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Abstract

This work studies certain properties of the Probability Density Function (���) of the bit Log-Likelihood-Ratio

(���) for binary linear block codes over a memoryless channel with discrete input and discrete or continuous

output. We prove that under a set of mild conditions on the channel, the ��� of the bit ��� of a specific bit

position is independent of the transmitted code-word. It is also shown that the ��� of a given bit ��� when the

corresponding bit takes the values of zero and one are symmetric with respect to each other (reflection of one

another with respect to the vertical axis). For the case of channels with binary input, a sufficient condition for two

bit positions to have the same ��� is presented.
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I. INTRODUCTION

In the application of channel codes, one of the most important problems is to develop an efficient

decoding algorithm for a given code. The class of Maximum Likelihood (ML) decoding algorithms are

designed to find a valid code-word with the maximum likelihood value. The ML algorithms minimize

the probability of the Frame Error Rate (FER) under the mild condition that the code-words occur with

equal probability.

The use of linear binary codes to label the points of signal constellations has been the subject of

many investigations. The distance invariance property in such schemes guarantees that the (frame) error

probability is independent of the transmitted code-word. This significantly simplifies their design and

performance evaluation. For this reason, the study of distance invariance property of codes and signal

constellations has been the subject of numerous research works (e.g. see [2]–[9] and their references).

More recently, reference [10] studies the invariance property of the error probability at bit level, still

relying on ML decoding.

Another class of decoding algorithms, known as bit decoding, compute the probability of the individual

bits and decide on the corresponding bit values independent of each other. The straightforward approach

to bit decoding is based on summing up the probabilities of different code-words according to the value of

their component in a given bit position of interest. Reference [11] provides an efficient method (known as

BCJR) to compute the bit probabilities of a given code using its trellis diagram. The main simplification

of BCJR has been the SOVA (Soft Output Viterbi Algorithm) [12] which is a sub-optimum solution.

A reduced-search BCJR algorithm is also proposed in [13]. There are some special methods for bit

decoding based on coset decomposition principle [14], sectionalized trellis diagrams [15], and using the

dual code [16], [17].

Maximum Likelihood decoding algorithms have been the subject of numerous research activities while

bit decoding algorithms have received much less attention in the past. More recently, bit decoding

algorithms have received increasing attention, mainly because they deliver bit reliability information. This
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reliability information has been effectively used in a variety of applications including Turbo decoding.

There has been also an increasing interest to study the use of Turbo-like codes in conjunction with non-

binary constellations (e.g. see [18] and its references). Noting the significance of the invariance property (as

explained in [2]–[10] in the context of ML decoding) and the growing interest in bit decoding algorithms, it

is of interest to define and study invariance properties in the case of bit decoding algorithms in conjunction

with binary or non-binary constellations. Such a study sheds light on the structure of codes equipped with

bit decoding and simplifies their design and performance evaluation. For example, in [19], such a distance

invariance property is exploited to simplify the performance evaluation of the code.

Asymptotic performance analysis of codes in the absence of distance invariance property has received

attention in the recent years [18], [20], [21]. Reference [20] studies the limits of performance of Low-

Density-Parity-Check (LDPC) codes (under sum-product message-passing decoding) over binary Inter-

Symbol-Interference (ISI) channels and proves certain concentration theorems. In [20], an ensemble of

coset codes are used to handle the complication caused by the channel memory. Reference [21] applies

the concept of LDPC coset codes to multilevel coding and bit-interleaved coded modulation and provides

similar concentration theorems. Reference [18] studies asymptotic performance of LDPC codes (under ML

decoding) for transmission over non-binary discrete memoryless channels, again by defining an appropriate

ensemble of coset codes. Although these works present an effective method (based on applying common

randomness at the transmitter and receiver through using an ensemble of coset codes) to overcome the

complication caused by the lack of distance invariance property, their proposed approach is limited to

asymptotic performance analysis. It would be of interest to study such distance invariance properties

for finite block lengths which is the motivation behind current work. In addition, the current article

provides some guidelines to distinguish when the underlying code structure already possesses such distance

invariance properties as elaborated below.

In Multi-Level Coding (MLC), each bit in the constellation labels is protected by a different binary code.

