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Abstract

In this work, we study a multiple-input multiple-output (MIMO) wireless system
where the channel state information is partially available at the transmitter through a
feedback link. Based on singular value decomposition, the MIMO channel is split into
independent sub-channels. Effective feedback of the required spatial channel informa-
tion entails efficient quantization/encoding of a unitary matrix. We propose two schemes
for quantizing unitary matrices via Givens matrices and examine the performance for a
scenario where the rates allocated to the sub-channels are selected according to their cor-
responding gains. Numerical results show that the proposed schemes offer a significant
performance improvement as compared to that of MIMO systems without feedback, with
a negligible increase in the complexity.

Index Terms:MIMO wireless systems, singular value decomposition, Givens decomposition,
matrix quantization

I. INTRODUCTION

In recent years, researchers have examined the transmission strategies for MIMO systems
in which the transmitter and/or the receiver have full or partial knowledge of the channel state
information (CSI). It is shown that the capacity is substantially improved through even partial CSI
at the transmitter [1]. Subject to finite rate feedback, optimal MIMO signaling is studied in [2] [3]
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to maximize the average channel capacity, while precoder design for MIMO systems with linear
receivers is investigated in [4].

Transmit beamforming can considerably improve the performance of MIMO systems [5].
Assuming partial CSI is available at the transmitter, the authors in [6] design a codebook of beam-
former vectors to minimize the outage probability. Reference [7] addresses the problem of code-
book design with partial CSI where the criterion is to maximize the received signal to noise ratio
(SNR). A beamforming method is presented in [8] which relies on the method of [9] for the quan-
tization of the channel spatial information (singular vectors of the channel matrix). In [10], the
authors use the Givens parameters to represent the singular matrix of the channel in a slowly time-
varying environment. The adaptive delta modulation is applied to quantize each parameter with a
one-bit quantizer.

In this paper, assuming a block fading channel model, we consider the situation in which a
MIMO channel is split into several independent sub-channels by means of singular value decom-
position (SVD). In this scheme, the spatial information of the channel and the constellation index
of each sub-channel is needed at the transmitter. The modulation format is selected to match the
SNR on each sub-channel. We use Givens rotation to decompose the spatial information of the
channel (a unitary matrix). We develop quantization methods by expressing the distortion function
of the unitary matrix in terms of the Givens matrices using the first order approximation. The
quantizer design and the optimum bit allocation among the quantizers are achieved based on the
interference measure defined in Section III. The simulation results are presented in Section IV.
Finally, Section V concludes the paper.

II. SYSTEM MODEL

We consider an independent and identically distributed (i.i.d.) block fading channel model.
For a MIMO system with M transmit and M receive antennas, the model leads to the following
complex baseband representation of the received signal

y = HWx + n, (1)

where x is the M × 1 vector of the transmitted symbols, H is the M ×M channel matrix, W is an
M ×M precoder matrix, n is the M × 1 zero mean Gaussian noise vector with the autocorrelation
σ2I where I is the identity matrix, and y is the received signal. Matrix H consists of circularly
symmetric complex Gaussian elements with zero mean and unit variance.
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The SVD of H is defined as H = VΛU∗, where V and U are the unitary matrices, Λ is a
diagonal matrix [11], and (.)∗ denotes the hermitian of (.). We assume that CSI is known to the
receiver and a noiseless feedback link from the receiver to the transmitter is available. By the SVD
of H at the receiver, U is computed, quantized and sent to the transmitter. The transmitter uses the
quantized version of U as a precoder, i.e. W = U + ∆U, where ∆U represents the quantization
error.

y = H(U + ∆U)x + n. (2)

The receiver multiplies the received vector y by V∗,

r = V∗y = Λx + ΛU∗∆Ux + n. (3)

