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Abstract

Battail in [1] shows that an appropriate criterion for the design of long block codes is the

closeness of the normalized weight distribution to a Gaussian distribution. A subsequent work

shows that iterated product of single parity check codes satisfy this criterion [2]. Motivated

by these earlier works, in the current article, we study the effect of the interleaver on the

performance of Turbo codes for large block lengths, ����� . A parallel concatenated Turbo

code that consists of two component codes is considered. We demonstrate that for ����� , the

normalized weight of the systematic 	
���
����� � , and the parity check sequences 	
���
����� � and

	
���
 ���� � become a set of jointly Gaussian distributions for the typical values of 	 
����! "
$#%�'&(�') ,
where the typical values of 	 
*� are defined as +-,-.��/10 	 
 �2 �

3
546�7# for  8
$#%�'&(�') . To optimize the

Turbo code performance in the waterfall region which is dominated by high-weight codewords,

it is desirable to reduce 9 �;: ,  <�>=?
@#7�!&6�!) as much as possible, where 9 �;: is the correlation

coefficient between 	 
 � and 	
 : . It is shown that: (i) 9 �;:BA 4 ,  <�>=C
$#%�'&(�') , (ii) 9 ���D� 9 � � � 4 as

�E��� , and (iii) 9 � � � 4 as ����� for “almost” any random interleaver. This indicates that

for ����� , the optimization of the interleaver has a diminishing effect on the distribution of

high-weight error events, and hence, on the error performance in the waterfall region. In [3],

it is shown that only certain low-weight codeword structures remain asymptotically probable.
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We prove that for large block lengths, the number of low-weight codewords of these structure

are some Poisson random variables. These random variables can be used to find the asymptotic

probability mass function of the minimum distance of the Turbo code among all the possible

interleavers. We find the mean and the variance of the union bound that is applied to the

error floor region and study the effect of expurgating low-weight codewords (using the method

proposed in [4] on the performance of Turbo codes.

I. INTRODUCTION

The advent of Turbo codes [5] is one of the most important developments in coding

theory in many years. These codes can achieve a near Shannon-limit error correcting

performance with a relatively simple decoding method. Turbo codes consist of some

Recursive Convolutional Codes (RCCs) which are connected in parallel or serial through

pseudo-random interleavers. Since the RCCs and also the interleaver has the linearity

property1, the resulting code is linear2. Consequently, the group property and distance

invariance property hold.

Figure I presents a block diagram of an encoder of a rate 1/3 Turbo code with a block

length
�

that is composed of two RCCs, where �������	��
���
���
���
�������
 � are the systematic

bits, and ��������� , ��������� are the parity check bits. The weight of the code in Figure I is equal

to the sum of the weights of the ��� , ��� and ��� sequences that are denoted by ��� , � � , and

�!� , respectively, over a block.

To decode a Turbo coded stream, an iterative method is used. A Turbo-decoder

consists of two concatenated decoders, each using the received systematic stream and the

corresponding received parity stream. Each decoder provides a soft output of transmitted

bits by using the received data and the information provided by the other decoder.

Repeating this procedure improves the estimation of the bit probability values.

1The effect of interleaving is equivalent to multiplying the input sequence by a permutation matrix which corresponds

to a linear operation.
2This is based on neglecting the effect of the possible non-linearity caused by the method used to terminate the

trellis.
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Fig. 1. Basic structure of the Turbo encoder.

One efficient algorithm for soft output decoding, based on the trellis diagram of the

code known as the BCJR algorithm is presented in [6]. Another efficient soft decoding

algorithm is derived from the coset decomposition principle in [7]. Also, there are some

special methods for soft decoding such as sectionalized trellis diagrams [8] and the use

of the codewords of the dual code [9].

A typical error performance of a Turbo code consists of two regions as illustrated

in Figure 2. In the waterfall region, the error performance is determined by high-weight

codewords, whereas in the error floor, the performance is determined by low-weight

codewords.

Many researchers have concentrated on studying the weight distribution of Turbo

codes and how these codes perform when maximum likelihood (ML) decoding is used.

Although ML decoding is not feasible for Turbo codes, it provides insight into the per-

formance of Turbo codes. Most of investigations focus on the average weight distribution

of the Turbo codes among all the possible interleavers calculated in [10]. In [11], the

asymptotic average weight distribution is calculated for large block lengths. In [12],

according to the average weight spectrum, a simple approximation of the performance

of parallel concatenated Turbo codes is obtained.

Using Gallager bounding techniques, [13]–[15] provide upper bounds on the per-

formance of Turbo codes. The concept of average weight distribution has led to the
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Fig. 2. Typical error performance of a Turbo code over an AWGN channel.

development of some results concerning the asymptotic performance of Turbo codes

in [16].

In [17], [18], it is shown that Turbo codes belong to the class of weakly random-

like codes; although their Frame Error Rate (FER) is poor, the Bit Error Rate (BER)

remains low up to the neighborhood of the channel capacity. Reference [19] provides

techniques to apply the channel coding theorem and the resulting error exponent, which

was originally derived for random block-code ensembles, to ensembles of codes with

fewer restrictive randomness requirements.

