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Abstract

In this paper1, we present a new method for the performance evaluation of Turbo-Codes.

The method is based on estimating the Probability Density Function (pdf ) of the bit Log

Likelihood Ratio (LLR) by using an exponential model. It is widely known that the pdf of

the bit LLR is close to the normal density, and the proposed approach takes advantage of

this property to simplify the calculations. The moment matching method is combined with

the maximum entropy principle to estimate the parameters of the new model. We present a

simple method for computing the confidence intervals for the estimated parameters, as well as

for the Bit Error Rate (BER). The corresponding results are adopted to compute the number

of samples that are required for a given precision of the estimated values. It is demonstrated

that this method requires significantly fewer samples than the conventional Monte-Carlo (MC)

simulation.

Index Terms

1This work is financially supported by Communications and Information Technology Ontario (CITO) and by Natural

Sciences and Engineering Research Council of Canada (NSERC).
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I. INTRODUCTION

In the application of channel codes, one of the most important issues is to develop

an efficient method for performance evaluation, since the Monte-Carlo (MC) simulation

is extremely time consuming for low Bit Error Rate (BER) values. In 1993, a new class

of channel codes, called Turbo-Codes, were announced [1]. They have an astonishing

performance, and at the same time, allow for a simple iterative decoding method by

using the reliability information produced by a bit decoding algorithm. Since then, there

have been numerous efforts devoted to the performance evaluation of Turbo-Codes. These

approaches derive some bounds on the average performance of Turbo-Codes by assuming

Maximum Likelihood (ML) decoding [2]–[4].

Some researchers have considered simplified cases of analytical BER calculations.

An analytical method for computing the bit error probability of a two-state convolu-

tional code with Maximum a Posteriori Probability (MAP) decoding is presented in [5].

The Pearson system of distributions is adopted in [6] to compute the error probability

expectations, where moment matching is used to estimate the parameters of the model.

Estimating the parameters of the generalized Gaussian Probability Density Function (pdf )

by using entropy matching is considered in [7].

Other researchers have employed the Importance Sampling (IS) method to improve

the performance of the MC simulation by increasing the weight of the rare error events.

In this method, instead of choosing the samples from the original distribution, the samples

are selected from a modified distribution which concentrates the points where the rare

error events occur. This modified distribution is obtained from the original distribution

by the application of a biasing function. This ensures a variance reduction if the biasing

function is appropriately selected. The Gaussian Tail (GT) and Rayleigh Tail (RT) biasing

functions are investigated in [8]. The IS method is applied to evaluate the performance

of a digital communications system with Inter-Symbol Interference (ISI) in [9], and
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is extended to evaluate the performance of multi-hop satellite links in [10]. A general

formulation of the IS method in probability space notation is introduced in [11]. The IS

method is used in [12] to simulate the Viterbi decoder by examining the trellis structure

in relation to the rare error events. A comparison between the Mean Translation (MT)

technique and the Variance Scaling (VS) technique is performed in [13], where it is

shown that the structure of the error regions determines the better method. Recently, [14]

has revisited the IS method with the strategy to increase the rate by which the variance

approaches zero, instead of reducing the variance itself.

The Turbo-Product Codes (of a small block length) are simulated in [15] by parti-

tioning the error regions and by using MT for each sub region independently. This method

becomes inefficient, as the complexity of the code increases. In the case of Turbo-Codes

with a large block length, the search for the appropriate biasing functions may be lengthy,

which renders this method even more complicated than the conventional MC simulation.

It is observed in [1], [4], [16] that the pdf of the bit Log Likelihood Ratio (LLR)

is nearly Gaussian. This motivates us to propose an exponential model which has a

polynomial in the exponent. The aforementioned model has the ability to efficiently

capture the deviation of the desired pdf from Gaussian. We use the moments of the bit

LLR to estimate the parameters for the proposed model, in this article.

This paper is organized as follows. We model the pdf of the bit LLR by using

its symmetry properties in Section II. In Section III, the maximum entropy method

to find the parameters of the proposed model is described. A method to compute the

confidence intervals for the estimated parameters, as well as the estimated BER, is

detailed in Section IV. The numerical results and conclusion are presented in Section V

and Section VI, respectively.