We consider a case in which data is transmitted and received separately in each sub-channel
with different rates and with equal energy. The power constraint of the transmitted signal is defined
as E(xx∗) = MEI, where E is the energy per data stream and E represents the expectation. Under
the assumption of continuous approximation [12], it can be shown that the use of equal energy
maximizes the rate for a cubical shaping region (subject to a constraint on total energy) as follows.
If C is a lattice code of reasonably large size, then the distribution of its points in N dimensional
space is well approximated by a uniform continuous distribution over the shaping region R bound-
ing the constellation (shaping region). This is called the continuous approximation [12]. With
the assumption of the continuous approximation, the average power P (C) of the constellation is
approximately equal to the average power P (R) of a continuous distribution that is uniform with
R and zero elsewhere, and the number of constellation points is approximately proportional to the
volume of the shaping region [12]. Cubical shaping region is a cube bounded between −Ai and Ai

along the ith dimension. For a cubical shaping region, we have

P (C) ' P (R) =
1

3

n∑

i=1

A2
i ≤ P. (4)

Therefore, with the assumption of the continuous approximation, maximizing the rate is equivalent
with maximizing the volume of the shaping region,i.e.

V (R) =

n∏

i=1

Ai (5)

It is well known that maximizing the term in (5) subject to (4) is achievd by setting A1 = A2 =

... = An. Therefore, using equal energy is optimum in this sense.



4

At the receiver, a modulation scheme for each sub-channel is selected such that a target bit
error rate (BER), Pb, is achieved. The indices of the corresponding modulation schemes are sent
to the transmitter. The received SNR at the kth sub-channel is

SNRk =
Eλ2

k

σ2 + σ̂2
k

, (6)

where σ̂2
k is the corresponding noise variance caused by the quantization error in the kth sub-

channel. We consider a set of QAM modulation formats. The rate of the kth sub-channel, rk,
is computed such that rk = maxP (r,SNRk)≤Pb

r, where P (r, SNR) is the BER function of a QAM
modulation scheme in terms of the rate r and SNR. An approximation formula for P (r, SNR) is
given in [13]. If none of the modulation formats meets the desired BER in a given sub-channel, no
data stream is sent over that sub-channel.

III. FEEDBACK DESIGN: CHANNEL SINGULAR MATRIX QUANTIZATION

Noting that the receiver detects the sub-channels separately, the quantizers are designed to
minimize the interference between the sub-channels. The variance of the interference signal is

E(‖ΛU∗∆Ux‖2) = λ2ETr(U∗∆Uxx∗∆U∗U)

= λ2ETr(∆U∆U∗xx∗)

= λ2EE(‖∆U‖2), (7)

where E(Λ2) = λ2I the first M columns of U, ∆U is the corresponding quantization error and
Tr denotes the trace function. In deriving (7), we use the property that the singular values of a
Gaussian matrix with i.i.d. entries are independent from the corresponding singular vectors [14].
In the following, we develop two methods to quantize a unitary matrix to minimize (7).

We consider Givens rotation which decomposes a unitary matrix to the minimum number
of parameters (n2 − n parameters for an n × n matrix) [11]. An n × n unitary matrix U can be
decomposed in terms of the products of Givens matrices [11], i.e.

U =

n−1∏

k=1

n∏

i=k+1

G(k, i). (8)

Each G(k, i) consists of two parameters, ck,i and sk,i, where ck,i is in both the (k, k)th and the
(i, i)th positions, sk,i is in the (k, i)th position and −s∗k,i is in the (i, k)th position. The other
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diagonal elements of the matrix G(k, i) are 1 and the remaining elements are zero. Since G(k, i)

is a unitary matrix, then |ck,i|2 + |sk,i|2 = 1. In this work, we assume that the procedure of
decomposing the unitary matrix is performed such that ck,i is real and non-negative (See Appendix
A).

Theorem 1 If U is a singular matrix derived from an n × n Gaussian matrix with i.i.d. entries,
the set of Givens matrices G(k, i), 1 ≤ k < i ≤ n, in (8) will be statistically independent of each
other and the probability distribution function (PDF) of the elements of G(k, i) is

pck,i,∠sk,i
(c, ∠s) = pck,i

(c)p∠sk,i
(∠s) =

i − k

π
c2(i−k)−1, 0 ≤ c ≤ 1, ∠s ∈ [−π, π]. (9)