The structure and the number of low-weight codewords are studied in [3], [20],

where it is reported that asymptotically probable low-weight codewords consist of one or

more short error events and each event results from a weight two information sequence.

Some researchers have improved the performance of Turbo codes by optimizing the
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interleaver structure. The effect of the chosen interleaver on the weight distribution for

both low-weight and high-weight codewords is studied in [20]–[32]. These references

provide some methods to design interleavers in order to decrease the number of low-

weight codewords and/or to increase their weight to improve the performance of Turbo

codes. These methods are more beneficial when the block length is relatively small. Ref-

erence [33] studies the design of nonsystematic Turbo codes to achieve higher minimum

distances. The algorithm in [4] expurgates some low-weight codewords by injecting a zero

in the lower-protected bit positions, and then punctures the resulting code to compensate

for the loss in the effective code rate. In [34], the extrinsic information in the decoder is

modified to exploit the source redundancy to enhance the system performance.

It is known that using a randomly chosen interleaver guarantees an excellent BER

performance, but a certain number of low-weight codewords are generated, resulting in the

appearance of an error floor and a small minimum distance. The effect of the interleaver

structure on the minimum distance of the code is studied in [35]. References [36], [37]

prove that the minimum Hamming distance of the Turbo codes cannot asymptotically

grow at a rate higher than the third root of the codeword length. A systematic technique

is introduced in [38] for obtaining sequences which are primary candidates for obtaining

the minimum distance of parallel concatenated codes. The algorithm presented in [39] is

improved by [40] and is applied to calculate the minimum distance of the Turbo codes.

An interesting result is provided in [41] which denotes that for Low Density Parity

Check (LDPC) code ensembles (which are closely related to Turbo codes) the capacity

achieving codes do not have a large minimum distance. [1] shows that an appropriate

criterion for the design of long block codes than the minimum Hamming distance is the

closeness of the normalized weight distribution of the code to a Gaussian distribution. [2]

substantiates this by showing that iterated-product codes have a weight distribution that

is approximately Gaussian.

In [42], it is indicated that using more component codes improves the distance

properties of the Turbo codes, resulting in a better performance when ML decoding is

used. However, the sub-optimal iterative decoding does not perform well for multiple
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component codes.

In this work, it is proved that the weights of the systematic and parity streams

for their typical values, tend to a set of uncorrelated, and hence, independent, jointly

Gaussian random variables for a randomly chosen interleaver and for any nontrivial

recursive convolutional code. It is also demonstrated that any randomly chosen interleaver

with the probability of one is the best interleaver in the waterfall region.

Low-weight codewords do not follow the Gaussian distribution and are more im-

portant in determining the performance of the code in the error floor (high SNR range).

Unlike the waterfall, the optimization of the component codes and the interleaver affect

the code performance in the error floor region. In [3], it is reported that as the block

length increases, the low-weight codewords of a few special structures remain probable,

and the expected number of low-weight codewords of each structure remains finite as

the block length tends to infinity. In this paper, we show that the asymptotic probability

mass function of the number of low-weight codewords of each structure is a Poisson

random variable. The Poisson parameter of each structure is an increasing function of

the systematic and parity weights. By means of these random variables, the probability

mass function of the Turbo code minimum distance, and the mean and the variance of

the union bound in the error floor region are calculated.

It is feasible to expurgate low-weight codewords, and thus, lower the error floor,

because the number of low-weight codewords is small in comparison to the block length.

Therefore, we discuss a method to expurgate the low-weight codewords following the

method introduced in [4].

This article is organized as follows. In Section II, the effect of interleaver opti-

mization to improve the waterfall region when the block length is large is examined.

Section III concerns the interleaver optimization in the error floor region. In this part, we

find the asymptotic statistical properties of the low-weight codewords and the asymptotic

behavior of the error floor for large block Turbo codes.



7

II. INTERLEAVER OPTIMIZATION FOR
� � �

IN THE WATERFALL REGION

It is assumed that the RCCs are generated by the transfer function
� ��� � 
 � ��� ����� �	� � .

The impulse response of
� �	� � is periodic with the period 
�� ��
�� � , where � is the

memory length of the code [43]. The main interest is in the group structure of the

code-book, and also the periodicity property of the impulse response of
� �	� � . In this

respect, we limit our attention to the structure of � �	� � . This does not result in any loss

of generality, because the group structure and also the periodicity property of the impulse

response of
� ��� � is not affected by the choice of

� ��� � . We consider a Turbo code with

three output streams as reflected in Figure I. However, the discussions can be generalized

to other configurations.

In general, the desire is that the period of the impulse response of
� �	� � is as large

as possible. If the period is equal to ��
�� � , the resulting impulse response is called a

Maximum Length Sequence (MLS). For the rest of the paper, we assume that all the

RCCs are MLS. The rules to determine all the possible configurations of � �	� � to obtain

a maximum length sequence of period ��
�� � (for the given � ) are provided in [43]. It

can be shown that any MLS-sequence satisfies the three postulates of randomness [43].

