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Abstract

In this work, the problem of reducing the Peak to Average Power Ratio (PAPR) in an Or-

thogonal Frequency Division Multiplexing (OFDM) system is considered. We design a cubic

constellation, called the Hadamard constellation, whose boundary is along the bases defined by

the Hadamard matrix in the transform domain. Then, we further reduce the PAPR by applying the

Selective Mapping technique. The encoding algorithm is derived from a decomposition, known

as the Smith Normal Form (SNF), and has a minimal complexity. This new technique offers a

PAPR that is approximately � dB to � dB lower than that of the best known techniques without

any lose in terms of energy and/or spectral efficiency and without any side information being

transmitted. Moreover, it has a low computational complexity.



2

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier transmission

technique which is widely adopted in different communication applications. OFDM pre-

vents Inter Symbol Interference (ISI) by inserting a guard interval and mitigates the fre-

quency selectivity of a multi-path channel by using a simple equalizer. This simplifies

the design of the receiver and leads to inexpensive hardware implementations. Moreover,

OFDM offers some advantages in higher order modulations and in the networking oper-

ation that position OFDM as the technique of choice for the next generation of wireless

networks. However, OFDM systems have the undesirable feature of a large Peak to Aver-

age Power Ratio (PAPR) of the transmitted signals. Consequently to prevent the spectral

growth of the OFDM signal, the transmit amplifier must operate in its linear regions. There-

fore, power amplifiers with a large linear range are required for OFDM systems, but such

amplifiers will continue to be a major cost component of OFDM systems. Consequently,

reducing the PAPR is pivotal to reducing the expense of OFDM systems.
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Fig. 1. Basic OFDM transmitter and receiver.

Fig. 1 shows a basic block diagram of an OFDM transmitter and receiver. Let
���������
	��
��	��
�
�
	���������� denote a vector of ��� Dimensional ( ��� -D) constellation point

selected from a set of � identical � -D sub-constellations, �
���
	��
��	��
�
��	���������� , to be trans-

mitted by using one OFDM vector of size � ; namely, � .
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The discrete time samples of the OFDM signal can be expressed as

��� � �� �
������ � � � �

�	��

���������� (1)

The matrix representation of this signal is

� ��� ����	 (2)

where � ������� �
�
��� �����
��� , � ��� ��� �
�
� ����������� , and � � is the IFFT matrix,
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The � -D constellation points, �
� �
	��
��	��
�
� 	���������� , may add constructively and produce a

time domain signal with a large amplitude. Thus, the output signal � can have high output

levels, which leads to the requirement of an expensive analog front end.

Usually, the level of the amplitude fluctuation of the discrete time OFDM signal is

measured in terms of the peak factors that indicate the ratio of the peak power to the average

envelop power of the signal as

PAPR � � ��� 243�57698 � 6�8
�

:<;>= ���? � ? ��@ � (4)

Also, the continuous time PAPR is typically estimated by the discrete time PAPR by em-

ploying the IFFT of length A�� for the zero padded sequence of length A�� derived from

the sequence �����
	��
��	��
�
�
	 ��������� in (1) [1–3]. Therefore,

�B� �C�D�FEHGI� � � A� A��
J ������ � � � �&K

� ��

��� ���LM� 	 (5)
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where

�&K� � ���� �
�
	 for ��� � 	� 	 for ��� � � (6)

and A is the oversampling factor.

Lastly, (7) is the real representation of the complex equation in (2). "
	�� � � �
 2 � � �
.1 �  "�	�� � � � ��� 
 2 � � � �
 2 � � � � 	�� � � � �

.1  "�	�� � � �
 2 � � �
.1 � (7)

Since we focus on only real matrices, we use the same notation as (2) for (7).

A large number of methods for the PAPR reduction have been proposed [3–18]. In

[4,5], coding techniques are used for PAPR reduction; however, codes offering a low PAPR

can be constructed only at the cost of sacrificing the data rate.

Clipping the OFDM signal before amplification is a simple and typical method for the

PAPR reduction [6–8]. In [3, 9, 10], the effect of oversampled and clipped OFDM signals

are analyzed.