Proof: See Appendix A.
Based on the criterion presented for the quantizer design in (7), we define the distortion

measure as follows

D(Q, Q̂) =
1

2
E(‖Q − Q̂‖2), (10)

where Q̂ is the quantized version of Q and R(.) is the real part of (.). Using (8) and (10), we can
easily derive the first order approximation of the distortion measure for unitary matrix U as follows

D(U, Û) = ETr
(

I −R
(

n−1∏

l=1

n∏

j=l+1

Ĝ(l, j)(
n−1∏

l′=1

n∏

j′=l′+1

G(l′, j ′))∗

))

= ETr
(

I −R
(

n−1∏

l=1

n∏

j=l+1

(Ĝ(l, j) − G(l, j) + G(l, j))(
n−1∏

l′=1

n∏

j′=l′+1

G(l′, j ′))∗

))

' E
n−1∑

k=1

n∑

i=k+1

TrR
(

k∏

l=1

i−1∏

j=l+1

G(l, j)

(
G(k, i) − Ĝ(k, i)

) n∏

j=i+1

G(k, j)
n−1∏

l=k+1

n∏

j=l+1

G(l, j)(
n−1∏

l′=1

n∏

j′=l′+1

G(l′, j ′))∗

)

= ETr
(
R
(

n−1∑

k=1

n∑

i=k+1

(
G(k, i) − Ĝ(k, i)

)
G∗(k, i)

))

= ETr
(

n−1∑

k=1

n∑

i=k+1

(
I −R(Ĝ(k, i)G∗(k, i))

))

=
n−1∑

k=1

n∑

i=k+1

D(G(k, i), Ĝ(k, i)). (11)
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We assess the accuracy of approximations in (11). For simplicity, we change the notation of Givens
matrices as follows,

U =
N∏

k=1

Gk, (12)

where N = n2−n
2

. We define δk1 = ck − ĉk, δk2 = ck − ĉk, δk =
√

δ2
k1 + δ2

k2, and ∆k =

(Gk − Ĝk)/δk. Note that ∆k is a unitary matrix. The distortion of the unitary matrix is re-written
as follows

D(U, Û) = ETr(I −R(
N∏

k=1

Ĝk(
N∏

i=1

Gi)
∗)) '

N∑

k=1

D(Gk, Ĝk). (13)

We evaluate ErD(U,bU), the approximation error in (13). ErD(U,bU) consists of the terms with multi-
pliers (Gk − Ĝk) of order two or higher.

ErD(U,bU) = ERTr
(

N−1∑

m=1

N∑

k=m+1

m−1∏

i=1

Gi(Ĝm − Gm)
k−1∏

j=m+1

Gj(Ĝk − Gk)
N∏

l=k+1

Gl(
N∏

r=1

Gr)
∗

+... +
N∏

i=1

(Ĝk − Gk)(
N∏

r=1

Gr)
∗

)

= ERTr
(

N−1∑

m=1

N∑

k=m+1

m−1∏

i=1

Giδm∆m

k−1∏

j=m+1

Gjδk∆k

N∏

l=k+1

Gl(
N∏

r=1

Gr)
∗

)

+... + ERTr
(

N∏

i=1

δi∆i(

N∏

r=1

Gr)
∗

)
. (14)

Using the fact that R(Tr(W)) ≤ n, where W is an n × n unitary matrix and assuming δk ≤ δ for
1 ≤ k ≤ N , the approximation error is bounded as follows

ErD(U,bU) ≤
N∑

k=2

N !

(N − k)!k!
δk.

For example, for n = 4, we have

ErD(U,bU) ≤ 15δ2 + 20δ3 + 15δ4 + 6δ5 + δ6.

From our expriments, when the number of allocated bits to each Givens matrix is moderately high
(4 bits ), ErD(U,bU) is negligible.
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1) Method A: The parameters of G(k, i), ck,i and θk,i = ∠sk,i, are quantized as ĉk,i and θ̂k,i,
independently, for 1 ≤ k < i ≤ n. The matrix Ĝ(k, i) with the corresponding parameters ĉk,i and
ŝk,i is constructed at the transmitter, using

ŝk,i =
√

1 − ĉ2
k,ie

jbθk,i, (15)

which forces Ĝ(k, i) to be a unitary matrix. Alternatively, one can quantize the underlying complex
values using polar representation [15]. Using (15) and applying the first order approximation, we
have (See Appendix B)