One consequence of this property is that in any period of an MLS-sequence, the number

of ones is equal to ��
�� � , and the number of zeros is ��
�� � � � .
If the impulse response of � ��� � is considered to be a periodic sequence (started at

infinity in the past), we obtain 
 
 ��
�� � non-zero sequences which are time shifts of

each other. Each sequence corresponds to a specific positioning of the impulse within

the period. These sequences are referred to as different phases of the periodic signal. We

assume that the different phases are labelled by integer numbers, say � 
�������
�
 , where the

label of a phase corresponds to the relative position of the corresponding impulse within

the period. It can be shown that the set of phases of an MLS-sequence (plus the all-zero

sequence) constitutes a group under binary addition [43]. The order of each element in

this group is equal to two, indicating that the sum of each phase with itself results in the

all-zero sequence (denoted as the zero phase).
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Using the group property of phases, we conclude that the function of the numerator

of
� ��� � is to replace each phase with a linear combination of some other phases. This

function is equivalent to a permutation (relabelling) of phases and does not play a role

in the following discussions.

For the bit position
� 
 � � 
 � 
�������
 � � within the � ’th output stream, we refer to

the set of systematic bit positions � � �
for which an impulse at position � results in

a � at position
�

as � � � � � , � 
 ��
 � 
�� . Obviously, � � � � � 
�� ��� . If the bit position
�

is located in the 	 ’th period, i.e., 	 
�
 � ��

� , where 
���� denotes the ceiling function,

then the number of positions belonging to � � � � � , ��
 � 
�� , within each of the periods

��
�������
�	 � � is equal to ��
�� � [43]. The number of positions within the 	 ’th period (the

period containing
�

itself) depends on the relative position of
�

within the 	 ’th period

and also on the numerator of
� ��� � . We are mainly interested in the large values of 	

(parity bits far from the boundaries) for which the effect of the elements within the 	 ’th

period itself is negligible. Thus, � � ��� � ��� 
�� � ��� � ������
 � ��

��� 
�� � , where ����� denotes the

cardinality of the corresponding set.

The notation � � � � � , � 
 ��
 � 
�� ,
� 
 ��
�������
 � , is used to refer to the

�
’th bit within

the � ’th output stream. Since each bit is zero or one with an equal probability, then

� � � � � 
 � �� � � � 
�� ��� .
To investigate the asymptotic weight distribution of Turbo codes, we show that�� � 
 ���� � 
 � 
 ��
 � 
�� , referred to as the normalized weights, have a Gaussian distribution

for their typical values when
�

is large. This is easily verified by noting that all the

�
�

possible combinations within the three steams are equiprobable, and consequently,

the positions within each of the three output streams are independent and identically

distributed (iid) binary random variables (where zero and one are equally probable). Using

the Central Limit Theorem, we conclude that
���� , �� � and

�� � , which are the normalized

sum of
�

iid random variables, have a Gaussian distribution with mean � � ��� and

variance � � � for the large values of
�

.

In order to have a set of jointly Gaussian random variables, not only do the marginal

weight distributions need to be Gaussian, but also the conditional distributions should
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be Gaussian. When the systematic weight ��� is known, the parity bits are no longer

independent of each other, because only
� �
� 
�� out of �

�
codewords represent a systematic

weight of � � , and hence, remain probable. Under these circumstances, the parity bits in

each stream tend to be an � -dependent sequence and the Central Limit Theorem can still

be applied. In the following, using the properties of � -dependent random variables, we

show that the conditional weight distributions of �� � and ��!� given �� � are Gaussian for

the typical values of �� � . As a result, noting that the marginal distributions are Gaussian,

we can conclude that �� � , �� � and �� � are a set of jointly Gaussian random variables.

Definition: � -dependent sequence

A sequence � ��
�� ��
������ of random variables is called � -dependent if and only if ���	� � 
 

��� � 
�� ��
�������

��� �
and ��� � 
�� � � ��
�������
�� � ��
 � are independent sets of variables when ��������� [44]; that

is, an � -dependent sequence is a sequence of dependent random variables for which the

dependency lasts, at most, for � elements.

Theorem: Central Limit Theorem for the sum of dependent random variables

If � � 
�� � 
������ is a sequence of � -dependent, uniformly bounded random variables and��� 
�� ����� ������������� � , with the standard deviation  � . Then, if  � � � �"!�� � � as
� � � ,

� � �$# � � % �$# � for all # , as
� � � , where

� � is the cumulative distribution

function (cdf) of � � � �'& � � � � � �( � [44].

As indicated in the theorem, if the standard deviation of the sum of
�

consecutive

elements of a stream of � -dependent random variables grows faster than the third root

of their number, the Central Limit Theorem can still be applied. In order to apply this

theorem on the conditional weight distributions, we prove the following proposition.

Proposition: Assuming the systematic weight is ��� , each parity stream is an � -

dependent sequence, and the variance of its weight is given by) �
� 	+* � 
 


�
�
,
�-� � � � � � � 
� � �/. � � � !	�

��� � � � � � 
� � �0. � � � !	��1 � (1)

Proof: See Appendix.

With this proposition and the Central Limit Theorem for the dependent variables,

the conditional parity weight distributions, when the systematic weight is given, asymp-
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totically become Gaussian distributions. A similar approach is valid for the conditional

weight distribution of �� � , given �� � and �� � . As a result, �� � , �� � and ��!� are a set of

jointly Gaussian random variables, since their marginal and conditional distributions are

Gaussian.