There are two probabilistic schemes to reduce the PAPR. One is the Partial Transmit Se-

quence (PTS) [11] in which each block of subcarriers is multiplied by a constant phase

factor, and these phase factors are optimized to minimize the PAPR. The other scheme is

Selective Mapping (SLM) in which multiple sequences are generated from the same in-

formation, and the sequence with the lowest PAPR is transmitted [12–14]. Typically, the

receiver needs to know which sequence is selected in order to recover the data. However,

the methods introduced in [11–14] eliminate the need for this explicit side information.

In [15], a new constellation technique is developed. It extends the outer constellation points

to minimize the PAPR of the OFDM symbol. In [16–18], a constellation shaping technique

is proposed to reduce the PAPR of the OFDM signals. The encoding and decoding algo-

rithms of this method are based on the relations and generators in a free Abelian group. Due

to the large complexity of this algorithm, its practical implementation is very challenging.

In this paper, we proposed a constellation as a shaping method in an OFDM system

with a low complexity encoding method, based on [16], and a considerable PAPR reduc-
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tion. An SLM method is applied in conjunction with our constellation to further reduce the

PAPR in the OFDM signals.

The rest of this paper is organized as follows. In Section II, constellation shaping

is introduced. A brief description of the work in [16] is also given. Section III describes

the Hadamard constellation as a shaping method in OFDM systems. Some issues of the

encoding and decoding algorithms are also investigated. An SLM method is applied to the

Hadamard constellation in Section IV. Section V is devoted to some numerical results and

a comparison of our method with some recent works. The paper is concluded in Section

VI.

II. CONSTELLATION SHAPING

In constellation shaping, a constellation in the frequency domain must be found such

that the resulting shaping region in the time domain has a low PAPR. A new constellation

shaping method is introduced in [16–18] by Kwok and Jones. Based on the encoding

algorithm introduced in [16], we propose a cubic constellation, along with an SLM method

to reduce the PAPR in an OFDM system.

In a PAPR reduction problem, the peak value of the signal vector should be bounded

by a specified value ? � ?�� ��� . If the real time signal is related to the real frequency

constellation point by � ��� � , this inequality on the time domain boundary translates to

a parallelotope1 in the frequency domain, defined by � ��� . The points inside this paral-

lelotope are used as constellation points in transmitting the OFDM signals. The principal

challenge in constellation shaping is to find a unique way to map the input data to the

constellation points such that the mapping (encoding) and its inverse (decoding) can be

implemented by a reasonable complexity. In [16], the relations and generators in a free

Abelian group in the integer domain are used so that the parallelotope corners lie in the

integer lattice. Therefore, the constellation boundary is based on a parallelotope, defined

by � � ���
	�� ���
� , where � � � represents rounding, and 	 is the smallest value to have the

same constellation points as those of the unshaped constellation.'
The parallelotope bases are defined along the columns of � %(' .
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The shaped constellation for an OFDM system is the quotient group, �
����� � � � � ,

where �
�

is the � -D integer space and
� � � � � is the lattice defined by � � . The encoding

of this constellation is performed by the decomposition of the relation matrix � � , based on

column and row operations [16]. Indeed, in the mathematical literature this decomposition

is known as the Smith Normal Form (SNF) of an integer matrix [19].

The SNF is a diagonalization of a matrix in the integer domain. Introduced by Smith

[20], this concept has been used in many applications in many fields such as solving lin-

ear diophantine equations, finding the permutation equivalence and similarity of matrices,

determining the canonical decomposition of the finitely generated Abelian groups, integer

programming, computing additional normal forms, including Frobenius and Jordan nor-

mal forms, and separable computing of the discrete Fourier transform. For more historical

remarks and applications of the SNF, see [21–23].

The SNF is well known theoretically, but can be difficult to compute in practice be-

cause of the potential for rapid growth in the size of the intermediate expressions. However,

there are a number of algorithms to compute the SNF decomposition of an integer matrix,

and there are some polynomial time algorithms for this decomposition in special cases

[22, 24–27]. The following theorem and its corresponding algorithms can be used, instead

of the column and row operations in [16].

Theorem 1: Any integer matrix � � can be decomposed into � � �����
	 , where

� is diagonal with the entries ��� 6 � �6 � � such that �
� 8 � � 8 �
�
� 8 ��� , and � and 	 are

unimodular matrices. The matrix � is called the SNF of the matrix � � [19].

The condition ��� 8 � � 8 �
�
� 8 ��� in Theorem 1 is defined for finding a unique decomposition

and can be ignored in the encoding procedure.

