1 + O(z)) , (38)

where cm̃,ñ is defined in (97). Using (38) and (37), we have,

lim
z→0

Pr(σ2
j < z) ≤

(
K

K − j + 1

)
cK−j+1
N,M−j+1z

(K−j+1)N(M−j+1) (1 + O(z)) , (39)

where cN,M−j+1 is equal to cm̃,ñ by substituting N for m̃ and M − j +1 for ñ in (97).

Using (39), we conclude that the sub-channel j, 1 ≤ j ≤ M , achieves the

minimum diversity order of (K − j + 1)N(M − j + 1).

Theorem (3) states that the diversity of all the sub-channels is proportional to

the number of users K and number of receive antennas N . This means that the

proposed method exploits both multiuser and receive diversities. In addition, the

transmit diversity of sub-channel j is equal to M − j + 1.

C. Asymptotic sum-Rate Analysis

By using (15) and Theorem 2, a lower-bound on the average sum-rate of the

proposed method can be computed. However, an examination of the asymptotic

behavior (K → ∞) of the sum-rate provides insight into the performance of the

proposed algorithm. For this investigation, we apply some results from theory of

extreme order statistics. Appendix II contains some theorems that will be used in

our following discussion.
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As mentioned in (17), σ2
1 is equal to the maximum of K i.i.d random variables

with common CDF of GN,M(z). Similarly, σ̂2
j , j = 2, . . . , M , in (34) is equal to the jth

largest of K i.i.d random variables with common CDF of GN,M−j+1(z). In general,

the behavior of the jth largest of K i.i.d random variables with common CDF F (z)

depends on the tail of the F (z) (large z). In Appendix IV, it is shown that

Gm̃,ñ(z) = 1− e−zzm̃+ñ−2

Γ(m̃)Γ(ñ)

(
1 + O(z−1e−z)

)
, (40)

which has the form of F (z) in (67) for large z. Using (40) and applying Lemma 6

from Appendix II with α = M + N − 2 and β = Γ(M)Γ(N) for σ2
1, we obtain

Pr
{

η1 − log log(
√

K) ≤ σ2
1 ≤ η1 + log log(

√
K)

}
≥ 1−O

(
1

log K

)
, (41)

where

η1 = log

(
K

Γ(M)Γ(N)

)
− (M + N − 2) log log

(
K

Γ(M)Γ(N)

)
. (42)

Similarly, using (40) and applying Lemma 6 with α = M + N − j − 1 and

β = Γ(M − j + 1)Γ(N) for σ̂2
j , j = 2, . . . , M , we obtain

Pr
{

ηj − log log(
√

K) ≤ σ̂2
j ≤ ηj + log log(

√
K)

}
≥ 1−O

(
1

log K

)
, (43)

where

ηj = log

(
K

Γ(M − j + 1)Γ(N)

)
−(M+N−1−j) log log

(
K

Γ(M − j + 1)Γ(N)

)
. (44)

Lemma 4 For σ2
j , j = 1, . . . , M , we have,

Pr
{

ηj − log log(
√

K) ≤ σ2
j ≤ η1 + log log(

√
K)

}
≥ 1−O

(
1

log K

)
. (45)

Proof: For j = 1, (45) is the same as (41). For j = 2, . . . , M , the proof is as

follows. From (43), we have

Pr
{

ηj − log log(
√

K) ≤ σ̂2
j

}
≥ 1−O

(
1

log K

)
. (46)

Using (46) and Lemma 2, we obtain

Pr
{

ηj − log log(
√

K) ≤ σ2
j

}
≥ 1−O

(
1

log K

)
. (47)

On the other hand, from (41), we have

Pr
{

σ2
1 ≤ η1 + log log(

√
K)

}
≥ 1−O

(
1

log K

)
. (48)
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It is easy to see that

σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
M . (49)

Using (48) and (49), we have,

Pr
{

σ2
j ≤ η1 + log log(

√
K)

}
≥ 1−O

(
1

log K

)
. (50)

Equations (47) and (50) result in (45). This conclusion comes from the fact that if

A and B are two events with Pr(A) ≥ 1− ε1 and Pr(B) ≥ 1− ε2, then Pr(A
⋂

B) ≥
1− ε1 − ε2.