A set of jointly Gaussian random variables can be completely described by their

mean vector and covariance matrix. The marginal mean and variance of �� � , �� � and ��!�
are � � � � and � � � , respectively. The correlation coefficients between

�� � and �� � denoted

as � ��� , � 
 � 
���
���
�� , can be written as� ��� 
 �� � �� � � �� � �� �)����� )����� 
 �
	 �� � �� � � �

��
 
 (2)

and �� � �� � 
 ��
����� � � � �$� �	� � ��� ��
 (3)

where the expectation is taken over all the possible �
�

combinations of the input. The

total weight of the output sequence is equal to
�� 
 ���� � �� � � ��!� which has a Gaussian

distribution of the mean, � �� 
 � �
�
� 
 (4)

and the variance, ) � �� 
 � � ��� ����� ��� � � � �������
� � (5)

Noting that sequences with a weight smaller than the mean value result in higher

probabilities of error as compared to sequences with a weight larger than the mean, we

conclude that the main objective in the code design is to sharpen the peak of the Proba-

bility Density Function (pdf) of the normalized Hamming weight
�� which is equivalent

to minimizing the pdf variance. This is equivalent to minimizing the � ��� coefficients. In

the following, we first show that the � ������� ; therefore, the minimum possible value

for the correlation coefficients is zero. When the block length increases, � � � 
 � 
 ��
��
become zero for any nontrivial RCC. Also, � � � tends to zero with the probability of one

for the randomly chosen interleavers. Consequently, the asymptotic weight distribution

by using a randomly chosen interleaver is optimized with the probability of one.
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Theorem: � ��� � � for � 
 � 
 ��
 � 
�� .

Proof: Any of the pairs � � �"� � , � � � � � for � 
 � 
 � 
�� 
�� and � 
 � 
 � 
�������
 � , can

take four different values; namely, � ��� 
 � � 
�� � 
���� � . The set of the input sequences that

results in the value of ��� form a sub-group of all the possible �
�

input combinations.

This is a direct consequence of the linearity and the group property of the code. Due to

the group property of the set of corresponding coset leaders, two situations can occur.

There is either only one coset with the coset leader � � , or there are three cosets with the

coset leaders � � , � � and ��� . The important point is that in both of these cases, the ���
sub-group and its cosets contain the same number of input sequences. Therefore, for the

probability of the pair � � �$� � , � � � � � , the following two cases exist:

Case I: � � �"� ��
�� � � � � take the values � � 
�� � , each with the probability of � ��� , resulting

in � � �$� �	� � � � � 
 � � � , so that

� � �"� � � � ��� � � � � �$� � � � ��� � 
 �
� � (6)

Case II: � � �$� ��
�� � ��� � take the values ��� 
 � � 
�� � 
���� , each with the probability of � ��� ,

resulting in � � �$� �	� � ��� � 
 � ��� , so that

� � �"� � � � ��� � � � � �$� � � � ��� � 
 � � (7)

The important point is that in both cases, we have

� � �"� � � � ��� � � � � �"� � � � � � � � � � (8)

This indicates that the correlation coefficients � ��� , � 
 � 
 ��
���
�� are always nonnegative.

Theorem: � ����
�� � � � � as
� � � .

Proof: For � ��� and � � � (the interaction of the systematic stream with each of the

parity checks), Case II in the previous two cases is valid, resulting in � ����
 � � � � � as
� � � . Note that � ���"� � and ����� � � are independent of each other, if ��� �$� � is not

mapped (through interleaving) to a bit position within � ��� � � , or if � ����� � contains at
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least two elements. This is valid except for some trivial cases which have a vanishing

effect on the overall result.

Theorem: ��� � � � for
� � � with the probability of one (for almost any random

interleaver).

Proof: If � ���$� � differs from � ����� � , even by one bit position, then �����$� � and ����� � �
are independent of each other. This results in �����"� �	����� � �!
 �����"� � ����� � �!
 � � � . This is

the case, unless � � � � � � 
�� � , and the elements of � ���$� � and � ��� � � contain the same

input bits (before and after interleaving). Consequently, the corresponding interleaver has

a restriction on the mapping of the many bit positions. Obviously, the fraction of such

interleavers tends to zero as
� � � . Therefore, for almost any random interleaver,����� � � as

� � � .

As a result, the typical weight distribution of Turbo codes is not a function of

the chosen RCC and interleaver (for nontrivial RCCs and interleavers), and hence, the

interleaver optimization has a diminishing effect on the asymptotic performance of the

Turbo code in its waterfall region.

The Gaussian weight distribution approximation is valid for the typical values of

the Hamming weight. The number of low-weight codewords cannot be approximated by

a continuous distribution, and as we will see in the next section, low-weight codewords

appear only in certain structures and for each of these structures, their number is a Poisson

random variable. However, as the SNR increases, the error performance is determined by

codewords of lower weights. In the Appendix, in order to provide insight into the range of

the SNR for which codewords of typical weights are dominant, we apply the union bound

on the weight distribution to find the dominant weight in the error performance. Also,

the cutoff rate which is based on applying the union bound on the weight distribution is

calculated according to this assumption and compared to the random coding cutoff rate.
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III. INTERLEAVER OPTIMIZATION FOR
� � �

IN THE ERROR FLOOR REGION

A. Asymptotic behavior of low-weight codewords

The error floor is caused by low-weight codewords. The number of low-weight

codewords and their weights are determined by the RCC and the interleaver structure.