II. MODELING THE pdf OF THE BIT LLR

A common tool to express the bit probabilities in bit decoding algorithms is based

on the so-called LLR. The LLR of the kth bit position is defined by the following
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equation:

LLR(k) = log
P (ck = 1|x)

P (ck = 0|x)
, (1)

where ck is the value of the kth bit in the transmitted code-word, x is the received vector,

and log represents the natural logarithm. Let us define the random variable Y = LLR(k)

with its pdf denoted as f(y). It is proved in [17] that the pdf of the bit LLR is independent

of the transmitted code-word, as long as the value of the bit position under consideration

remains unchanged. By using this result and without the loss of generality, we consider

the case of sending the all-zero code-word. It is proved in [18] that the pdf of the bit

LLR has the following symmetry property:

f(y) = e−yf(−y). (2)

Taking the logarithm from both sides of (2), we can write the following:

log f(y)− log f(−y) = −y. (3)

Utilizing the power series, it easily follows that

log f(y) = −y/2 +
∞
∑

i=0

aiy
2i. (4)

The previous analysis suggests that the following model can be used for the pdf of the

bit LLR:

f(y) ' exp(−y/2 +
N
∑

i=0

aiy
2i). (5)

The received bit is decoded to 0 (or 1), if the corresponding LLR is negative (or positive).

Therefore, the following integral simplifies the remaining BER calculations:

Pe '

∫ ∞

0

f(y)dy. (6)

In the next section, we use the maximum entropy principle to find the parameters

of the proposed model by using the moments of the bit LLR.
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III. MOMENT MATCHING USING THE MAXIMUM ENTROPY PRINCIPLE

There are various methods for parameter estimation. Typically, the unknown param-

eters of a pdf can be found by adopting moment matching, entropy matching, or ML.

In this paper, we use the moment matching method with the maximum entropy principle

simply because it is mathematically tractable, and has been successfully implemented in

a variety of applications [19]. An attractive feature of the class of the distributions with

the maximum entropy is that a simple iterative maximization technique can be employed

to compute their parameters. The maximum entropy principle was first introduced by

Jaynes [19] in 1982. Since then, it has been widely used in various applications. In this

method, the search, while satisfying the constraints on the moments, is limited to the pdf

with the maximum entropy. For more recent discussions on this method, refer to [20],

[21]. We follow an approach that is similar to the one introduced in [22]. The maximum

entropy density can be found by maximizing the following with respect to f̂(y):

Maximize −

∫ +∞

−∞

f̂(y) log[f̂(y)]dy, (7)

Subject to: µ̂i = µi, i = 1, 2, . . . ,M, (8)

with

µi =

∫ +∞

−∞

yif(y)dy (9)

and

µ̂i =

∫ +∞

−∞

yif̂(y)dy, (10)

where M is the number of moments used in the parameter estimation. This maximization

problem can be solved with the Lagrange multipliers λk, k = 0, 1, . . . ,M by following

the methods of the calculus of variations [23]. Let us define the Lagrangian as
∫ +∞

−∞

f̂(y) log[f̂(y)]dy + c

∫ +∞

−∞

f̂(y)dy +
M
∑

k=1

λk

∫ +∞

−∞

ykf̂(y)dy. (11)

Setting the variations of (11) with respect to f̂(y) to zero, we have

log[f̂(y)] + λ0 +
M
∑

k=1

λky
k = 0, (12)
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where λ0 = c + 1. Solving for f̂(y) results in

f̂(y) = exp(−
M
∑

k=0

λky
k). (13)

From (5), it is clear that all of the odd coefficients, except λ1, are zero. Hence, (13) can

be reformulated with the new coefficients ak = λ2k, k = 0, 1, . . . , N = bM
2
c, as follows:

f̂(y) = exp(−y/2−
N
∑

k=0

aky
2k). (14)

Normalizing the area under f̂(y) to one, we write,

ea0 =

∫ +∞

−∞

exp(−y/2−
N
∑

k=1

aky
2k)dy. (15)

If (15) is substituted for ea0 in (14), then,

f̂(y) = exp

{

−y/2−
N
∑

k=1

aky
2k − log

[

∫ +∞

−∞

exp(−z/2−
N
∑

k=1

akz
2k)dz

]}

. (16)

The objective is to estimate the parameters ak, k = 0, 1, . . . , N , where a0 can be

computed using (15). As we will see later, one can estimate the parameters ak, k =

1, . . . , N using the first N moments of the bit LLR. In practice, the statistical estimates

of the moments are used instead of the true moments. Using (10), we have

µ̂i =

∫ +∞

−∞

yi exp

{

−y/2−
N
∑

k=1

aky
2k − log

[

∫ +∞

−∞

exp(−z/2−
N
∑

k=1

akz
2k)dz

]}

dy,

(17)

i = 1, 2, . . . , N.