Using Lemma 4, we can prove the following theorem (refer to Appendix V).

Theorem 4

lim
K→∞

R

M log[ P
M

log(K)]
= 1, (51)

with probability one, where R is the sum-rate of the proposed method. In addition,

lim
K→∞

RSum-Capacity −R −→ 0, (52)

with probability one, where RSum-Capacity indicates the sum-capacity of the MIMO

broadcast channel.

Equation (51) indicates that the average sum-rate of the proposed method

increases linearly with the number of transmit antennas. Furthermore, the increase

with the number of users K is proportional to log log(K). In addition, Theorem 4

states that for large K, the proposed method achieves the sum-capacity of the MIMO

broadcast channel. Note that these results are derived with two assumptions of equal

power distribution among active users (no water-filling) and allocation of at most

one data stream to each user. Apparently, Theorem 4 remains valid even if these two

restrictive assumptions are relaxed.

V. Simulation Results

In this section, the outage probability and the sum-rate of the proposed method

are simulated and compared with the bounds derived by the Theorem 2 and with the

sum-capacity. In these simulations, the perfect channel state information is assumed

to be available at the base station.



17

Figures 1 and 2 show the outage probability of each individual sub-channel as

compared with the upper-bound CDFs introduced in Theorem 2.

Figures 3 and 4 show the sum-rate of the proposed method in comparison with

the sum-capacity and the derived lower-bound on sum-rate. In the simulation of the

sum-rate, the power is optimally allocated to active users by using the water-filling

method, while in the simulation of the lower-bound, the power is divided equally

among the sub-channels. To compute the sum-capacity of the MIMO broadcast

channel, the algorithm presented in [23] is used.

Figure 3 depicts the average sum-rate of the proposed method, the derived lower-

bound, and the average sum-capacity versus K (number of users) for different number

of receive antennas. This figure shows that the sum-rate of the proposed method is

very close to the sum-capacity, even when the number of users is small. Based on this

result, we conclude that the major part of the sum-capacity is achieved with only M

data streams, regardless of the number of receive antennas. In addition, Fig. 3 shows

that the derived lower-bound provides an accurate estimate of the sum-rate over a

wide range of values for K.

Figure 4 shows the sum-rate of the proposed method in comparison with the

sum-capacity as well as the derived lower-bound versus the transmit power. It can

be seen that the sum-rate of the proposed scheme is very close to the sum-capacity.

In addition, Fig. 4 shows that the derived lower-bound provides an accurate estimate

of the sum-rate for the different power levels.

Figure 5 shows the sum-rate of the proposed method versus the values of M

(number of transmit antennas). It can be seen that the average sum-rate increases

linearly with the number of transmit antennas.

VI. Conclusion

In this paper, a simple signaling method for a multi-antenna broadcast channel

is proposed. This method reduces the MIMO broadcast system to a set of parallel

channels. The proposed scheme has several desirable features in terms of: (i) accom-

modating users with different number of receive antennas, (ii) exploiting multi-user

diversity, and (iii) requiring low feedback rate. The simulation results indicate that the
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achieved sum-rate is close to the sum-capacity of the underlying broadcast channel.

To analyze the performance of the scheme, an upper-bound on the outage probability

of each sub-channel is derived which is used to establish the diversity order and the

asymptotic sum-rate of the scheme. It is shown that the diversity order of the jth

data stream, 1 ≤ j ≤ M is equal to N(M − j + 1)(K − j + 1). Furthermore, it is

proven that the throughput of this scheme scales as M log log(K) and asymptotically

(K −→∞) tends to the sum-capacity of the MIMO broadcast channel.

