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Using the Fourier Transform to Compute the Weight
Distribution of a Binary Linear Block Code

Pragat Chaudhari and Amir K. Khandani

Abstract—An analytical technique is presented to compute the
weight distribution of a linear block code by performing a Fourier
analysis involving certain matrices obtained from the code trellis.
The proposed method is general, easy to implement, and can be
used without having to traverse the trellis or carry out tedious an-
alytical work. The introduced technique can be used as a flexible
analytical tool to capture the weight structure of the code with ap-
plication to problems involving analysis and/or design.

Index Terms—Binary linear block code, discrete Fourier trans-
form, state transition matrix, turbo code, weight distribution.

I. INTRODUCTION

K NOWLEDGE of the weight distribution of linear codes
is important in their error performance analysis. Due to

this fact, numerous research works have addressed the problem
of computing the weight distribution of general or specific code
constructions.

The techniques known for computing the weight distribution
of a general linear code are based on representing the code by
a state diagram in the case of convolutional codes [2], [3], or
by a trellis diagram1 in the case of block codes [4]–[9]. These
methods are based on assigning a partial weight enumeration
function to the transitions of a state (or trellis) diagram, where
the partial weight distributions are appropriately multiplied and
summed (reflecting the concept of state in traversing the allowed
paths) to yield the complete weight distribution of the code.
Similar computational techniques have been used in conjunc-
tion with constrained coding systems as well [10].

The focus of this paper is to present the use of a variation of
the discrete Fourier transform (DFT) operating on matrices to
calculate the weight distribution of a linear block code. This is
achieved using a modified state transition matrix which is de-
fined using the basic concepts of the DFT. The corresponding
computation involves raising the modified state transition ma-
trix to the power of the code block length and applying the in-
verse DFT to the result. The proposed method is general, easy to
implement, and unlike other known methods, does not require
traversing the trellis or performing tedious analytical work. The
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1A trellis diagram differs from a state diagram in that a time axis is associated
with the transitions.

introduced technique provides a flexible and insightful analyt-
ical tool to capture the weight structure of the code with appli-
cation to a variety of problems involving analysis and/or design.

The article is organized as follows: Section II presents the
formation of the modified state transition matrix, called the
weighted state transition matrix.The use of the Fourier analysis
is presented, allowing us to compute the weight distribution
of the code in a systematic manner. Section III is devoted
to simple examples to illustrate the main procedure. Finally,
Section IV contains a brief summary of the article.

II. STATE TRANSITIONS MATRICES

Consider a trellis with states, where each
transition between a pair of states is distinguished by
one or several input bit(s), as well as one or several output bit(s).
We define the partial state transition matrices ofas a set of

matrices where the th element of ,
namely , is equal to the number of transitions of input
weight and output weight between statesand after
transitions. We will consider , where ,
as two-dimensional discrete series elements. It is shown that the
calculation of weight distribution reduces to computing certain
convolutions defined on the sequence of such matrices. This is
subsequently converted into multiplication by defining an ap-
propriate form of Fourier transform pair. To show this, we note
that the number of paths with input weightand output weight

between states and after transitions through a given
trellis, can be found using the following recursive relationship:

(1)

In matrix form, we have

(2)

This is indeed the convolution of the sequences and
. We define the weighted state transition matrix

as

(3)

where

(4)
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and are selected as arbitrary integers larger than the
maximum possible input weight and maximum possible output
weight, respectively, to avoid aliasing in the subsequent inverse
transform operation. Note that and form a DFT
pair, i.e.,

(5)

where denotes the discrete Fourier transform operation as
defined in our context. Using basic orthogonality properties
of Fourier transform pairs, it is easy to show that the dis-
crete Fourier transform of the convolutional operation in (2)
yields a product of the DFT’s of the two transitions matrices.
Furthermore, by recursively applying this property, it can be
established that

(6)

Using this property, to compute the weight enumeration func-
tion over consecutive stages of the trellis, we simply raise the
matrix to the power (to encapsulate that transi-
tions have occurred) and then perform the inverse transform,
resulting in