Accordingly, in Multi-Stage Decoding (MSD), these component codes are successively decoded based on
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the channel output and the decisions from lower levels. It is well known that the combination of MLC and

MSD can achieve capacity if the code rates at each level are properly chosen. With this view point, the

transmission of multiple label bits can be separated into the parallel transmissions over equivalent binary-

input component channels provided that bits from lower levels are known. This provides an effective

tool for the analysis and design of these schemes [22]. Reference [21] argues that the application of

density evolution and concentration theorem for schemes based MLC and MSD is complicated because

for the binary-input component channels the decoding analysis of the all-zeros codeword alone will not

necessarily suffice. Reference [21] also shows that for a Gray labeled Amplitude Shift Keying (ASK)

constellation, the equivalent binary-input component channels do not posses such invariance property.

This motives the authors to use LDPC coset codes to overcome this problem. We will later show (refer

to Example 5) that for Natural labeling1 and ASK modulation, these binary-input component channels

indeed satisfy the derived necessary conditions and consequently all-zero codeword can be used to analyze

their performance for MLC and MSD. Some more recent studies for the application of MLC and MSD

using Turbo and LDPC component codes are reported in [23] and [24], respectively.

Probability density function (��� ) of the bit Log-Likelihood-Ratio (���) can be used as a tool for

analysis of bit decoding algorithms. It is shown in [25] that for a binary input, output-symmetric channel

as defined in [27] (assuming that the all zero code-word is transmitted), the ��� of the bit ��� at each

node of the code graph, say ����, possesses a special symmetry defined as ���� � ������� and this

symmetry is preserved under belief propagation decoding. Note that the definition of “symmetry” in the

current article is different from [25]. Reference [26] on analysis of Sum-Product decoding of LDPC codes

over binary input channels with Additive White Gaussian Noise (AWGN) uses a Gaussian approximation

for message densities and improves accuracy by enforcing symmetry in the sense of [25]. In [27], it is

shown that for a binary input, output-symmetric channel, the conditional probability of error is independent

of the transmitted code-word.

1Note that the channel capacity is not affected by the method of labeling.
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This paper is organized as follows. In section II, the model used to analyze the problem is presented. All

notations and assumptions are given in this section. Some theorems are proved on bit decoding algorithms

in section III. We conclude in section IV. This work is a continuation of [28] in which the case of AWGN

channel with Binary Phase Shift Keying (BPSK) modulation is considered. Throughout the paper, higher

indices represent the elements of the sets (for example different code-words), vectors are shown in bold-

face, and lower indices represent subsequent components of a sequence (for example sequence of bits

within a code-word).

II. MODELING

Assume that a binary linear code � with code-words of length � is given. Notation �� � �	�
�

 	�

�

 � � � 
 	���

is used to refer to the �’th code-word and its components. We partition the code into a sub-code � �

� and

its coset ��

� according to the value of the ’th bit position of its code-words, i.e.,

� �
� � �� � � � 	� � ��
 � � �
 �� (1)

We denote bit wise binary addition of two code-words on the code book as �� � �� . Note that the

sub-code ��

� is closed under binary addition. Each code-word will be partitioned into � blocks of � bits,

assuming � � ��, to be transmitted over a channel with a discrete input alphabet set composed of ��

elements. Notation ��� , � � �
 � � � 
 ���, � � �
 � � � 
 �, is used for these blocks which will be called �-blocks

hereafter. For example, code-word �� is composed of ���
�

 ��

�

 � � � 
 ����. We assume that there exists a one

to one correspondence between the �� possible �-blocks and the input symbols of the channel. The set

of �-blocks referred as � forms a group under binary addition.

The channel has �� discrete input and discrete or continuous output as shown in Figure 1. For channels

with a discrete output alphabet set composed of � elements, � � ���
 � � � 
��� and ���� stands for the

probability mass function (��� ). For channels with continuous output � 	 
� where 
 is the set of real

numbers, � is the size of vector � and ���� denotes the ��� . In addition, we consider the following two
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classes of channels: (i) channels with a geometrical representation (motivated by scenarios like a discrete

signal constellation over an additive noise channel), and (ii) channels without a geometrical representation.