Appendix I

Reducing the Feedback Rate

In this appendix, we modify the proposed algorithm to reduce the rate of the

feedback at the cost of adding some hand-shaking steps to the algorithm. As men-

tioned in Section III, one part of the algorithm is to find the direction in which each

user has maximum gain. This part of the processing can be accomplished at the

receiver and then if the maximum gain of the user is larger than a given threshold,

the gain and the corresponding direction are reported to the transmitter. The base

station selects the best user in terms of the largest gain. By using this technique, the

complete channel state information is not required at the transmitter and the rate

of the feedback is significantly reduced. The details of the algorithm are presented in

the following.

1) Set j = 1 and Ξ = [0]M×M .

2) The user r, r = 1, . . . , K, calculates σ̃2
r(j), defined as follows:

σ̃2
r(j) = max

x
x†H†

rHrx.

s.t. x†x = 1

Ξ†x = 0. (53)

ṽr(j) represents the optimizing parameter x.

3) The user r, r = 1, . . . , K, calculates

ũr(j) =
1

σ̃r(j)

Hrṽr(j). (54)
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4) The user r, r = 1, . . . , K, sends σ̃2
r(j) and ṽr(j) to the base station, if σ̃2

r(j) ≥
th(j). th(j) is a threshold which is predetermined by the base station.

5) The base station selects the user with the largest σ̃2
r(j), namely π(j). σ2

j , vj,

and uj are the gain, the corresponding MV, and the demodulation vector of

the user π(j), respectively.

6) The π(j)th user sends ujHπ(j)vi, i = 1, . . . , j − 1, to the base station. This

information is required for dirty paper coding.

7) The base station sends vj to all the users. Each user substitutes vj in the jth

column of Ξ.

8) Set j ← j + 1. If j ≤ M move to step two; otherwise stop.

The performance of this method is the same as that of the first algorithm (assume

that the gain of at least one user is larger than the threshold th(j)). However, the

rate of the feedback required in the modified algorithm is significantly reduced as

compared to that of the first algorithm.

Threshold th(j) is determined such that with high probability there exists at

least one user with gain larger than th(j). Refereing to Lemma 4, we conclude that

when K is large, with probability one the largest gain is greater than ηj−log log(
√

K).

Consequently, for large k, an appropriate choice for th(j) = ηj − log log(
√

K), where

ηj is defined in (42).

Appendix II

Some Results on Order Statistics

Let z1, z2, . . . , zK be i.i.d random variables with a common CDF F (.) and prob-

ability density function f(.). Let Fj:K(.) denote the CDF of the jth largest variable,

z(j) = jth max{z1, . . . , zK}. Then, we have the following lemmas and theorems.

Lemma 5 [24, Chapter 2, Page 8]

Fj:K(z) = Pr(z(j) ≤ z) =
K∑

i=K−j+1

(
K

i

)
F i(z)[1− F (z)]K−i. (55)

When K −→ ∞, the following theorem characterizes the limiting distribution

of Fj:K(.).
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Theorem 5 [25, Smirnov, 1949] Assume that there exists the sequence of normal-

izing constants ai > 0 and bi, i = 1, . . . , K, such that

lim
K−→∞

Fj:K(aKz + bK) = Υ(j)(z). (56)

Then, Υ(j)(z) has the following form:

Υ(j)(z) = Λ(z)

j−1∑
i=0

{− log[Λ(z)]}i

i!
, (57)

where Λ(z) belongs to one of the following three types of functions:

Type (i) Λ1(z) =





0 z ≤ 0

exp(−z−ε) z > 0, ε > 0
(58)

Type (ii) Λ2(z) =





exp(−(−z)ε) z ≤ 0, ε > 0

1 z > 0
(59)

Type (iii) Λ3(z) = exp(−e−z). (60)

The following theorem gives the necessary and sufficient condition for distribu-

tion F (z) to belong to the domain of attraction of one of the three limiting forms.

Theorem 6 [25] Suppose aK > 0 and bK are sequences of real numbers. For distri-

bution function Fj:K and Λl(z), where j is a fixed natural number, we have

lim
K−→∞

Fj:K(aKz + bK) = Υ
(j)
l (z) = Λl(z)

j−1∑
i=0

{− log[Λl(z)]}i

i!
, (61)

if and only if

lim
K−→∞

K [1− F (aKz + bK)] = − log[Λl(z)]. (62)

The following theorem determines the rate of the convergence to the limiting

distributions.