(7)

The th element of the matrix indicates the
number of paths of input weight and output weight starting
at state and ending at state after traversing consecutive
stages of the trellis. The main computational step in computing
(7) is to raise the matrix to the power of . This
can be achieved easily by using an eigenvalue decomposition of

and raising the eigenvalues to the power of[11].
In general, the entries of matrix have an exponential

growth with . As a result, for large values of one may
encounter numerical difficulties in using (7). This problem can
be easily handled by performing the calculations on shorter
sub-blocks, truncating the resulting partial weight distribu-
tions, combining the results through multiplication of the
corresponding weighted state transition matrices, and finally
performing the inverse Fourier operation on the result. Note
that similar precautions are needed in any other method used to
compute the weight distribution.

For a linear code, it is required that the trellis begins and ends
in the “zero” state. This corresponds to location (0, 0) of the
matrix . The other entries of the matrix provide the weight
distributions of the cosets of this linear code.

We usually have resulting in in which case
we use to represent the common value of and to
represent the common value of .

The above formulation accounts for the contributions of the
input and output weights, separately. In some situations, we may
be interested only in the weight of the output, in which case we
can omit the variable in (3) and (7), and express the Fourier

transform pair in terms of a single summation, as in the pair of
equations below.

(8)

(9)

The developed methodology is quite versatile and can be ap-
plied to any code which is representable by a trellis diagram,
including convolutional codes, Turbo codes, and many other
linear block codes. For the case of Turbo codes, the coefficients
of conditional weight enumeration functions (as defined in [5])
can be easily calculated for the error performance analysis.

The memory requirement for the proposed method is in the
order of , while the memory requirements of conventional
methods based on traversing the trellis are in the order of

, where are the maximum weights of the
input and output, respectively. Note that for a code with a
reasonable state complexity, usually , meaning
that the proposed method has a smaller memory requirement.

For a code with a large number of states the proposed method
will be too complex to implement, however, for such a large
code, any other technique will also be complex. In general, for
such a large code, one needs to somehow use the specific code
construction to simplify the calculations, either in conjunction
with the method proposed here, or in conjunction with any other
alternative method including those based on a trellis represen-
tation.

Computational complexity of the proposed method is not of a
major concern and is generally comparable to other alternative
techniques known for this purpose. In general, note that the main
objective of the proposed method is to provide for an easily
implementable algorithm. This means that the complexity issues
are not the main focus of the discussion.

The validity of the proposed method has been verified by
comparing the resulting weight distributions for various codes
to those obtained by a direct computation of (1) using the trellis
diagram.

III. SOME EXAMPLES

A. A Recursive Convolutional Code

Consider the simple recursive convolutional code,
where represents the taps on the memory elements for the
output bits, and represents the feedback taps. This is a 2
memory element code, with 4 states. The state diagram is as
shown below in Fig. 1. From the state diagram, we have,

(10)
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Fig. 1. State diagram of(5; 7) recursive convolutional code.

Fig. 2. State diagram of a generic single-parity check code (valid code
sequences begin and end in the zero state).

Using (3), we obtain,

where

(11)

Using (7) and (11), the weight distribution of the code can be
found.

B. Single-Parity Check Codes

Consider a simple single-parity check code. The
state diagram of the code is provided in Fig. 2. From this state
diagram and using (8), we obtain the following weighted state
transition matrix (considering the output weights only):

(12)

In (9), the coefficient is calculated by raising to the th
power and the inverse DFT is then performed. The eigenvalues
of with corresponding eigenvectors, can be verified to be,

(13)

(14)

Using these values, can be calculated as

(15)

where, and Using (9), the coef-
ficients can be calculated for differentvalues. Implementing
this procedure for the (5, 4) single-parity check code, the weight
enumeration below is obtained.

Weight Weight Coeffcient,

IV. SUMMARY

A systematic method is presented to calculate the weight dis-
tribution of a linear block code expressed in terms of its trellis
structure. The proposed method is general, easy to implement,
and can be used without having to traverse the trellis or carry
out tedious analytical work.
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