In practice, all considered cases of channels with continuous output fall under the category of channels

with a geometrical representation. For channels without a geometrical representation, “channel input”

always refers to the corresponding binary label (�-block). For channels with a geometrical representation,

depending on the context, the “channel input” may refer to the corresponding binary label or to the actual

signal point (these cases will be distinguished by using different notations). In all cases, the channel model

considered is memoryless. For channels with a finite memory, a known approach to reduce the channel

to memoryless is based on a periodic transmission of a known symbol (with a length that is equal to

the memory length of the channel) between sub-blocks of data. This results in a memoryless channel,

operating over the sub-blocks. An example in this category, based on using a Turbo-like code over an

interference channel, is presented in [20].

Channel Model� � �

������

� � �

Fig. 1. Channel Model

Consider the situation of sending a code-word �� � ����
 � � � 
���� through the channel. Each �-block ��� ,

� � �
 � � � 
 �, will be transmitted and a symbol �� � �, � � �
 � � � 
 �, will be received at the channel

output. A common tool to express the bit probabilities in bit decoding algorithms is based on using the

so-called Log-Likelihood-Ratio (���). The ��� of the ’th bit position is defined by the following

equation,

������� � ��	
� �
	� � ����
 � � � 
���

� �
	� � ����
 � � � 
���

 (2)

where 
	� is the value of the ’th bit in the transmitted code-word and ��	 stands for natural logarithm.
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Assuming,

� �
	� � �� � � �
	� � �� �
�

�

 (3)

for a memoryless channel we have,

������� � ��	

�
��	
�

�

����
 � � � 
������

�
��	
�

�

����
 � � � 
������
� ��	

�
��	
�

�

��
���

���������

�
��	
�

�

��
���

���������

� (4)

We are interested in studying the probabilistic behavior of the ���.

Assuming a linear code, we derive a set of conditions on the channel for which the choice of �� does

not have any impact on the ��� of ������� as long as the value of the ’th bit remains unchanged. It will

be also shown that under the same set of conditions, the ��� of a given bit ��� when the corresponding

bit takes the values of zero and one are symmetric with respect to each other (reflection of one another

with respect to the vertical axis). For the case of channels with binary input, i.e., � � �, a sufficient

condition for the ��� of two bit positions to have the same ��� is presented. The following sufficient

condition is required to carry out the proofs.

For any �� � � and any � � �, one can find � � � such that for all � � � , we have ��������� � ������,

i.e.,

��� � �
 �� � �
 �� � � � ��������� � ������
 �� � �� (5)

This is equivalent to,

����
��� � �
 �� � �
 �� � � � ��������� ����� � ������
 �� � �� (6)

As we will see later, the form given in (6) is more convenient to use in the proofs of the theorems.

A. Channels with a Geometrical Representation

We use the notation ��� � 
� to refer to the channel input symbols representing ��. In this case, the

�-blocks are just labels of the points in an Euclidean space. We assume that the signal set at the channel

input is Geometrically Uniform (GU) [29]. This means that for any given pair of signal points, say ����
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and ����
, there exists an isometry which transforms ����

to ����
while leaving the signal set unchanged. In

addition, we assume that the isometry that transforms ����
to ����

will also transform �
����������

to ��� for

all ���, ��� and ��.

Defining � and � following (6), it is easy to see that under the following conditions:

(i) � is selected as the image of � under the isometry ����
� ����

(ii) ��������
� is a function of �������

�
 ��
 �����

the condition given in (6) will be satisfied. A schematic view illustrating this scenario is shown in Figure 2.

A well known example for a channel satisfying condition (ii) above is the AWGN channel.

���� ����

� �

�
����������

�� � ����� � �� � �����

�� � �
����������

� � �� � �
��
�

�
��

Fig. 2. Mapping of points with an isometry

B. Channels without Geometrical Representation

In this case, the channel is characterized by a matrix of transition probabilities � defined as,

���� � �����
 ��� � ��������
 � � �� � ���
 � � ���� (7)

In this case, the condition in (6) will be satisfied if after permuting all input symbols by adding an arbitrary

�-block � to them, for each column in ���� , there exists another column for which the probability values

are permuted in the same order as the corresponding �-blocks.