Theorem 7 [26, Dziubdziela, 1974] Assume F (z) with normalizing sequences aK

and bK is in the domain of attraction of type l limiting distribution, l ∈ {1, 2, 3}. If
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1
2

< F (aKz + bK) < 1 and − log[Λl(z)] < ∞, then for natural number j,
∣∣∣∣Fj:K(aKz + bK)−Υ

(j)
l (z) +

1

2
Kδ2

Kg(j, KδK)

∣∣∣∣ ≤
1

2
π exp(2KδK)Kδ3

K

[
4

3(1− 2δK)
+

(
16

9
Kδ3

K

1

(1− 2δK)2
+

+
8

3
Kδ2

K

1

1− 2δK

+ KδK

)
exp

(
Kδ2

K

{
1 +

4

3
δK

1

1− 2δK

})]
+ Θ(z), (63)

where

Θ(z) =

∣∣∣∣∣
1

(j − 1)!

∫ − log[Λl(z)]

KδK

$j−1 exp(−$)d$

∣∣∣∣∣ , (64)

and

δK(z) = 1− F (aKz + bK), (65)

and

g(z, ϑ) =





0 z ≤ 0

exp(−ϑ) 0 < z ≤ 1

exp(−ϑ)
(

ϑµ+1

(µ+1)!
− ϑµ

(µ)!

)
µ + 1 < z ≤ µ + 2 µ = 0, 1, 2, . . .

(66)

In the following lemma, we apply the above theorems for a specific distribution

which is used throughout the paper.

Lemma 6 Let z1, z2, . . . , zK be K i.i.d random variables with a common CDF

F (z) = 1− 1

β
zαe−z α ≥ 0, β > 0, (67)

then,

• Distribution function F (z) is in the domain of attraction of type (iii) limiting

distribution with normalizing sequences

aK = 1, (68)

bK = log

(
K

β

)
− α log log

(
K

β

)
. (69)

• If z(j) denotes the jth largest random variable, then,

Pr
{

bK − log log(
√

K) ≤ z(j) ≤ bK + log log(
√

K)
}
≥ 1−O

(
1

log K

)
. (70)

Proof:
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Part One:

Using aK and bK , defined in (68) and (69), we have

lim
K−→∞

K(1− F (aKz + bK)) = K
1

β
(aKz + bK)−α exp(−aKz − bK) =

lim
K−→∞

K
1

β

[
z + log

(
K

β

)
− α log log

(
K

β

)]−α

exp

[
−z − log

(
K

β

)
+ α log log

(
K

β

)]
=

lim
K−→∞

exp(−z)

[
z + log

(
K

β

)
− α log log

(
K

β

)]−α [
log

(
K

β

)]α

=

= exp(−z) = − log[Λ3(z)]. (71)

Therefore, regarding Theorem 6, the distribution (67) is in the domain of attraction

of type (iii) limiting distribution.

Part Two:

Substituting log log(
√

K) and − log log(
√

K) in Υ
(j)
3 (z), defined in (61), we obtain

Υ
(j)
3

(
log log

√
K

)
= exp

(
− 1

log
√

K

) j−1∑
i=0

1

i! logi
√

K
= 1−O

(
1

log K

)
, (72)

and

Υ
(j)
3

(
− log log

√
K

)
=

1√
K

j−1∑
i=0

logi
√

K

i!
= O

(
logj

√
K√

K

)
. (73)

Therefore,

Υ
(j)
3

(
log log

√
K

)
−Υ

(j)
3

(
− log log

√
K

)
≥ 1−O

(
1

log K

)
. (74)

In the following, we apply Theorem 7 to find out how Fj:K(z) is close to limiting dis-

tribution Υ
(j)
3 (z) at z = log log

√
K and z = − log log

√
K. To simplify the derivation,

we first calculate some terms appeared in Theorem 7 at these two points.