The complexity of this algorithm is the result of the computation of the SNF decom-

position for the matrix � � which is based on rounding off the scaled version of the IFFT

matrix. We can use the SNF decomposition methods for the encoding procedure; how-

ever, the computational complexity for OFDM systems that are defined by the IFFT matrix

remains very high.



7

In [17], it is shown that if the matrix ��� is replaced by the Hadamard matrix, the

encoding and decoding algorithm for the constellation based on this matrix can be imple-

mented by a butterfly structure that uses only bit shifting and logical AND. This simplicity

is hidden in the following recursive formula for the Hadamard matrix:

� � �
�

 " � � � %(' � � � %('� � � %(' � � � � %('
.1 	 where

� ����� � � � (8)

The SNF of (8) can be easily computed in (9).

�
� �
�

 " �
� � %(' �

�
� � %(' �

� � %('
.1 �

� �
�

 " �
� � %(' �� � �

� � %B'
.1

(9)

	
� �
�

 " 	
� � %(' 	

� � %('� � 	 � � %('
.1 � ���� � �

 " �
� � %B' �� � � � %(' �

� � %('
.1 	

where � ��� �
���� � � ��� 	 ����� � � .

Therefore, the encoding algorithm for this constellation can be represented by [16]�� � � ���� �
� � � � ��
� �

� � �� � � � �
� � IFFT � � � ,

(10)

where � � �
�
, and � is the canonical representation of integers 	 representing the constel-

lation points. The canonical representation of any integer can be calculated by the recursive

modulo operations; namely, 

��� 	 mod �
�	 ��� 	 � 
 �

���
 6 � 	 6 ��� mod � 6	 6 � 	 6 ��� � 
 6� 6 ,

(11)
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where
� ��� � � .

The reverse operation for finding 	 from the � -D vector � is� � � ���� � ��� 
 ��	 
 � 	��
�
�
	 
 � � � ,
�

 6 � 
 6 mod � 6 ,	 � �
 ��� ���	� �
 � � � � � �
�
� � �
 ������� ������� �
 � ���
�
����� . (12)

III. HADAMARD CONSTELLATION IN OFDM SYSTEMS

As mentioned in Section II, if the IFFT operations in OFDM multicarrier modulation

could be changed by the Hadamard matrix, a very simple encoding algorithm would result.

However, this type of multicarrier modulation is not very popular because it does not offer

all the advantages of conventional OFDM systems [28]. The constellation that should be

used in an OFDM system has a boundary along the bases of the IFFT matrix, but the encod-

ing of containing constellation points cannot be easily implemented. We propose a cubic

constellation, called the Hadamard constellation, for an OFDM system whose boundary is

along the bases defined by the Hadamard matrix in the transform domain. The IFFT and

Hadamard matrices are both orthogonal matrices, and therefore, the constellations along

these orthogonal bases are a rotated version of each other. This idea is illustrated in Fig.

2. By substituting the proper constellation along the IFFT matrix by the Hadamard matrix

in an OFDM system, the resulting PAPR is reduced; however, the encoding of this constel-

lation, based on the SNF decomposition of the Hadamard matrix, is simple and practical.

Moreover, the encoding algorithm can be implemented by a butterfly structure that uses bit

shifting and logical AND structures [16].

The advantage of using the Hadamard constellation is not only a simple encoding al-

gorithm with a low PAPR, but also the Hadamard constellation’s ability to be concatenated

with other methods. This motivates us to apply a Selective Mapping (SLM) technique

[29, 30] to the Hadamard constellation in an OFDM system. In typical SLM methods

[29, 30], the major PAPR reduction is achieved by the first few redundant bits. Employing

more redundant bits necessitates a high level of complexity to obtain modest improvements
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in the PAPR value. However, in the proposed SLM method, employing the Hadamard con-

stellation causes a considerable PAPR reduction by itself. As a result, this method, by just

using one or two redundant bits in SLM, significantly outperforms the other PAPR reduc-

tion techniques, reported in the literature. The details of this method will be explained in

the next section and will be confirmed by simulation results. In the following, we have in-

vestigated some issues that have emerged regarding the use of the Hadamard constellation

in an OFDM system.

Integer Lattice Points
Constellation Boundary Based on FFT Matrix
Constellation Boundary Based on Hadamard Matrix

Fig. 2. � -D signal constellation for IFFT and Hadamard matrix.