Reference [30] defines the concept of the Regular Channel as follows. Assume that permutation ��

acts on the set � with the property,

� ��
 �� � �
 � �� � � ���������
��� � ��������

��� (8)
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The channel is called a �������������� if the probability ���� ���� only depends on �����
��. Refer-

ence [31] is a more recent work involving regular channels and some of their properties. Using the

language of [31], a channel is regular if the input alphabet can be identified with an Abelian group that

acts on the output alphabet by permutation. It can be verified easily that a ������� channels is always

��������	 in sense of Gallager [32] where in [32] the symmetry condition only involves the channel

symbols and not the underlying labeling. It turns out that our channel model is indeed equivalent to a

regular channel2.

Here are some examples for the discrete case.

Example 1: For the channel shown in Figure 3 we have,

� �

�
������

�� �� �� ��

� ��� � �� �� ��� � �� ��

� �� ��� � �� �� ��� � ��

�
������

(9)

0

1

��

�
�

�
�

�
�

	�

	�

���� 	�

���� 	�

���� 	�

	�

	�

���� 	�

Fig. 3. Channel model for example 1.

Example 2: For the channel shown in Figure 4 we have,

2The authors would like to thank G. D. Forney for his invaluable comments on an earlier version of this article, including pointing out

references [26], [30], [31].
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� �

�
��������������

�� �� �� �� ��

�� �� �� � � �

�� �� �� � � �

�� � � � �� ��

�� � � � �� ��

�
��������������

(10)
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�
�

�
�

�
�

�
�

�
�

00
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�
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��

��

��

��

��

��

Fig. 4. Channel model for example 2.

where ��  ��  � � �.

Example 3: For the channel shown in Figure 5 we have,

� �

�
��������������

�� �� �� �� �� �� �� �	

�� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� �� ��

�
��������������

(11)

where ��  ����  ��  ���  �� � �.

It is easy to see that the required condition for the columns of the probability matrix are satisfied in

all of the above examples.
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01

10

Fig. 5. Channel model for example 3: The values of error probabilities which are not shown follow the same pattern as the values specified

on the figure.

Example 4: In this example, the invariance properties of the received signal set for a Code Division

Multiple Access (CDMA) system with BPSK modulation (composed of signals � � ���
 ��) in AWGN

channel is studied. It is well known that in a CDMA system, the received signal for a given user is the

sum of the transmitted signal plus an interference term �; i.e.,

� � �� 	
 (12)

where � is a linear combination of the modulated bits sent to the other users. Assuming that the bits

sent to different users are independent of each other and zero/one occur with equal probability, it easily

follows that the interference term � has a ��� which is symmetrical with respect to the vertical axis.

Consequently, the equivalent additive noise term, namely � 	, has a probability density function which

is symmetrical with respect to the vertical axis. It follows that the conditions given in Section II-A are

satisfied.

Example 5: In this example, the invariance properties of the equivalent binary-input component channels

in MLC and MSD (refer to [22] for definition) with ASK modulation and Natural labeling is investigated.

We first note that for ASK modulation (assuming uniformly spaced points) and Natural labeling, the

co-ordinates of the signal points can be expressed as linear combination of the underlying bit values.

Using this property and following a reasoning similar to Example 4, it easily follows that the conditions

expressed in Section II-A are satisfied.
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III. MAIN RESULTS

Using the above definitions and assuming that condition (6) is satisfied, we have the following theorems:

Theorem 1: The ��� of ������� is not affected by the choice of the transmitted code-word �� as long

as the value of the ’th bit remains unchanged.

Proof: Consider two code-words ���
��� which have the same value in their ’th bit position. Let us

assume that ��� is transmitted through the channel and ���
 � � � 
��� is received. This results in a realization

of random variable �������� with a value of,

�������� � ��	

�
��	
�

�

����
 � � � 
������

�
��	
�

�

����
 � � � 
������
� ��	

�
��	
�

�

��
���

���������

�
��	
�

�

��
���

���������


 (13)

that occurs with probability ����
 � � � 
�����
��. Noting the ��� � ��� � ��

� , it is easy to show that,

�������� � ��	

�
��	
�

�

����
 � � � 
����� � ��� � ����

�
��	
�

�

����
 � � � 
����� � ��� � ����
� ��	

�
��	
�

�

��
���

�������� ���
�

� ���
�

� �

�
��	
�

�

��
���

�������� ���
�

� ���
�

� �


 (14)

where ���� 
��
�

� 
 �
�
� are the �’th �-blocks of the code-words ���
���
 ��, respectively.