Setting µ̂i equal to the statistical estimates of the moments, we can find the unknown

parameters. Since there is no closed form solution for this problem, we continue with

the numerical methods. The Newton-Raphson method is employed to iteratively solve
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the following problem:

Gi(a1, a2, . . . , aN) = µ̂i − µi

=

∫ +∞

−∞

(yi − µi) exp

{

−y/2−
N
∑

k=1

aky
2k − log

[

∫ +∞

−∞

exp(−z/2−
N
∑

k=1

akz
2k)dz

]}

dy = 0,

(18)

i = 1, 2, . . . , N.

Notation a
(r) = {a

(r)
1 , a

(r)
2 , . . . , a

(r)
N } is used to denote the answer after r iterations.

In this method, we assume that for the small changes ∆a
(r) in the a

(r), we can write,

a
(r+1) = a

(r) + ∆a
(r). (19)

This signifies that

Gi(a
(r) + ∆a

(r)) ' Gi(a
(r)) +

N
∑

k=1

∂Gi(a
(r))

∂a
(r)
k

∆a
(r)
k , i = 1, 2, . . . , N. (20)

Therefore, ∆a
(r) is a solution of the linear equation,

Gi(a
(r)) = µ̂

(r)
i − µi =

N
∑

k=1

[

−
∂Gi(a

(r))

∂a
(r)
k

]

∆a
(r)
k , i = 1, 2, . . . , N, (21)

where notation µ̂
(r)
i is employed to point out that the estimated moments are updated by

replacing a
(r) in (17) after the rth iteration. Differentiating (18) with respect to ak yields

∂Gi(a
(r))

∂a
(r)
k

=
∂Gi(a)

∂ak

∣

∣

∣

∣

a=a
(r)

= µ̂
(r)
2k .µ̂

(r)
i − µ̂

(r)
2k+i. (22)

The algorithm2 is summarized in the following steps:

• Step1: Start with an initial value a
(0) = {a

(0)
1 , a

(0)
2 , . . . , a

(0)
N }.

• Step2: Compute the estimated moments by replacing a
(r) into (17).

• Step3: Plug the estimated moments into (21) to find ∆a
(r).

• Step4: Compute the new parameters a
(r+1) = a

(r) + ∆a
(r).

2This algorithm is adopted from [22].
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• Step5: Go to Step 2, if ‖∆a
(r)‖ > ε, where ε is the desired precision and ‖.‖ denotes

the norm of a vector.

The convexity of this maximization problem guarantees that if a stationary point is

found for some finite values of a1, . . . , aN , it must be a unique absolute minimum [24].

However, the convexity alone does not imply that such a minimum should exist. More

discussions on the convexity of the problem and existence of the solution can be found

in [24], [25].

IV. CONFIDENCE INTERVAL STATEMENTS

In the following, we first propose a method to compute the confidence intervals for

the estimated parameters of the model in terms of the covariance matrix of the estimated

moments. Subsequently, we derive a relationship between the confidence interval on the

BER and the confidence interval on the parameters.

A. Confidence Interval for the Estimated Parameters

If the moment estimator satisfies a set of mild conditions, it follows that the estimated

parameters are asymptotically normal with a derivable covariance matrix [26]. This allows

for the confidence interval statements to be made concerning f̂(y). In the following, we

present a method to compute the covariance matrix of the estimated parameters in terms

of the covariance matrix of the moments. The covariance matrix of the moments can be

easily computed by using the method described in Appendix A.