To have an approximation of the mean and the variance of the error floor among all the

possible interleavers, the statistical properties of the low-weight codewords are required.

The probable low-weight codewords for large block lengths consist of some short

error events3 with the systematic weight of two in both the RCCs [3]. These short error

events are caused by two nonzero systematic bits that are separated by an integer multiple

of the RCC impulse response period. In other words, an asymptotically probable codeword

has an even systematic weight of ��� 
 � � . Each RCC leaves the all-zero state
�

times.

This is equal to at least
�

repetitions of the RCC impulse response in each encoder.

This phenomenon produces
� �/. � � �� nonzero parity bits, where � � � � is the number of

RCC impulse response repetitions in the parity check sequences. We call this structure

of low-weight codewords as the structure of type � � 
�� � , where � � � � .

To calculate the mean and the variance of the error floor, it is necessary to compute

the statistics of each low-weight structure. For structure type � � 
�� � , there are, at most,

� � ��� short error events with a duration of more than 
 . It is known that there are� ��� �
� � � ��� (9)

ways to choose � � positive integer numbers with a summation of � . Equivalently, the

structure of type � � 
�� � can be divided into
� � � ��	� � � � substructures, each having the same

statistical properties as the codewords of type � � 
�� � � . For the rest, we first, calculate

the statistical properties of these codewords, and then generalize the result to the other

structures.

There are � �� � (10)

3A short error event means leaving the zero-state and returning back to it for the first time.



14

systematic inputs consisting of
�

pairs of nonzero bits separated by 
 . This can be

easily verified by determining the place of the first element of each pair. The overlapping

pairs are neglected, because
� � �

. Such a structure produces
� � 
 � ����� � bits in

the first convolutional encoder. There are the same number of parity bits in the second

convolutional encoder, if the interleaver maps that systematic stream to another stream

of the same structure. There are
� �
�	� � possible ways to interleave a stream of the weight

� � . However, among them, only
� �� � result in

�
pairs of nonzero bits separated by 
 ;

that is, a suspected low-weight stream changes to another one with the probability of� �� �� �
� � � � (11)

If (11) is multiplied by (10), the average number of these low-weight codewords is� �� � �� �
�	� � �

� � �� � � (12)

In other words, we have a large number of binary random variables with a very small prob-

ability of success which, on the average, result in a nonzero finite number of low-weight

codewords. These random variables are asymptotically independent because occupying

a bit position in the interleaved stream by a certain bit does not asymptotically affect

the probability for the other bits. As a result, the number of low-weight codewords is

a Poisson random variable of parameter
� �	�� � . If (12) is multiplied by (9), the Poisson

parameter for the structure of type � � 
�� � is� � �� � � � � �
� � � � � � (13)

As an example, there are approximately
�

codewords with the systematic weight

of two, consisting of two nonzero bits separated by 
 . After interleaving, the distance

between these two bits remains at 
 with the probability of � � � . This occurs because

these two bits can occupy about
� � ��� different places after interleaving, and only

�
of

the new places are separated by 
 . Then, the average number of low-weight codewords

of this structure is two. On the other hand, there are four codewords with the systematic

weight of 2 and parity weight of � � 
�� ������� , averaged over all the possible interleavers,
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because there are two possible structures for this situation: distance 
 before interleaving

and � 
 after interleaving, and vice versa, and the Poisson parameter for each of two

substructures is two.

In a linear binary code-book, the binary addition of two or more low-weight code-

words results in another low-weight codeword. The new codeword is decomposable

when the original low-weight codewords do not have common nonzero bit positions.

Decomposable codewords can be easily ignored, because the new codeword does not

change the Voronoi region of the all-zero codeword and if each of the original low-

weight codewords is expurgated, the decomposable codeword no longer exists. As a

result, the Poisson parameters are more precise when only the indecomposable structures

are counted. In the asymptotic weight distribution of Turbo codes, there are some low-

weight codewords with a systematic weight greater than two which can be decomposed

into smaller low-weight codewords. We assume that such a low-weight codeword has a

systematic weight of � � � � , and consists of some smaller low-weight codewords which

can be partitioned to
� � codewords of the systematic weight � � for � 
 ��
�������
 � � � . Of

course,
� � ’s are nonnegative integers that satisfy� � ���

� �
� � � 
 � � (14)

Again, only codewords of type � � 
�� � � are considered. The same approach that was

previously applied is still valid for the codewords of type � � 
�� � , when � � � � . The

distribution of such structures is a Poisson random variable, because it is the addition of

a large number of identical, low-probable codewords. The total number of low-weight

codewords of type � � 
�� � � is
� � �� � . It is assumed that the average number (Poisson

parameter) of indecomposable codewords with the same type is
� � . If the number

of indecomposable low-weight codewords of type �$� 
��(� � is � � , then the number

of decomposable codewords of type � � 
�� � � consisting of
� � 
 � 
 ��
�������
 � � �

codewords of type �$� 
�� � � is � � ���
� �

� � �� � � � (15)



16� � is a Poisson-distributed random variable with the parameter of
� �

. Therefore, the

average number of decomposable codewords is� � �� � � � � 
 ������ 
��� 
 �	� � � � & 
 � � ���
� �

� � �� � ��� 
 ������ 
��� 
 �
� � � �
� � ���

� �
& 	 � � �� � � 
 
 (16)

because different Poisson random variables are independent.