A. Complex Approximation

As stated in Section II, (7) can be applied to change the complex equations of an

OFDM system to real equations. This leads to the change of the constellation boundary.

Generally, we can distinguish between two classes of boundaries [31, 32]: 1) Cartesian

boundary that is resulted by viewing the real and imaginary parts of the signal as two sepa-

rate real signals, and 2) polar boundary that considers the envelope and phase of the OFDM

signal in a complex plain. Cartesian boundary limits each component of the complex sig-

nal within a square, while the polar boundary limits this component within a circle. In

this paper, we avoid the complex representation of the OFDM signal by treating the real
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and imaginary parts of the signal independently, which is equivalent to using a Cartesian

boundary.

B. Encoding Procedure

All the points inside the Hadamard constellation should be labeled by the encoding

procedure, introduced in (10) - (12). The number of points, inside the shaped constellation

is determined by the determinant of the Hadamard matrix,
� � � � � � � � .

Theorem 2: The constellation size for a �
���

�
�

Hadamard matrix is
� � � � � � � � �

�
� � � %('

.

Proof: Based on (9),
� � � � � � � � � � � � � � � � � , because the matrices ����� and 	��	� are

unimodular and their determinant is one. To prove this theorem, we use deduction. For a

�
�
� Hadamard matrix,� � � � � � ��� � � � 
�  " � �� �

.1
�� � � � �
��� � ' %(' � (13)

It is assumed that the claim is valid for a �

� �
�

�
Hadamard matrix. Based on (9), for a

�

���
�
�

�

���
�

Hadamard matrix,

�
� ��� ' �  " � � � �� � �

� � .1
� � � � � � � ��� ' ��� � � � � � � � � � �

� � � � � � � � � � �� � � � � � � ��� ' ��� �
� � � � � � � � � � � �
� �� � � � � � � ��� ' ��� �
� � ���

�

� � � %B'�� � � ��� ��� ��� � # ��� '*) %(' . (14)

According to the large Hadamard constellation size, the canonical representation of

the large numbers should be computed in the transmission of the OFDM signals. The

canonical representation can be simplified by using the fact that digital communication
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systems deal with binary input streams. Based on (12) in the encoding procedure, any

Integer 	 can be represented by	 � 
 � � ��� 
 � � ��� � � 
�� � �
�
� � ��� � �	� ������� 
 � 	 (15)

where � � �
�
, and �


 6 � �6 � � is the canonical representation of 	 with



��� � . Based on (9),

for a �
� �

�
�

Hadamard matrix, all � � 6 �
� �
6 � � are powers of � such that

� � 6 �
� �
6 � � � � � 	 � 	 � 	�� 	 � 	�� 	�� 	�� 	��
�
��	 � � � � (16)

Therefore, 	 � 
 � � �

��
� �

� 
 � � � �

 � �
�
� � �

� � � %B' � � 
 � � (17)

The representation of � � �
� � � %('

integers necessitate that E
	 ����
�� � � � � � E � � ��� bits, and

thus, the binary representation of 	 is expressed as	 � ��� � � ��� � �
�
� � � �

�
� � � �
�
� � �

��� ��� ����� ���
� ��� � � ��� � �

� ��� � � � �
� � � � � � � � � � ��� � �����$� �

�
�
� � �
� � � %(' � � ����� � � � � �
�
� � �

� ��� ��� � ���
� (18)

A comparison of (17) and (18) is depicted in Fig. 3. This representation will simplify

the encoding algorithm. Moreover, the problem of using large numbers in the encoding

procedure will be avoided.

��������� � � � � � � � ����������� �
�
� ����� � � �
�
������� ���
�� "!�#$ , �� "!�#$�%'& (�) *$�+ �� "!�#$-,.& (�) *$�/ �
�
� & (�) *$ �

Fig. 3. Mapping between binary representation of the information and 0�132�4 .
Theorem 2 shows the size of the Hadamard constellation for a �

� �
�
�

Hadamard

matrix is �
� � � %('

. Therefore, the transmission rate is related to the number of subcarriers

� � �
�

in the OFDM system2. This rate is unacceptable not only because of the depen-

dency on � but also because the value is usually much higher than the required rate. A,
For �6587

�
, the rate for each real component is 9;:=< ,�> 7 � ,@?�A�BDCFE �G5GH7 .
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selection method for the constellation points must be implemented such that the constel-

lation has the desired rate, and the constellation points have a uniform distribution in the

cubic constellation.