‖G(k, i) − Ĝ(k, i)‖2 ' 2

1 − c2
k,i

(ck,i − ĉk,i)
2 + 2(1 − c2

k,i)(θk,i − θ̂k,i)
2 1 ≤ k < i ≤ n (16)

Substituting (16) in (11) and using (9), we have

D(U, Û) '
n−1∑

k=1

n∑

i=k+1

E

(
(ck,i − ĉk,i)

2

1 − c2
k,i

)
+

1

2(i − k) + 1
E(θk,i − θ̂k,i)

2. (17)

Noting (17), we design Linde-Buzo-Gray (LBG) quantizers for ck,i and θk,i to minimize E
(

(ck,i−bck,i)
2

1−c2
k,i

)

and, E(θk,i − θ̂k,i)
2, 1 ≤ k < i ≤ n, respectively. The quantizer for θk,i follows the conventional

approach to iterative design of a scalar LBG quantizer [16], while for parameter ck,i the iterative

design procedure should use the following reconstruction value, ĉk,i =
E(

ck,i

1−c2
k,i

)

E( 1

1−c2
k,i

)
, which is easily

derived by setting ∂
∂bcE

(
(c−bc)2
1−c2

)
= 0.

We utilize dynamic programming to find the optimum bit allocation among the quantizers.
First, we design b-bit quantizers for ck,i and θk,i, for 1 ≤ k < i ≤ n and 0 ≤ b ≤ B. Then,
we calculate µb(ck,i) = E

(
(ck,i−bck,i)

2

1−c2
k,i

)
, and µb(θk,i) = 1

2(i−k)+1
E(θk,i − θ̂k,i)

2 using the PDF of
ck,i and θk,i given in 9, for 1 ≤ k < i ≤ n and 0 ≤ b ≤ B. We use a trellis diagram with
B states and n2 − n stages to allocate B bits to the quantizers corresponding to ck,i and θk,i,
1 ≤ k < i ≤ n. In the trellis diagram, each branch represents the difference between the number
of bits corresponding to the two ending states on the branch. The metric of hte branch connecting
the lth state at the (j − 1)th trellis stage to the (l + b)th state at the jth trellis stage is µb(ϑj),
where ϑj is the quantization parameter corresponding to the jth stage. The search through the
trellis determines the path with the minimum overall distortion and the corresponding number of
bits for each parameter. The overall additive metric along a given trellis path is equal to the overall
distortion given in (11). Examples of the bit allocation for the Givens parameters of a 3×3 unitary
matrix is provided in Table I.
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TABLE I

THE BIT ALLOCATION FOR DIFFERENT GIVENS PARAMETERS.

θ1,2 θ1,3 θ2,3 c1,2 c2,3 c1,3 Total bits
3 3 3 2 2 1 14
4 4 4 3 3 2 20

2) Method B: In this method, we quantize each Givens matrix as one unit. Let us define
a new parameterization as follows: c = cos(η) and s = ejθ sin(η), where 0 ≤ θ ≤ 2π and
0 ≤ η ≤ π. We use the LBG algorithm to determine the regions and centroids of the two-
dimensional quantizers corresponding to various (η, θ) for each Givens matrix. Using (10), the
distortion function of a Givens matrix is

D =
T∑

m=1

∫

Rm

(1 − cos(η) cos(ηm) + sin(η) sin(ηm) cos(θ − θm)) p(η, θ)dηdθ, (18)

where Rm is the mth quantization region and T is the number of quantization partitions. The
centroid (ηm, θm) is determined iteratively by minimizing the distortion function in the region Rm

(See Appendix C)
θm = tan−1(

ςm
γm

), (19)

ηm = tan−1

( √
ς2
m + γ2

m∫
Rm

cosl+1(η) sin(η)dηdθ

)
, (20)

where γm =
∫

Rm
cosl(η) sin2(η) cos(θ)dηdθ, ςm =

∫
Rm

cosl(η) sin2(η) sin(θ)dηdθ, and l = 2(i −
k) − 1, in the case of quantizing G(k, i) in (8). In this method, similar to the earlier case, a trellis
diagram is used for the optimum bit allocation. The trellis diagram contains n2−n

2
stages, each

corresponding to a Givens component of an n×n unitary matrix, and B states where B is the total
number of bits.