We can rewrite (21) as follows:

µ̂
(r)
i − µi =

N
∑

k=1

h
(r)
ik ∆a

(r)
k , (23)

where h
(r)
ik = −∂Gi(a

(r))

∂a
(r)
k

. Let us define u
(r)
ij as the covariance of the moments µ̂

(r)
i , µ̂

(r)
j ;

namely,

u
(r)
ij = cov(µ̂

(r)
i , µ̂

(r)
j ) = E[(µ̂

(r)
i − µi)(µ̂

(r)
j − µj)], (24)
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where it is assumed3 that µi = E[µ̂
(r)
i ] and µj = E[µ̂

(r)
j ]. Using (23), we have

u
(r)
ij = E

[(

N
∑

k=1

h
(r)
ik ∆a

(r)
k

)(

N
∑

m=1

h
(r)
jm∆a(r)

m

)]

(25)

=
N
∑

k=1

N
∑

m=1

h
(r)
ik h

(r)
jmE[∆a

(r)
k ∆a(r)

m ] (26)

=
N
∑

k=1

N
∑

m=1

h
(r)
ik h

(r)
jmcov(∆a

(r)
k , ∆a(r)

m ) (27)

=
N
∑

k=1

h
(r)
ik

N
∑

m=1

h
(r)
jmc

(r)
mk (28)

=
N
∑

k=1

h
(r)
ik d

(r)
jk . (29)

In the matrix notation, the following is defined:

D = {d
(r)
ij }, where d

(r)
ij =

N
∑

m=1

h
(r)
imc

(r)
mj, (30)

H = {h
(r)
ij }, where h

(r)
ij = −

∂Gi(a
(r))

∂a
(r)
j

, (31)

U = {u
(r)
ij }, where u

(r)
ij = cov(µ̂

(r)
i , µ̂

(r)
j ), (32)

and

C(r) = {c
(r)
ij }, where c

(r)
ij = cov(∆a

(r)
i , ∆a

(r)
j ). (33)

For simplicity of notation, the dependency of the matrices to r is not shown explicitly

except for the matrix C (r) which will be used later. The following equation relates these

matrices, where the superscript T denotes the transpose of a matrix:

U = H.(H.C(r))T = H.(C(r))T .HT . (34)

This indicates that after each iteration, we can compute the covariance matrix of the ∆a

in terms of the covariance matrix of the moments by the following:

C(r) = (H−1.U.(HT )−1)T = H−1.UT .(HT )−1. (35)

3It can be shown that this assumption is equivalent to E[∆a
(r)
k

] = 0, k = 0, 1, . . . , N .
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We assume that the ∆a
(r)’s for the different iterations are uncorrelated. In this case, the

covariance matrix of the parameters, denoted as A, is expressed as

A =
R
∑

r=1

C(r), (36)

where R is the total number of iterations. With the covariance matrix of the parameters,

the desired confidence intervals for the parameters can be easily computed.

B. Confidence Interval for the Estimated BER

In the following, we use the previous results to compute the confidence interval on

the BER. Let us assume that the c% confidence interval on each parameter ai is equal

to some positive αi, i.e.,

p(|δa1| < α1, . . . , |δaN | < αN) =
c

100
, (37)

where δai represents the error in the computation of the parameters. Using this notation,

we can rewrite the BER integral from (6) as follows:

Pe + ∆Pe(δa1, . . . , δaN) =

∫ ∞

0

exp[−y/2 +
N
∑

i=0

(ai + δai)y
2i]dy (38)

=

∫ ∞

0

exp(−y/2 +
N
∑

i=0

aiy
2i) exp(

N
∑

i=0

δaiy
2i)dy (39)

'

∫ ∞

0

exp(−y/2 +
N
∑

i=0

aiy
2i)(1 +

N
∑

i=0

δaiy
2i)dy (40)

=

∫ ∞

0

exp(−y/2 +
N
∑

i=0

aiy
2i)dy

+

∫ ∞

0

exp(−y/2 +
N
∑

i=0

aiy
2i)

N
∑

i=0

δaiy
2idy (41)

= Pe +
N
∑

i=0

δai

∫ ∞

0

y2i exp(−y/2 +
N
∑

i=0

aiy
2i)dy (42)

= Pe +
N
∑

i=0

miδai, (43)
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where

mi =

∫ ∞

0

y2i exp(−y/2 +
N
∑

i=0

aiy
2i)dy. (44)

It can be seen that ∆Pe, the error in the BER estimation, is a linear combination

of mi’s, which can be estimated during the procedure of the moment computation by

considering the positive samples only. Recalling the confidence interval statement (37)

for the parameters, and noting that ∆Pe is a linear combination of δai’s, we can present

a similar statement for the BER as follows:

p(|∆Pe(δa1, . . . , δaN)| < ∆Pe(α1, . . . , αN)) =
c

100
. (45)

This analysis enables us to make confidence interval statements on the estimated

BER in terms of the confidence intervals for the model parameters.