If ��� is transmitted, assuming condition (6) is satisfied, there exists ���
 � � � 
���
�� � �
 � � �
 � � � 
 �,

such that,

�������
�

�� � �������
�

� �� (15)

Noting that the channel is memoryless, from (15), we conclude that,

��
���

�������
�

�� �

��
���

�������
�

� �
 (16)

����
 � � � 
�����
�� � ����
 � � � 
�����

��� (17)

This ���
 � � � 
��� results in a realization of random variable �������� with a value of,

�������� � ��	

�
��	
�

�

����
 � � � 
������

�
��	
�

�

����
 � � � 
������
� ��	

�
��	
�

�

��
���

���������

�
��	
�

�

��
���

���������

� (18)
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Using condition (6), we conclude that (14) and (18) are equal to each other. This means for each

realization of the random variable ��������, there exists a realization of the random variable ��������

with the same value and occurring with the same probability, i.e., ����
 � � � 
������� � ����
 � � � 
�������.

This completes the proof that the random variables �������� and �������� have the same ��� .

The above result differs from the result derived in [27] in the following ways: (i) We deal with the

pdf of the bit LLR (which is independent of the decoding algorithm) while [27] deals with the bit error

probability in different iterations of a message passing algorithm and shows that it is independent of

the transmitted code-word for a binary-input memoryless output-symmetric channel (refer to [27] for

definition). (ii) Our channel model can handle non-binary inputs which is more general as compared to

the binary-input channel considered in [27].

Theorem 2: The ��� ’s of ������� for 
	� � � and 
	� � � are the reflections of each other with respect

to the vertical axis, i.e., �
������ � ��
������ where �
������ and �
������ are the pdf of ������� for


	� � � and 
	� � �, respectively.

Proof: Consider two code-words ���
��� which have different values in their ’th bit position. Let us

assume that ��� is transmitted through the channel and ���
 � � � 
��� is received. This results in a realization

of random variable �������� with a value of,

�������� � ��	

�
��	
�

�

����
 � � � 
����
��

�
��	
�

�

����
 � � � 
������
� ��	

�
��	
�

�

��
���

������
�
��

�
��	
�

�

��
���

���������


 (19)

that occurs with probability ����
 � � � 
�������. Noting the ��� � ��� � ��

� , it is easy to show that,

�������� � ��	

�
��	
�

�

��
���

������
�
� ���

�

� ���
�

� �

�
��	
�

�

��
���

�������� ���
�

� ���
�

� �

� � ��	

�
��	
�

�

��
���

������
�
� ���

�

� ���
�

� �

�
��	
�

�

��
���

�������� ���
�

� ���
�

� �


 (20)

where ���� 
��
�

� 
 �
�
� are the �’th �-blocks of the code-words ���
���
 ��, respectively.

Assuming condition (6) is satisfied and noting that the channel is memoryless, using the same approach

as theorem 1, it is easy to show that if ��� is transmitted, there exists ���
 � � � 
���
�� � �
 � � �
 � � � 
 �



14

occurring with probability ����
 � � � 
������� � ����
 � � � 
������� and resulting in a realization of random

variable �������� with a value of,

�������� � ��	

�
��	
�

�

����
 � � � 
������

�
��	
�

�

����
 � � � 
������
� ��	

�
��	
�

�

��
���

���������

�
��	
�

�

��
���

���������

� (21)

Using condition (6), we conclude that (20) and (21) are only different in their signs. This means

for each realization of the random variable ��������, there exists a realization of the random variable

�������� with the same magnitude and different sign which occurs with the same probability, i.e.,

����
 � � � 
������� � ����
 � � � 
�������. This completes the proof that the ��� of random variables ��������

and �������� are the reflections of each other with respect to the vertical axis.

Note that for the above two theorems, it is not necessary to partition the code-words into blocks of

equal length. In other words, channels with different number of inputs can be used in subsequent block

transmissions. The only condition is that the channels in different transmissions should be independent

of each other.

Example 6: Reference [10] derives sufficient conditions such that the bit error probability in a con-

stellation does not depend on the transmitted signal point (assuming ML decoding) and shows that an

8-PSK constellation with Gray labeling satisfies these conditions. Motivated by [10], in this example, the

invariance properties of an 8-PSK constellation with Gray labeling are studied. In terms of our general

framework, we consider a trivial binary code of length three with code-words mapped to the points of the

8-PSK constellation as shown in Fig. 6. In this case, ������ refers to the ��� of the ’th bit position

assuming that the constellation point with label � is transmitted. Figure 7 shows examples of various

histograms of bit LLRs in this constellation (computed using computer simulation).