IV. PERFORMANCE EVALUATION

Fig. 1 shows the average bit rate versus SNR for different MIMO systems with M = 3 at the
target BER= 5× 10−3. Method B outperforms method A at the cost of a higher complexity for the
codebook search. It is observed that the performance gain, compared to the gain of a 3 × 3 open
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loop MIMO system with the ML decoding, is noticeable. We also compare the performance of
the proposed system with that of a V-BLAST system which is proposed as a solution to overcome
the decoding complexity at the receiver. Note that as the receiver in the proposed method decodes
the sub-channels separately, the decoding complexity is similar to that of the V-BLAST. Fig. 1
displays a significant improvement in comparison with the V-BLAST, showing the gain achieved
through feedback.

10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

SNR

Bi
te

 ra
te

Rate Alloc. perfect CSI at the transmitter
VBLAST
Open Loop (Maximum Likliehood)
Rate Alloc.  27 bits (Method B)
Rate Alloc.  27 bits (Method A)

Fig. 1. The average bit rate for different schemes where M = 3. The target BER= 5 × 10
−3.

In [9], the authors use Householder reflections to decompose an n×m, m ≤ n unitary matrix
into m unit-norm vectors with different dimensions, q1 ∈ Sn, q2 ∈ Sn−1, ..., qm ∈ Sn−m+1, where
St = {u ∈ Ct :‖ u ‖= 1}. Then, vector quantization is applied to separately quantize q1 to qm.
In [4], a method which has been proposed in [17] (to design unitary space-time constellations) is
used to directly quantize the precoding unitary matrices.

We transmit two independent streams of 64-QAM symbols over the two sub-channels with
the higher SNR and the third sub-channel is left empty. In Fig. 2, we plot the BER of this system
using different quantization methods. In this scenario, the right singular matrix is fed back by 9

bits in each block. The bit allocation for different methods is shown in Table II, and the codebook
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Fig. 2. The bit error rate for different schemes in a 3 × 3 MIMO system sending 2 64-QAM streams

search complexity of different quantization methods is compared in Table III. In order to search
a codebook in the method proposed in [9], one needs to perform 32 vector multiplications of
size 3, 32 norm calculations and 32 comparisons to select the corresponding q1. Similarly, 16

vector multiplications of size 2, 16 norm calculations and 16 comparisons is needed to select
the corresponding q2. In the method used in [4], one needs to perform exhaustive search among
29, 3 × 3 matrices, requiring 29 matrix multiplications and 29 trace calculations. Note that the
complexity of SVD, Givens rotations and Householder reflection is in the order of n3 for an n× n

matrix [11]. Although the method in [9] and the unitary space-time constellation design used in
[4] outperform our quantization schemes, our proposed methods have a much lower complexity.

V. CONCLUSION

In this work, we have presented efficient methods for the channel information quantization
in a MIMO system. We have developed efficient algorithms for the quantization of the underly-
ing unitary matrices. Simulation results show a significant improvement as compared to a MIMO
system without feedback, at the cost of a low-rate feedback link and a small increase in the com-
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TABLE II

THE BIT ALLOCATION FOR METHOD A, METHOD B AND HOUSEHOLDER REFLECTION METHOD

c1,2 c1,3 c2,3 θ1,2 θ1,3 θ2,3

1 1 1 2 2 2

G(1, 2) G(1, 3) G(2, 3)

3 3 3

q1 q2

5 4

TABLE III

THE CODEBOOK SEARCH COMPLEXITY OF DIFFERENT METHODS ARE COMPARED.

Givens(Method A) Givens(Method B) Householder [9] Space-time Constel. [17]
Multiplications 18 72 768 9216

Additions 0 48 384 8704
Comparisons 18 24 48 512

putational complexity.