Noting (10) and (11), there is an isomorphism between the integer set� ��� � 	 � 	��
�
�
	 � � � � %B' � ���
(19)

and the set of the points within the Hadamard constellation. Equivalently, the set
�

can be

considered as a label group for the constellation points (refer to [33] for the definition). A

subgroup of constellation points results in a uniformly distributed subset of the Hadamard

constellation points. Consequently, this subgroup of constellation points is isomorphic to

a subgroup in the label group
�

. This subgroup can be selected such that its elements are

congruent to zero modulo � , namely�
� � 	�� � 8 	
	 � � mod � ��� 	 (20)

where � is determined by the ratio of the size of the Hadamard constellation, �
� � � %('

, and

the size of the constellation, ��� � , with the desired rate, 
 . Employing (10) and (11), the

labels in the subgroup

�
determine the set of uniformly distributed points in the Hadamard

constellation. Relying on the continuous approximation, such a uniform distribution affects

neither the probabilistic behavior of the PAPR nor the average energy of the constellation

points. Note that the Hadamard constellation is called the root constellation for the afore-

mentioned set of the uniformly distributed points in the sequel.

C. Decoding Procedure

A conventional Fast Fourier Transform (FFT) based receiver is considered for the

OFDM signal. At the receiver end, the time domain signal is filtered by a low pass filter

and sampled at the Nyquist rate. The samples are processed by an FFT to recover the con-

stellation point in the frequency domain. For an Additive White Gaussian Noise (AWGN)

channel, the received vector is given by �
� � ��� 	 (21)
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where � is the transmitted time domain signal in (10) and � is a zero-mean complex

AWGN. The approximated constellation point is written as�� � FFT �
� ��� � � FFT � � ��� � ��� K 	 (22)

where � is the transmitted constellation point, and � K is a zero-mean complex AWGN. The

maximum likelihood decoder simply rounds off the received constellation point
�� in the

integer domain. Then, the resulting constellation point is employed in (12) to decode the

transmitted information.

IV. SELECTIVE MAPPING

As mentioned in Section III, the complexity of using the Hadamard constellation in an

OFDM system is very low, and this shaping method can be concatenated by other methods.

In the following, we propose an SLM technique, applied to the Hadamard constellation to

further reduce the PAPR.

SLM is a method to reduce the PAPR in an OFDM system which involves generating

a large set of data vectors that represent the same information, where the data vector with

the lowest PAPR is used for the transmission. In some SLM methods, additional informa-

tion about which data is used should be transmitted to the receiver end. This will cause

potential problems with decoding the signal in the presence of noise, and will obviously

result in a loss in the transmission rate. We present a method to apply the SLM technique

to further reduce the PAPR in the constellation developed earlier, in which the need for the

transmission of side information is removed.

Assume that the data rate to be transmitted is 
 bits per block of length- � FFT sym-

bol. Let 
 � denote the number of redundant bits of 
 bits specified for SLM ( 
 � � 
 and
 � ��
�� � � � � � � constellation size ��� ). Consequently, � � � � ��� constellation points should

represent the same information. In this method, the input integers 	 are mapped to the

Hadamard constellation points, and the output integers are classified by the sets with the

same 
 � Most Significant Bits (MSBs). All the corresponding constellation points in each
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set represent the same information. The IFFT operation for all these constellation points in

each set is computed, and the constellation point with the lowest PAPR is transmitted.

The operation of our scheme can be described as follows. In the first step, a binary

information sequence is divided into blocks of 
 � 
 � bits. 
 � bits of zeros are added to

each information block, and then it is divided into subblocks of lengths equal to �3� 
�� � � 6 �
bits (refer to Fig. 3). The binary representations of these subblocks form the vector � in

(10). The other multiples of this vector are obtained by changing all the possible values for
 � MSBs of the binary information sequence. Then, � � different Hadamard constellation

points are produced by (10). The corresponding time domain OFDM signals result in var-

ious values for the PAPR. Finally, the constellation point with the lowest PAPR is selected

for transmission.

All the different constellation points that represent the same information have the

same 
 � 
 � bits. Thus, at the receiver end, the constellation point is decoded by (12),

and the 
 � extra bits are discarded, since the transmitted information is in the remaining
 � 
 � bits. Therefore, this method can be expressed as a variant of SLM in which no side

information on the choice of the transmit signal needs to be transmitted. The degradation

in the data rate can be ignored, since by using only one or two redundant bits, which are

fewer than those of data rate, a significant PAPR reduction is obtained.