Lemma: The expected value of
��� �� � � , where � � is a Poisson-distributed random

variable of parameter
� �

is & 	 � � �� � � 
 
 �
� ��

� ��� � (17)

Proof: &�� ��� �� � ��� 
 ���
�
� � � �

� � � 
 ��� � 
 ���


 ���
�
� � � �

� � � � � � � � � ��� ��� � �
��
� �



� ��� � �

� ��
� � � ���

�
� � �

�
�
� ��

� � � � � � �



� ��� � �
� ��

� � � �� �
��� �

��
� �



� ��� � �

� ��
� � � � � �



�
� ��

� � � �
(18)

Using this lemma, we can see that

� � 

� � �� � � ������ 
��� 
 �
� � � �

� � ���
� �

�
� ��

� ��� 
 for
� � � � (19)

This recursive equation in conjunction with the fact that
� � 
 � yields the Poisson

parameter for the indecomposable, low-weight codewords of the type � � 
 � � � . With the

same approach, the Poisson parameter of codewords of type � � 
�� � is the multiplication

of
� � by (9).
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The new Poisson parameters lead us to find the asymptotic probability mass function

(pmf) of the minimum distance over all the possible interleavers. Figure 3 represents the

pmf of the minimum distance of a large-block Turbo code with 
 
 � . This pmf is

calculated by using the fact that the smallest low-weight structure with a nonzero number

determines the minimum distance.
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Fig. 3. Asymptotic probability mass function of the minimum distance of Turbo codes as ����� when RCC

impulse response is 7.

B. Error floor for large block Turbo codes

In this section, the asymptotic behavior of the error floor is studied. Using the results

of the previous section, we calculate the mean and the variance of the union bound on the

error floor. Suppose that we sort the probable structures in the ascending order of their
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weights. Obviously, the least weight belongs to codewords of type � ��
�� � . The weight of

such codewords is � � � � 
�� ����� � 
 
�� � . Suppose that the number of codewords of

the � ’th structure is
� � which is determined by a Poisson distribution with the parameter

� � . The error floor, by using the union bound, is bounded by 
�� � 
�� 
 �
�

� ��� � ,
where � � 
 �

�	� ��&�
 � �
� � � is the corresponding error for any codeword of the � ’th

structure, where &�
 is the energy per channel use and is equal to & � ��
 , where & � is the

energy per information bit and 
 is the code rate. The mean of this upper bound can

be determined by �
�

� � � � . Using the same approach as that for small error events, we

find that these random variables are asymptotically independent. Thus, the variance of


 � can be calculated as ) �.�� 
 �
�

� � � �� .
In Figure 4, the mean and the standard deviation of the error floor for Turbo codes

of the rate
�
� and memory lengths, 2, 3, and 4 (i.e., RCC impulse responses of 3, 7,

and 15) are shown. As it is desirable, both the mean and the standard deviation decrease

when the SNR increases. As the SNR increases, the ratio between them becomes � � .
This occurs because, for this region of signal to noise ratio values, only the codewords of

the lowest weight structure remain important. Figure 5 exhibits the effect of neglecting

decomposable low-weight codewords on the mean of the error floor for a large-block

Turbo code with 
 
 � . When 
 is relatively small, removing the decomposable low-

weight codewords results in a tighter bound on the error floor.

C. Expurgating low-weight codewords

Low-weight codewords in Turbo codes occur when a low-weight information stream

results in a few parity bits in both recursive convolutional encoders. As mentioned before,

the average number of low-weight codewords in which more than two nonzero systematic

bits cause a short error event is zero for large block lengths. The important point is that

the average number of such low-weight codewords does not increase with the block

length
�

[3]. The number of low-weight codewords is a nonnegative integer with a

finite average, and consequently, the probability of having an infinite number of such
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Fig. 4. The mean and standard deviation of the union bound on the error floor.

low-weight codewords approaches zero for large block lengths.

We can remove the effect of these low-weight codewords on the error floor region by

expurgating them. Expurgating low-weight codewords decreases the dependency of the

Turbo-code performance on the RCCs and the interleaver structure, since the remaining

codewords tend to the Gaussian weight distribution.

To expurgate these codewords, one way is to set one information bit in each low-

weight codeword to zero as presented in [4]. However, no further puncturing is required

to maintain the code rate, because when the block length is sufficiently large, the number

of these bits is small in comparison with the block length, and consequently, the code

rate is not affected.