APPENDIX A

It is a simple matter to zero a specified entry in a vector by using a Givens matrix. Based
on this fact, there is an iterative algorithm to find the Givens matrices of a unitary matrix. In
each iteration step, a Givens matrix is multiplied by the resulting matrix of the last step to zero a
specified entry of the product matrix. The process of decomposing n × n unitary matrix U into its
first n − 1 Givens component can be formulated as follows [11]:

Q0 = U,

Qi = G∗(1, i + 1)Qi−1, 1 ≤ i ≤ n − 1 (21)
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where the superscript represents the iteration number. The elements of G(1, i + 1) are determined
such that qi

i+1,1 = 0, 1 ≤ i ≤ n−1, where qi
kl is the corresponding (k, l) element of Qi . Therefore,

the first column of Qn−1 is zero except for the first element. We signify the parameters of G(1, i+1)

by ci and si, which can be easily computed regarding to the procedure in (21) as follows:

ci =

√∑i

l=1 |ul1|2√∑i+1
l=1 |ul1|2

, (22)

and
si =

−e−j∠u11u(i+1)1√∑i+1
l=1 |ul1|2

, (23)

where ukl = |ukl|ej∠ukl is the corresponding (k, l) element of U. This process can be repeated for
the following columns of the matrix Qn−1, until it becomes a diagonal matrix Dn. Note that in this
decomposition parameter c in each Givens matrix is real and non-negative. Suppose U is decom-

posed to its Givens components based on the above algorithm such that U =
n−1∏

k=1

n∏

i=k+1

G(k, i)Dn.

Then, the SVD of the channel matrix can be written as follows

H = VΛ

(
n−1∏

k=1

n∏

i=k+1

G(k, i)Dn

)∗

= (VD∗
n)Λ

(
n−1∏

k=1

n∏

i=k+1

G(k, i)

)∗

. (24)

Note that diagonal matrices Λ and Dn are commutative and VD∗
n is a unitary matrix. It can be

inferred from (24) that the set of Givens matrices with the format we have introduced provide
enough information to represent the required spatial information of the channel at the transmitter.

We are interested in the probability distribution of the singular matrices1 of the complex
Gaussian channel matrix in the space of M(n), namely the group of n × n unitary matrices. It is
known that such a random unitary matrix takes its values uniformly from M(n) in the sense of the
following property [18].

Theorem 2 Let us assume that U is a singular matrix of a random Gaussian matrix. For all
V ∈ M(n), the distribution of U and VU are the same.

1The probability distribution of a matrix is the joint PDF of its elements.
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Such a distribution is called the Haar distribution and the corresponding unitary matrices are called
Haar unitary matrices [18]. We refer to this property as the right invariance property. Also, the left
invariance property can be easily derived from Theorem 2.

By using the right invariance property, the joint probability density p(u11, u21, ..., un1) of the
elements of the first column of U is [18]

p(u11, u21, ..., un1) =
2πn

Γ(n)
δ

(
1 −

n∑

l=1

|ul1|2
)

, (25)

where δ(.) is Kronecker delta function. By integrating (25) over the variables u(k+1)1, ..., un1, we
find the following expression for the joint probability density of elements u11, u21, ..., uk1:

p(u11, u21, ..., uk1) = K

(
1 −

k∑

l=1

|ul1|2
)n−k−1

, k < n (26)

where K is a constant. The joint probability density of the absolute values of the elements of the
first column of U can be easily derived as follows:

p(|u11|, |u21|, ..., |uk1|) =

∫
p(u11, u21, ..., uk1)|u11||u21|..|uk1|dθ11dθ21..dθk1

= (2π)kK

(
1 −

k∑

l=1

|ul1|2
)n−k−1 k∏

l=1

|ul1|. (27)

To determine the probability density of ci in (22), we define the parameters v0, v1, .., vi as follows:

v0 = |u11|, v1 = |u21|, ..., vi = |u(i+1)1|.