The Hadamard constellation has a zero shaping gain3, due to its cubic boundary. Nu-

merical results show applying the SLM method to the resulting cubic constellation and

selecting the point with the lowest PAPR result in a reduction in the average energy, re-

flected in a small, however positive shaping gain. This justifies our earlier claim that the

reduction in the PAPR is achieved at no extra cost in terms of a reduction in the spectral

efficiency and/or an increase in the average energy of the constellation.%
Shaping gain is defined as the relative reduction in the required average energy for a given number of constellation

points with respect to a cubic constellation.
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V. SIMULATION RESULTS

In this section, we present simulations for a complex baseband OFDM system with

� � � � � subchannels employing
���

-QAM by using
� � �

randomly generated OFDM sym-

bols. First, we show the PAPR performance of the Hadamard constellation. The next step

is then to show the capability of the SLM technique, when it is applied to the Hadamard

constellation to achieve a significant PAPR reduction. Our simulation results are presented

as the Complementary Cumulative Density Function (CCDF) of the PAPR of the OFDM

signals. This is expressed as follows:

CCDF � PAPR � � ��� ��� � PAPR � � ����� � � (23)

This equation can be interpreted as the probability that the PAPR of a symbol block exceeds

some clip level � (it is referred as symbol clip probability [15]).

As mentioned in Section I, the PAPR is a major problem for the time domain signal,

that is, the effect of a large PAPR is in the continuous signal rather than in the discrete

signal. According to (5) and (6), the continuous PAPR can be estimated by the IFFT of

length A�� for the zero padded sequence of length A�� . Results for the oversampling toA � � 	 � 	 and � are reflected in Fig. 4. The continuous PAPR can be approximated by

the oversampling A � � . As mentioned in [1–3], further oversampling will result in minor

improvements only. We have a PAPR reduction of more than � dB close to the
� � � �

symbol

clip probability.

Increasing the OFDM block length � causes the PAPR of the conventional OFDM

signal to increase. As plotted in Fig. 5 for the different values of � �	� � 	 � � 	 and
� � � ,

the PAPR of the OFDM system changes very little. The effect of the constellation size,

when the Hadamard constellation is used in the OFDM system is also investigated. Like

conventional OFDM systems, employing different constellations in each subchannel does

not affect the PAPR of the OFDM signal, since all the constellation points have the same

root constellation. Employing different constellations in subchannels is equivalent to hav-

ing various data rates. As mentioned before, all the constellations with the lower number

of points are selected from a root constellation that is defined by the Hadamard matrix.
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This result is exhibited in Fig. 6. Employing other modulation schemes in the previous

simulations results in minor changes only of all the depicted PAPR statistics. According to

these simulations, the use of the Hadamard constellation in OFDM systems as a constella-

tion shaping method considerably reduces the PAPR with a low complexity encoding and

decoding algorithm which can be easily implemented.

Fig. 7 offers the simulation results of implementing our SLM technique, applied to

the Hadamard constellation in the simulated OFDM system. The PAPR probability for
 � � � 	 � 	 and � redundant bits is depicted.

As it is illustrated in Fig. 7, using only one bit in � � � � � bits per block of length
� � �

FFT symbol 4 results in a � � � dB improvement in the PAPR reduction; more redundant bits

further reduces the PAPR.

A. Some Insight to the Achieved Performance

In a conventional OFDM system with � different subcarriers, the time domain sam-

ples can be approximated by zero mean Gaussian random variables, based on adopting the

central limit theorem. Therefore, the amplitude of these samples has a Rayleigh distribu-

tion, and the CCDF of the PAPR of the OFDM signal can be approximated as follows:

� � PAPR � � ����� � � � � � � � �
��� � � � (24)

The use of � � statistically independent vectors that have the same information for trans-

mission in the SLM method changes the CCDF of the PAPR of the OFDM signal such

that
� � PAPR � � � � � � ��� � � � � � �

��� � ��� � � � (25)

Therefore, in the logarithmic CCDF vs. PAPR graph, the slope of the depicted line is

proportional to � � (see Fig. 8). By increasing the number of vectors with the same infor-

mation, the slope of the CCDF vs. PAPR graph increases. Thus, the major PAPR reduction+
By using �	� -QAM in a 128 channel OFDM system, there are �	� ' ,�
 587 +
� ' ,�
 constellation points.
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is gained by the first few redundant bits, and the PAPR reduction which is gained by the suc-

cessively doubling of � � is lower in each step, as it is shown in Fig. 8 ( � � � �
�
� �
�
� ).