In Figure 6, the effect of expurgating low-weight codewords on the asymptotic mean
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Fig. 5. The error floor for a large-block Turbo-code with
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.

of the error floor after expurgating codewords of the first low-weight structure (type (1,2),

systematic weight � and parity weight 
 � � ), and the second one (type (1,3), systematic

weight � and parity weight � � 
 � ����� � ) for a code of the rate � � � and 
 
 � is shown. On

the average, there are two and four codewords of these two structures, respectively. The

number of codewords in each of these two types does not exceed ten with probabilities
��� � � �	� and 0.0028, respectively. Figure 7 presents the effect of the expurgation on a

Turbo-code of the length 10000 and rate of 1/3 by using RCCs with three memory bits

( 
 
 � ). The interleaver is chosen randomly. Simulation results show that by using this

randomly chosen interleaver, three low-weight codewords with the systematic weight of

two and parity weight of less than or equal to 12 (having the first or the second structure)

exist.
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Fig. 6. Effect of expurgating two low-weight codeword structures on the asymptotic performance of a Turbo code

of rate 1/3.

APPENDIX

A. Probability of error for large block Turbo codes

The Gaussian approximation of the Turbo code weight distribution is the same as the

weight distribution of random codes. This assumption remains valid when high-weight

codewords dominate the performance. One of the tools to characterize random coding

is the cutoff rate. The weight of the dominant codewords in computing the cutoff rate

provides insight into the validity of the Gaussian approximation. We compute the cutoff

rate using the Gaussian distribution, and compare it to the random coding cutoff rate;

namely, 
 � 
 � � ����� � � � � � ����� ! �
	 � , where & � is the channel symbol energy, and
� �

is the one-sided Gaussian power spectrum of noise [45].
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Fig. 7. Effect of expurgating three low-weight codewords on the performance of a Turbo code of rate 1/3 and block

length of 10000.

For a Turbo code of the rate 
 and block length
�

, the normalized weight dis-

tribution function can be modelled as a Gaussian distribution with the mean
� �
� 
 and

variance
�

� 
 , where the code rate 
 is achieved by employing a larger number of parallel

concatenated RCCs and/or puncturing which does not affect the Gaussian assumption.

The number of codewords of the normalized weight between
�� and

�� � � �� , under the

Gaussian distribution, is

� �� � �
� � ��� �
�������
	

��
� � 


, �� � � �
� 
 1 ��
� � (20)

The term in the union bound that corresponds to the probability of an error event of the
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normalized weight
�� (using the BPSK modulation) is

� �� 
 �
��

� �� � � & �� � ��
� (21)

The dominant codewords in the error probability are around the peak of
� �� � �� , which

occurs at ���� 
 � �
� 


�
� � & �

� � � � . The Gaussian assumption is valid when
���	���
 � 
 ����

� � 

� 
�� . It is easy to see that

 �� �
� �

� �
� , and consequently, we only require that


 �� �
� � � � ,

resulting in
& �� � � � (equivalent to � dB). After the break point of & � � � � 
 � dB

is reached, the behavior of the Turbo code cannot be modelled anymore by using the

Gaussian distribution.

In practice, Turbo codes are used in much lower ranges of signal to noise ratios

than the break point. For example, the value
& �� � 
 � dB corresponds to the value of& �

� � 
 � � � dB ( & � stands for energy per information bit) for a code of the rate � � � , or to& �
� � 
�� dB for a code of the rate � � � . These values are substantially higher than those

of the ranges of
& �
� � used in practical systems. In other words, the dominant codewords

follow the Gaussian assumption for the SNRs of interest.

To find the cutoff rate under the Gaussian assumption, using the union bound, we

have


 � ��� ��� �� ��� � �� � �� � (22)

By using the inequality � �$# � � �� � � 	 ����� 	� � and the Gaussian distribution assump-

tion, (22) can be rewritten as


 � � �
�� � ����

� � ��� ��� 	
��
� � 



 �� � � �
� 
 � � � & �

� � � � � � �� � �� 
 (23)

where

� 
 ���
	
,
�
�
� 




���

�
��� & �

� � � � � � 1 
 (24)
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and hence,


 � � �
�
� � � � 
 (25)

where
� 
 �


 � �



� & �
� � � � � � � � �


 � �



� & �
� � � � � � � � (26)

For
& �� � � � and

� � � ,

�	�	���
 � �

 � �



� & �
� � � � � � � 
 � 
 (27)

and,
�	�	���
 � �


 � �



� & �
� � � � � � � 
 � � (28)

Hence,
�

can be approximated as � .
Let us define


�� 
 �
� ��� ��� �


 & �� � � �
�
� & �� � � � � � (29)

We can see that if 
 � 
�� , then the probability of error converges to 0 as
� � � .

Figure 8 reflects the difference between 
 � and 
�� around the break point of
& �� � 
 � dB

(
& �
� � 
 � � � dB for a code of the rate � � � ).

B. Proof of the Proposition

To prove the proposition, we need the following lemma.