V. NUMERICAL RESULTS

A Turbo-Code of the length 100 and rate 1/2 is employed to perform the simulations.

In Table 1, variances of the BER estimations are computed for both methods. The number

of samples and the variance to the mean ratio of the BER are denoted as n(.) and v(.),

respectively. The variance of the MC method can be computed analytically (refer to

Appendix B), although this analysis is very complex for the proposed method and we need

to estimate the variances with numerical methods. The variance of the proposed method

can be computed by repeating the experiment for J times (generating J independent sets

of moments), and computing the variance of the resulting sequence of the BER values,

denoted as pi, i = 1, . . . , J , as follows:

E[P̂e] =
1

J

J
∑

i=1

pi (46)

and

var[P̂e] = −(E[P̂e])
2 +

1

J

J
∑

i=1

p2
i . (47)

In the computations of Table 1, we set J = 1000 to obtain a reasonable approximation,

and at the same time, render the analysis feasible in the sense of the required time.
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We use the relative gain G in Table 1 as a measure to compare the two methods.

To incorporate both the variance reduction and the sample reduction advantage of the

new method, and noting that v(MC) is inversely proportional4 to n(MC), we define G

as follows:

G =
v(MC)

v(our method)
.

n(MC)

n(our method)
. (48)

Simulation results are shown in Figure 1, where we have used the same number

of samples as indicated in Table 1. It is evident that increasing the number of moments

(the order of approximation) that are involved from two to five significantly improves

the approximation.

In addition we compute the confidence intervals by using the proposed method

in Section IV for this example. This confidence interval is closely related to n, the

number of samples used to compute it. In Table 2, this relation is presented for three

different values of n at Eb/N0=2dB. We compute5 p(|∆Pe| < θ) for the different values

of n, where θ = ∆Pe(α|a1|, . . . , α|aN |). When we compare the proposed method with

the MC simulation in Table 1 and Table 2, the number of samples required for the

BER calculations indicate a significant reduction for our method. It can be seen that the

proposed method is more accurate than the MC simulation even by using significantly

fewer samples.

VI. CONCLUDING REMARKS

In this paper, we have proposed a new method for the performance evaluation of

Turbo-Codes. Although our focus is on Turbo-Codes, the application of the proposed

method is not necessarily restricted to this class of channel codes. The problem of finding

the BER in high signal to noise ratio regions can be solved with this method, since the

MC simulation may not be feasible. We take advantage of the symmetry properties of the

pdf of the bit LLR to propose a suitable model for this unknown density. The moment

4Refer to Appendix B.
5Refer to Appendix C for more details on the confidence interval for the MC simulation.
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matching method is employed to find the density with the maximum entropy which

satisfies the moment constraints. A simple method is introduced to make confidence

interval statements both for the parameters of the model and the BER integral, which

enables us to compute the BER values accurately. It is demonstrated that significantly

fewer samples, compared to those required in the MC simulation, are necessary to

compute the statistical moments that are accurate enough.

APPENDIX

A. Covariance Matrix of the Moments

Let us define the kth moment of the random variable Y (which corresponds to the

bit LLR) as,

µk = E[Y k], (49)

which can be estimated by statistical averaging as follows:

µ̃k =
1

n

n
∑

i=1

yk
i , (50)

where yi is one instance of the random variable Y , and n is the number of samples. The

covariance matrix of the moments can be computed as follows:

cov(µ̃k, µ̃m) = E[(µ̃k − µk)(µ̃m − µm)] (51)

= E[(
1

n

n
∑

i=1

yk
i − µk)(

1

n

n
∑

j=1

ym
j − µm)] (52)