Using (65), (68), and (69), for F (z) in (67), we obtain

δK(z) = 1− F (aKz + bK) =
e−z

K

[
1 + O

(
1

log K

)]
. (75)

Therefore,

δK

(
log log

√
K

)
=

1

K log
√

K

[
1 + O

(
1

log K

)]
, (76)

and

δK

(
− log log

√
K

)
=

log
√

K

K

[
1 + O

(
1

log K

)]
. (77)
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It is easy to show that Θ(z) in (64) is equal to,

Θ(z) =

∣∣∣∣∣exp[−KδK(z)]

j−1∑
i=0

[KδK(z)]i

i!
−Υ

(j)
3 (z)

∣∣∣∣∣ . (78)

On the other hand, using (76), we obtain

exp[−KδK(log log
√

K)] = 1−O

(
1

log K

)
, (79)

and using (76), we obtain

exp[−KδK(− log log
√

K)] = O

(
1√
K

)
. (80)

Consequently, using (72), (76), (78) and (79), we have

Θ
(
log log

√
K

)
= O

(
1

log K

)
, (81)

and using (73), (77), (78) and (80), we have

Θ
(
− log log

√
K

)
= O

(
logj

√
K√

K

)
. (82)

Regarding (66), we have,

g(j, KδK(z)) =





exp(−KδK(z)) j = 1

exp(−KδK(z))
(

[KδK(z)]j−1

(j−1)!
− [KδK(z)]j−2

(j−2)!

)
j ≥ 2

(83)

Therefore, using (76), we obtain,

Kδ2
K(log log

√
K)g

(
j,KδK(log log

√
K)

)
= o

(
1

K

)
, (84)

and using (77), we obtain,

Kδ2
K(− log log

√
K)g

(
j,KδK(− log log

√
K)

)
= o

(
1

K

)
. (85)

Applying Theorem 7 for z = log log
√

K, and using (76), (81), and (84), we have∣∣∣∣Fj:K(log log
√

K + bK)−Υ
(j)
3 (log log

√
K) + o

(
1

K

)∣∣∣∣ ≤ O

(
1

log K

)
. (86)

Similarly, Applying Theorem 7 for z = − log log
√

K, and using (77), (82), and (85),

we have∣∣∣∣Fj:K(− log log
√

K + bK)−Υ
(j)
3 (− log log

√
K) + o

(
1

K

)∣∣∣∣ ≤ O

(
logj

√
K√

K

)
. (87)

Using (74), (87), and (86), we obtain
∣∣∣Fj:K

(
log log

√
K + bK

)
− Fj:K

(
− log log

√
K + bK

)∣∣∣ ≥ 1−O

(
1

log K

)
. (88)

Since Fj:K(.) denotes CDF of z(j), (88) results in (70).
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Appendix III

Gm̃,ñ(z) for Small z

By substituting the Taylor expansion of ez and e−z into (20),

γ(n + 1, z) =

n!

(
1− e−z

n∑
m=1

zm

m!

)
= n!e−z

(
ez −

n∑
m=1

zm

m!

)

= n!

(
1− z +

z2

2!
− z3

3!
+ · · ·

) ( ∞∑
m=1

zm

m!
−

n∑
m=1

zm

m!

)

= n!

(
1− z +

z2

2!
− z3

3!
+ · · ·

) ( ∞∑
m=n+1

zm

m!

)

=
zn+1

n + 1
(1 + O(z)). (89)

Substituting (89) in (19), we have,

Ψ =

[
zm−n+p+q−1

m− n + p + q − 1
(1 + O(z))

]n×n

(p,q)

. (90)

It is known that if a column or row of a matrix is multiplied by variable z, the

determinant of the resulting matrix is z times the determinant of the original matrix.