This is the reason that we have applied the SLM technique to the Hadamard constella-

tion. As mentioned in Section IV, the method employing only the Hadamard constellation

considerably reduces the PAPR. By Adopting the Hadamard constellation in the proposed

SLM method, not only can we lower the PAPR considerably, but also we can approxi-

mately maintain the slope of the CCDF vs. PAPR curve. Therefore, by using just one or

two redundant bits, we can further reduce the PAPR. By using eight redundant bits in the

general SLM methods in an OFDM system, we attain the same PAPR reduction as that we

have achieved by using only one redundant bit in the proposed SLM method applied to the

Hadamard constellation.

B. Comparison

To complete our simulations, we compare our results with some of those in recent

works. In [12], an SLM method based on multiplying the constellation point by � differ-

ent and pseudo-random but fixed vectors is introduced. For the same system as ours, with

� � � � different vectors, the PAPR reduction of � dB close to
� � � �

symbol clip probability

is gained; however, at the same symbol clip rate, we have a � dB PAPR reduction just by

using the Hadamard constellation and
�
dB by using our SLM method. Also, the complex-

ity of our algorithm is comparable with the method in [12]. The main complexity is in the

encoding procedure, but due to the special recursive structure of the Hadamard matrix, the

encoding algorithm can be implemented easily. Also, note that in [12] some side informa-

tion needs to be sent, and receiving accurate side information is important.

In [12], a PTS method is introduced. The PAPR reduction of this method is also less than

that in our method. It is possible to apply a PTS method to our constellation, especially

since the PTS is considerably better with respect to PAPR reduction vs. additional system

complexity (the number of IFFTs) [11, 12].

The tone reservation, a well known method for PAPR reduction in multicarrier sys-

tems [34], is an efficient PAPR reduction technique, provided it can converge quickly to
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a good PAPR solution. In [32], an efficient approximation for the active-set approach is

developed, and an excellent cost vs. performance tradeoff is obtained by using the octag-

onal boundary. The method in [32], compared to the work in [34], has almost the same

performance in the PAPR reduction, and a faster convergence. The complexity of [32] is

comparable with ours; however, we have about � dB lower PAPR than that in [34] or [32]

for the similar system parameters. Note that in the tone reservation method, some tones

are reserved for the PAPR reduction and some of the tones are not used for transmitting,

implying a loss in data rate.

In [35], another approach, similar to [12], is introduced for the SLM. The authors

have introduced this method for MIMO-OFDM systems. The simulation results in [35] is

similar to [12].

In [36], by extending the SLM method, a good PAPR reduction is achieved. A set

of distinct sequences are generated from the data by using a modified repeat accumulate

code. For a 128 channel OFDM system, employing QPSK modulation, a � ��� � dB PAPR

reduction close to
� � � �

symbol clip rate is gained by using a three stage Linear Feedback

Shift Register (LFSR). By defining a clipping ratio of two an additional � dB reduction in the

PAPR is achieved. However, our proposed methods based on the Hadamard constellation

can lower the PAPR more (about � dB by using only the hadamard constellation, and about

� dB or
�
dB by using one or two redundant bits in the SLM method). Note that the method

introduced in [36], similar to our proposed method, can recover the data in the receiver

without prior knowledge of the selected sequence.

VI. CONCLUSION

We have proposed a constellation shaping method that achieves a substantial reduc-

tion in the PAPR in an OFDM system with a low complexity. An SLM technique is applied

to this constellation to further reduce the PAPR of the OFDM signal. The proposed scheme

significantly outperforms other PAPR reduction techniques reported in the literature . This

technique offers a PAPR about � dB to � dB lower than that of some recent works, without
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the additional costs in energy and/or spectral efficiency. Moreover, it has a small computa-

tional complexity.
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Fig. 4. CCDF of PAPR by using Hadamard constellation in a �"7�� channel OFDM system employing �	� -QAM constel-

lation with different oversampling factors for continuous PAPR approximation.
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Fig. 8. CCDF of PAPR in a �"7�� channel OFDM system with SLM method using different number of redundant bits.