First, we compute the joint density function of ci in (22) and |ul1|, 2 ≤ l ≤ i + 1,

p(v1, .., vi, ci) =
p(|u21|,..,|u(i+1)1|)

(
vi, .., v1,

√
c2i v2

i

1−c2i
−
∑i

l=1 v2
l

)

Joc|u21|,..,|u(i+1)1|(v1, .., vi, ci)
, (28)

where Joc is as the Jacobian representation and can easily be calculated,

Joc|u21|,...,|u(i+1)1|(v1, v2, ..., vi, ci) = | dci

dv0

|

=
v0(1 − c2

i )2

v2
i ci

. (29)
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If (27) and (29) are substituted into (28), then

p(|u21|, ..., |u(i+1)1|, ci) = (2π)kK

(
1 − |u(i+1)1|2

1 − c2
i

)n−i−1 |u(i+1)1|3
(1 − c2

i )2
ci

i+1∏

l=2

|ul1|. (30)

The marginal distribution of ci in (22) can be calculated from the joint distribution of {|ul1|}i+1
l=1

using (27),
p(ci) = 2ic2i−1

i . 0 ≤ ci ≤ 1 (31)

The joint distribution of {cl}i
l=1 is computed by using (22) and (27),

p(v0, c1, ..., ci) =
p(v0, v1, ..., vi)

Jocv0,v1,...,vi
(v0, c1, ..., ci)

, i ≤ n − 1 (32)

where

Jocv0,v1,...,vi
(v0, c1, ..., ci) = Πi

l=1(
vlc

2(i−l)+3
l

v02
). (33)

Substituting (27) and (33) in (32), we can write

p(|u11|, c1, ..., ci) = (2π)kK

(
1 − |u11|2Qi

l=1 cl2

)n−i−1

|u11|2i+1

∏i

l=1 c
2(i−l)+3
l

, (34)

and then,

p(c1, ..., ci) =

∫
p(|u11|, c1, ..., ci)d|u11| =

i∏

l=1

(2lc2l−1
l ). (35)

The comparison of the joint distribution and the marginal distribution of {ci}n−1
i=1 in (35) and (31),

respectively, implies that {ci}n−1
i=1 are statistically independent of each other.

In order to parameterize a Givens matrix in the format we stated, it is only necessary to have
ci and the angle of complex si (Note that c2

i + |si|2 = 1). The probability distribution of the angles
of the elements of a column of the Haar unitary matrix is uniformly distributed and independent
[14]. Considering this argument and (23), we have

p(∠si) =
1

2π
. − π ≤ ∠si ≤ π (36)

After n − 1 step of the decomposition process, the first column of Qn−1, defined in (21), has one
non-zero element, and Qn−1 is in the following format:

Qn−1 =

(
ej∠u11 0

0 V

)
, (37)
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where V is an (n − 1) × (n − 1) unitary matrix. In the following, we prove that V and the set
{G(1, i)}n

i=2 are statistically independent. Since matrices {G(1, i)}n
i=2 are derived from the first

column of U, namely u1, it is sufficient to show that V and u1 are independent.
It is easy to show that the set of unitary matrices with a fixed first column in M(n) and the

group M(n−1) are bijective. To show this, consider a given n×n unitary matrix A with a fixed first
column a1, and an n×n unitary matrix W = diag(1, Y), where Y is an arbitrary (n− 1)× (n− 1)

unitary matrix. Using B = AW and noting that B and W are invertible, we conclude that there
exists a one-to-one correspondence between B and W. On the other hand, according to Theorem 2,
the probability distribution of A and B are the same.

Noting the above arguments, we conclude that the probability density of U conditioned on u1

is distributed uniformly in M(n − 1). This means the probability density of V in (37) conditioned
on u1 is distributed uniformly in M(n − 1) and therefore is statistically independent of u1.

Similarly, the decomposition algorithm described in (21) is applied on V and all the statistical
arguments about U can be extended to V.

APPENDIX B

In this part, the first order approximation of ‖G − Ĝ‖2 is derived.