Using this property, first, we factor zm−n+q from column q, 0 ≤ q ≤ n of the Ψ,

and then we factor zp−1 from row p, 1 ≤ p ≤ n. The remaining matrix is equal to[
1

m−n+p+q−1
(1 + O(z))

]n×n

(p,q)
, and the power of z outside the determinant is equal to

n∑
q=1

(m− n + q) +
n∑

p=1

(p− 1) = mn. (91)

Therefore,

det(Ψ) = zmn det

([
1

m− n + p + q − 1
(1 + O(z))

]n×n

(p,q)

)
. (92)

By substituting (92) into (18), we have

Gm̃,ñ(z) =

zmn

∏n
k=1 Γ(m− k + 1)Γ(n− k + 1)

det

([
1

m− n + p + q − 1
(1 + O(z))

]n×n

(p,q)

)
.(93)
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According to (93), the coefficient of the smallest degree of z is equal to

c =
1∏n

k=1 Γ(m− k + 1)Γ(n− k + 1)
det

([
1

m− n + p + q − 1

]n×n

(p,q)

)
. (94)

We apply the following formula to calculate the determinant in (94) (see [27, p. 92,

Problem 3])

det

([
1

xp + yq

]

(p,q)

)
=

∏
q>p(xq − xp)(yq − yp)∏

p,q(xp + yq)
, (95)

where xp and yq depend only on p and q, respectively. Substituting xp = m−n+p−1

and yq = q in (95), we compute the determinant term in (94), resulting in

lim
z→0

Gm̃,ñ(z) = cm̃,ñz
m̃ñ, (96)

where cm̃,ñ is equal to

cm̃,ñ =
Πn−1

ζ=1 (n− ζ)!∏n
k=1(m− k)!Πn

ζ=1(m− n + ζ)ζ(m + n− ζ)ζ
, (97)

where n = min{m̃, ñ} and m = max{m̃, ñ}.

Appendix IV

Gm̃,ñ(z) for Large z

By using (20), the determinant of matrix Ψ in (19) has the following structure:

det(Ψ) =

det
(
[γ(m− n + p + q − 1, z)]n×n

(p,q)

)
=

ϕ0 + ϕ1(z)e−z + ϕ2(z)e−2z + · · ·+ ϕn(z)e−nz, (98)

where ϕ0 is a constant number, and ϕi(z), i = 1, · · · , n are polynomials. Therefore,

when z →∞,

det(Ψ) → ϕ0 + κzιe−z, (99)

where ι is the degree of ϕ1(z), and κ is the coefficient of zι in ϕ1(z). In the following,

we determine ϕ0, κ, and ι.

Computing ϕ0: Using the expansion (20), it is easy to verify that

lim
z→∞

γ(m− n + p + q − 1, z) = (m− n + p + q − 2)!. (100)
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Regarding (98) and (100) ,

ϕ0 = lim
z→∞

det(Ψ) = det
(
[(m− n + p + q − 2)!]n×n

(p,q)

)
. (101)

On the other hand, since Gm̃,ñ(z) is the CDF of a random variable, limz→∞ Gm̃,ñ(z) =

1. Substituting (101) in (18), we have

lim
z→∞

Gm̃,ñ(z) =
det

(
[(m− n + p + q − 2)!]n×n

(p,q)

)
∏n

k=1 Γ(m− k + 1)Γ(n− k + 1)
= 1. (102)

Considering (101) and (102), we obtain

ϕ0 =
n∏

k=1

Γ(m− k + 1)Γ(n− k + 1). (103)

Computing κ, and ι: Applying the method of expansion by minors, we expand

the determinant of Ψ in (19), based on the last row of the matrix. It is evident that

the largest power of z in ϕ1(z) is determined by Ψ(n, n), multiplied by the constant

term of its cofactor. By using (19) and (20), it is easy to show that this term is equal

to

det
(
[(m− n + p + q − 2)!]

(n−1)×(n−1)
(p,q)

)
γ(m + n− 1, z), (104)

where γ(m+n−1, z) is entry (n, n) of matrix Ψ, and det
(
[(m− n + p + q − 2)!]

(n−1)×(n−1)
(p,q)

)

is the constant part of its cofactor. Using (20), we obtain

γ(m + n− 1, z) = (m + n− 2)!− zm+n−2e−z
(
1 + O(z−1)

)
. (105)

By rewriting (102), we obtain

det
(
[(m− n + p + q − 2)!]n×n

(p,q)

)
=

n∏

k=1

Γ(m− k + 1)Γ(n− k + 1). (106)

By substituting m− 1 for m and n− 1 for n in (106),

det
(
[(m− n + p + q − 2)!]