=
1

n2

n
∑

i=1

n
∑

j=1

E[yk
i y

m
j ]− µkµm (53)

=
1

n2

[

nµk+m + (n2 − n)µkµm

]

− µkµm (54)

=
1

n
(µk+m − µkµm). (55)
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B. Variance of Monte-Carlo (MC) Simulation

Let us consider the situation of transmitting a bit bi and decoding b̂i, for i = 1, . . . , n,

where n is the number of samples used for the MC simulation. Let us define the following

random variable:

ei =











1, bi 6= b̂i,

0, otherwise.
(56)

An error event is represented by ei. We can find the BER by averaging the following

random variable, P̂e. i.e., Pe = E[P̂e],

P̂e =
1

n

n
∑

i=1

ei. (57)

To compute the variance of P̂e, we need to use the definition of variance as follows:

var[P̂e] = E[(
1

n

n
∑

i=1

ei)
2]− (E[

1

n

n
∑

i=1

ei])
2 (58)

=
1

n2

(

E[
n
∑

i=1

e2
i ] + E[

n
∑

i=1

n
∑

i6=j=1

eiej]

)

− P 2
e (59)

=
1

n2

n
∑

i=1

E[e2
i ] +

1

n2

n
∑

i=1

n
∑

i6=j=1

E[ei]E[ej]− P 2
e (60)

=
Pe

n
+

n(n− 1)

n2
P 2

e − P 2
e (61)

=
Pe

n
(1− Pe). (62)

In practice, an estimation of var[P̂e] is obtained by substituting Pe with P̂e in (62).

C. Computing Confidence Intervals on Monte-Carlo (MC) Simulation

Let us define the c% confidence interval on MC, denoted as α, as follows:

p(|Pe − P̂e| < α) =
c

100
, (63)

where Pe, P̂e are the true and the estimated values of the BER. Following the same

notation and definitions as Appendix B, for a large n and some integers m and a, we
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can represent Pe and α as m
n

and a
n

, respectively. We can find the confidence interval for

the MC simulation as follows:

p(|Pe − P̂e| <
a

n
) = p(

m− a

n
<

1

n

n
∑

i=1

ei <
m + a

n
) (64)

= p(
n
∑

i=1

ei < m + a)− p(
n
∑

i=1

ei ≤ m− a) (65)

=
m+a−1
∑

j=0

p(j errors among n bits)−
m−a
∑

j=0

p(j errors among n bits)

(66)

=
m+a−1
∑

j=0

(

n

j

)

P j
e (1− Pe)

n−j −

m−a
∑

j=0

(

n

j

)

P j
e (1− Pe)

n−j (67)

=
m+a−1
∑

j=m−a+1

(

n

j

)

P j
e (1− Pe)

n−j. (68)

In practice, an estimation of (64) is obtained by substituting Pe with P̂e in (68).
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Eb/N0(dB) BER v(new method) n(new method) v(MC ) n(MC) G

1 3.81× 10−2 6.78× 10−5 104 9.51× 10−5 104 1.4

2 4.95× 10−3 1.46× 10−5 104 9.90× 10−5 104 6.8

3 1.76× 10−4 4.95× 10−6 105 9.99× 10−6 106 20.2

4 3.51× 10−6 2.30× 10−8 106 1.00× 10−8 108 43.5

Table 1 : Comparison of the proposed method and the MC simulation, where the variances are computed

as described in Section V.
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Fig. 1. BER curves for Turbo-Code of the length 100 and rate 1/2 in comparison with the MC simulation.
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n α θ = ∆Pe(α|a1|, . . . , α|aN |) p(|∆Pe| < θ) for new method p(|∆Pe| < θ) for MC

104 0.742 0.0058 0.95 0.67

105 0.742 0.0058 0.96 0.70

106 0.742 0.0058 0.97 0.96

104 0.251 0.0020 0.94 0.66

105 0.251 0.0020 0.95 0.70

106 0.251 0.0020 0.96 0.96

104 0.075 0.0005 0.93 0.33

105 0.075 0.0005 0.94 0.68

106 0.075 0.0005 0.95 0.95

Table 2 : Relation between n and confidence interval at Eb/N0=2dB for the new method and the MC

simulation.