‖G − Ĝ‖2 = 2(c − ĉ)2 + 2|
√

1 − c2ejθ −
√

1 − ĉ2ejbθ|2

= 2(c − ĉ)2 + 2|
√

1 − c2ejθ −
√

1 − c2ejbθ +
√

1 − c2ejbθ −
√

1 − ĉ2ejbθ|2

= 2(c − ĉ)2 + 2(1 − c2)|ejθ − ejbθ|2 + 2|ejbθ|2|
√

1 − c2 −
√

1 − ĉ2|2

+4R((ej(θ−bθ) − 1)
√

1 − c2(
√

1 − c2 −
√

1 − ĉ2))

' 2(c − ĉ)2 + 2(1 − c2)(θ − θ̂)2 +
2c2

1 − c2
(c − ĉ)2

+2(θ − θ̂)2
√

1 − c2(
√

1 − c2 −
√

1 − ĉ2)

' 2(c − ĉ)2 + 2(1 − c2)(θ − θ̂)2 +
2c2

1 − c2
(c − ĉ)2

=
2

1 − c2
(c − ĉ)2 + 2(1 − c2)(θ − θ̂)2. (38)

The approximation error in (38) is

Er = ‖G − Ĝ‖2 − 2

1 − c2
(c − ĉ)2 + 2(1 − c2)(θ − θ̂)2. (39)
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Or equally,

Er = 2(1 − c2)(|ejθ − ejbθ|2 − (θ − θ̂)2) + 2(|
√

1 − c2 −
√

1 − ĉ2|2 − 2c2

1 − c2
(c − ĉ)2)

+4R((ej(θ−bθ) − 1)
√

1 − c2(
√

1 − c2 −
√

1 − ĉ2)) (40)

The error can be bounded as follows

|Er| ≤ |2(1 − c2)(|ejθ − ejbθ|2 − (θ − θ̂)2)| + |2(|
√

1 − c2 −
√

1 − ĉ2|2 − 2c2

1 − c2
(c − ĉ)2)|

+4|R((ej(θ−bθ) − 1)|
√

1 − c2(
√

1 − c2 −
√

1 − ĉ2))

= |2(1 − c2)(4 sin2(
θ − θ̂

2
) − (θ − θ̂)2)| + |2(|

√
1 − c2 −

√
1 − ĉ2|2 − 2c2

1 − c2
(c − ĉ)2)|

+8 sin2(
θ − θ̂

2
)
√

1 − c2(
√

1 − c2 −
√

1 − ĉ2)).

Using the Tylor series to expand
√

1 − ĉ2 and sin2( θ−bθ
2

), we have

|Er| .
1 − c2

6
(θ − θ̂)4 +

2c|c − ĉ|3
1 − c2

+c
√

1 − c2(c − ĉ)(θ − θ̂)2.

APPENDIX C

The joint probability of the parameters η and θ of the Givens matrix G(k, i) can be easily
derived regarding to (9) as follows:

p(η, θ) =
i − k

π
sin(η) cos(η)2(i−k)−1. (41)

We find the centroid (ηm, θm) in mth region for the LBG quantizer in Section III-.2, which is the
minimizing point of the following function:

DRm
=

∫

Rm

Dm(G)p(η, θ)dηdθ

=

∫

Rm

(1 − (cos(η) cos(ηm) + sin(η) sin(ηm) cos(θ − θm)))p(η, θ)dηdθ (42)

We find the centroid (ηm, θm) by forcing the partial derivatives of DRm
to zero. The partial

derivative of DRm
respect to θm is,

∂

∂θm

DRm
= sin(ηm)

∫

Rm

(sin(θm) cos(θ) − cos(θm) sin(θ)) sin(η)p(η, θ)dηdθ. (43)
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By setting (43) to zero, we have,

tan(θm) =

∫
Rm

sin(η) sin(θ)p(η, θ)dηdθ∫
Rm

sin(η) cos(θ)p(η, θ)dηdθ
. (44)

The partial derivative of DRm
respect to ηm is,

∂

∂ηm

DRm
=

∫

Rm

(cos(η) sin(ηm) − sin(η) cos(ηm) cos(θ − θm))p(η, θ)dηdθ. (45)

Similarly, we set (45) to zero to find ηm. Therefore, we have,

tan(ηm) =
cos(θm)

∫
Rm

sin(η) cos(θ)p(η, θ)dηdθ + sin(θm)
∫

Rm
sin(η) sin(θ)p(η, θ)dηdθ∫

Rm
cos(η)p(η, θ)dηdθ

. (46)

By using the results in (41), (44) and (45), (20) can be easily derived.
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