(n−1)×(n−1)
(p,q)

)
=

n−1∏

k=1

Γ(m− k)Γ(n− k). (107)

Considering (104), (105), and (107), we have

κ = −
n−1∏

k=1

Γ(m− k)Γ(n− k), (108)

and,

ι = m + n− 2. (109)
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Using (99), (103), (108), (109), and (18), we have,

Gm̃,ñ(z) = 1− e−zzm+n−2

(m− 1)!(n− 1)!

(
1 + O(z−1e−z)

)
, (110)

Since m = max{m̃, ñ} and n = min{m̃, ñ}, we have

Gm̃,ñ(z) = 1− e−zzm̃+ñ−2

(m̃− 1)!(ñ− 1)!

(
1 + O(z−1e−z)

)
, (111)

Appendix V

Asymptotic Sum-Rate

Since log(.) is an increasing function and using (45), we have,

Pr

{
log

(
1 +

P

M
[ηj − log log

√
K]

)

≤ log(1 +
P

M
σ2

j )

≤ log

(
1 +

P

M
[η1 + log log

√
K]

)}

≥ 1−O

(
1

log K

)
. (112)

Consequently,

lim
K→∞

Pr





log
(
1 + P

M
[ηj − log log

√
K]

)

log[ P
M

log(K)]

≤ log(1 + P
M

σ2
j )

log[ P
M

log(K)]

≤
log2

(
1 + P

M
[η1 + log log

√
K]

)

log[ P
M

log(K)]





≥ 1−O

(
1

log K

)
. (113)

Using (42) and (44), we conclude that the left hand side and the right hand side of

the inequalities inside Pr in (113) tend to the same value of one as K →∞, therefore

lim
K→∞

log(1 + P
M

σ2
j )

log( P
M

log K)
= 1, (114)

with probability one.

Equation (114) indicates that the rate of each sub-channel attains log[ P
M

log(K)],

when K →∞. Using (15), the sum-rate of the proposed method achieves M log[ P
M

log(K)].
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On the other hand, according to (112),

Pr

{
log

(
1 +

P

M

[
ηj − log log

√
K

])
≤ log

(
1 +

P

M
σ2

j

)}
≥ 1−O

(
1

log K

)
. (115)

In [28], it is shown that,

Pr

{
RSum-Capacity

M
≤ log

(
1 +

P

M
[log(KN) + O(log log[K])]

)}
≥ 1−O

(
1

log2 K

)
.

(116)

As mentioned before, if A and B are two events with Pr(A) ≥ 1−ε1 and Pr(B) ≥
1− ε2, then Pr(A

⋂
B) ≥ 1− ε1− ε2. Therefore, the probability that the inequalities

inside Pr in (115) and (116) are both valid is greater than 1−O
(

1
log K

)
−O

(
1

log2 K

)
.

Subtracting these two inequalities, we obtain

Pr

{
log(1 +

P

M
σ2

j )−
RSum-Capacity

M
≥

log

(
1 +

P

M

[
ηj − log log

√
K

])
− log

(
1 +

P

M
[log(KN) + O(log log[K])]

)}

≥ 1−O

(
1

log K

)
−O

(
1

log2 K

)
. (117)

Using (44), we conclude that the right side of the inequality inside Pr in (117) tends

to zero as K →∞. Consequently, for large K, with probability one, we have

0 ≤ log(1 +
P

M
σ2

j )−
RSum-Capacity

M
, j = 1, . . . , M. (118)

Using (118), we obtain that when K → ∞, R ≥ RSum-Capacity. Since RSum-Capacity

provides an upper bound on the sum-rate of any algorithm , we obtain

lim
K→∞

RSum-Capacity −R = 0, (119)

with probability one.
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Fig. 1. Outage Probability for the Sub-Channels (Solid Curves) and the Upper-Bound for Outage Probability

(Dashed Curves) – K = 6, M = 3, N = 1.
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