Lemma: Suppose we partition a stream of
�

bits consisting of � number of ones

and
� � � number of zeros into � groups. Each group consists of

� � 
 � 
 ��
�������
��
( � � � � 
 �

) bits. We show the event in which the
�

’th group has an odd Hamming

weight by � � . For
� � � , if

�	�����
 � � � � � 

 � 
 � 
 ��
�������
 � 
 (30)

then ��� , � � , ..., � � � � tend to be independent events of the probability of � � � as
�

goes

to infinity (for the typical values of � ).
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Proof: The Hamming weight of the
�

’th group is shown by
� �

. Then, the probability

mass function of
� �

can be written as


��������
�
� 


� � � � �� � � � � � � �� � �� �
� � 
��

�

 � 
���
�������
 � � � (31)

This probability mass function is an increasing function with respect to �
�

for� � �
�

� �
	 , where �
	 
����
� ���
 is the typical value for the Hamming weight of the�

’th subsequence, and is decreasing for ��	 � �
�

� � � � � � 
 � � � .

It is easy to see that for an integer random variable with a monotonic probability

mass function, the difference between the sum of the probabilities for even and odd

numbers is smaller than the boundary probabilities. The probability mass function that
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is described by (31) can be separated into two monotonic functions. For
� � � , the

boundary probabilities specified by (31) (i.e., the probabilities at � 
 � 
 � 
 � 	 ) are 0,

and so,


 � � � is odd
� 
 
 � � � is even

� 
 �
� � (32)

The same approach is valid for the
�

’th group (
� � � ), when the Hamming weight

of the first
� � � groups are known, and hence, it is odd-weighted with the probability

of � ��� . Obviously, the Hamming weight of the � ’th group, given the Hamming weights

of the other groups, is known.

Proposition: Assuming the systematic weight is ��� , each parity stream is an � -

dependent sequence, and the variance of its weight is given by) �
� 	+* � 
 


�
�
,
�-� � � � � � � 
� � �/. � � � !	�

��� � � � � � 
� � �0. � � � !	��1 � (33)

Proof: Consider two arbitrary parity bits (far from the boundaries) named � � � and� ��� in one parity stream. We show that these two bits are independent of each other, when

their distance is large. The proof can be extended to two sets of parity bits. According

to the distance between � ��� and � ��� , two situations can occur.

Case I: The distance between these parity bits is not an integer multiple of the RCC

impulse response period 
 . We divide the information bits into four subsets, depending on

whether they trigger these two parity bits or not. We call the four groups
� � 
 � 
 � 
���
 � 
�� .

The members of the
� � trigger none of the parity bits. Members of

� � and
� � trigger

just the first parity bit and the second parity bit, respectively. Finally,
� � consists of bits

that trigger both parity bits. Similarly, we show the event of having an odd Hamming

weight in the
� � by � � 
�� 
 � 
�� 
�� 
�� . All the systematic bits after the second parity bit

are in
� � . For any 
 information bits preceding the first parity bit, there is at least one

bit in each of
� � 
�� 
 � 
�� 
�� . Hence,

� � � �� 

 � 
 � 
 � 
�� 
�� 
���
 (34)
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where � � � denotes the cardinality of a set. As a result,
� � ’s satisfy the conditions in the

preceding lemma. It is easy to see that

� � ��
 ��� � � ��
 � ���!
 � � � � ��
 (35)

in which
�

is the binary addition (� � � is one if just one of � � and � � happens, and is

zero, otherwise.) Since, � � , � � and � � are equiprobable identical independent events,

then � ��� and � ��� are equiprobable independent bits.

Case II: The distance between those two bits is an integer multiple of impulse

response period 
 , say
� 
 . In this case,

� � is empty, but
� � and

� � still satisfy the

condition in the lemma.
� � has only

� � 
 � ����� � elements. However, as long as the

distance between the two parity bits is large (when
�

is large which is true for almost

any two typical bits), the conditions of the Lemma are satisfied, and � � and � � become

equiprobable identical independent events. As a result � ��� and � ��� are independent.

To apply the Central Limit Theorem to the � -dependent sequence of the parity

stream, we have to find the variance of the conditional parity weight. This variance is

a function of the cross correlation between the near parity bits that are separated by an

integer multiple of 
 (all the other pairs of the parity bits are uncorrelated). To compute

this correlation, we note that when the distance between the parity bits is
� 
 (

�
is a

relatively small integer), the elements of
� � can be considered to be iid bits, and each

of them is one with the probability of
� �� . Then,

������� �������	� 
 ������� � � 
 �	� 
 �
�
�
��� ��� �� �

�
�/. � � � !	� 
 (36)

because the probability of having an odd parity within these
� � 
�� ����� � bits is


 � � �!
 � � 
 � � � � � � � 
� � � �/. � � � !	�
� � (37)

The covariances of the other pairs are zero. Since, the parity weight is � � 

��
� ��� � � ����� ,

then ) �
� 	+* � 
 


��
� � �

) ���	���� � � � �
��
 �
��� 
 � ������� ��������� 
������ � ����� (38)
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As a result, ) �
� 	 * � 
 


��
� � �

�
� � � ��

� � �

� � � � ��� ! .��� �
� �

������� � � ���	��
�� � ��� � � 
 ���



�
� � � ��

� � �

� � � � ��� ! .��� �
� �

�
�
�
� � ��� �� �

�
�/. � � � !	�

�
�
� � � ��

� � �
�� �

� �
�
�
�
��� ��� �� �

�
�/. � � � !	�



�
�
,
� � � � � � � � 
� � �/. � � � !��

� � � ��� � � 
� � �/. � � � !���1 �
(39)
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