To refer to the action of an isometry � , we assume that a point with label � is mapped to a point with

label ����. For GU constellations, it is easy to prove the following properties:

� The pdf of �������� and ��������� are the same if there exists an isometry such that: (i) ������ � ���,

and (ii) for all �, the ’th bit position of � has the same value as the �’th bit position of ����.
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Fig. 6. 8-PSK with Gray labeling.

For example, in Fig. 8-(a), isometry � defined as the reflection with respect to the dashed line

preserves the value of the first bit. This means the pdf of ��������� and ��������� are the same for

����
���� � ����
 ����
 ����
 ����
 ����
 ����
 ����
 ����. As another example, in Fig. 8-(c), isometry

� defined as reflection with respect to the dashed line swaps the values of the 1st and 2nd bit

positions. This means the pdf of ��������� and ��������� (similarly pdf of ��������� and ���������)

are the same for ����
���� � ����
 ����
 ����
 ����
 ����
 ����
 ����
 ����.

� The pdf of �������� and ��������� are the reflection of each other with respect to the vertical axis

if there exists an isometry such that: (i) ������ � ���, and (ii) for all �, the ’th bit position of � has

the opposite value as the �’th bit position of ����.

For example, in Fig. 8-(b), isometry � defined as the reflection with respect to the dashed line flips

value of the 1st bit. This means the pdf of ��������� and ��������� are reflection of each other with

respect to the vertical axis for ����
���� � ����
 ����
 ����
 ����
 ����
 ����
 ����
 ����. As another

example, in Fig. 8-(d), isometry � defined as the reflection with respect to the dashed line swaps

the value of the 1st bit with the value of the 2nd bit and then flips 1st and 2nd bits. This means the

pdf of ��������� and ��������� (similarly pdf of ��������� and ���������) are reflection of each

other with respect to the vertical axis for ����
���� � ����
 ����
 ����
 ����
 ����
 ����
 ����
 ����.
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Fig. 7. Histograms of the bit LLR for various bit positions and for various transmitted signal points.

We conclude that the pdf of ������� and ������� for different � are either equal or reflection with

respect to the vertical axis of the pdf of ����������� (denoted as Type I in Fig. 7) or �����������

(denoted as Type II in Fig. 7). The pdf of ������� for different � is either equal or the reflection with

respect to the vertical axis of the pdf of ����������� (denoted as Type III in Fig. 7).

We will now concentrate on the conditions for two bit positions to have the same ��� for their bit ���.

These conditions are presented for a memoryless channel with binary input, i.e., � � �, � � �. Note

that unlike the previous two theorems, here we require that the channel remains the same in subsequent

transmissions.

Let � be a binary linear code of length � . Consider a permutation � which permutes the components

of each code-word. The set of permutations which map the code-book � onto itself forms a group called

Auto-morphism group of code �.

Theorem 3: Consider two bit positions of a code-word �
  such that � � �
  � � 
 � ��  . The
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Fig. 8. (a) Isometry which preserves value of the 1st bit. (b) Isometry which flips value of the 1st bit. (c) Isometry which swaps the value

of the 1st bit with the value of the 2nd bit. (d) Isometry which swaps the value of the 1st bit with the value of the 2nd bit and then flips

1st and 2nd bits.

channel model is assumed to be memoryless and time invariant with binary input, i.e., � � �, � � �.

Without loss of generality, assume that the all-zero code-word is transmitted. If there exists a permutation

� within Auto-morphism group of code � which transfers bit position � to  , then,

�
���� � �
������
��
���
 (22)

where �
� ���, � � �
 � � � 
 � , denotes the ��� of random variable ! corresponding to ��������.

Proof: From theorem 1, we know that ��� of the bit ��� is independent of the transmitted code-

word. For simplicity, we consider the situation of sending the all-zero code-word bit by bit and receiving

�� for bit ��� in the �’th transmission. This results in a realization of random variable ���������� with a
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value of,

���������� � ��	

�
��	
�

�

��
���

���������

�
��	
�

�

��
���

���������

� (23)

Note that in this theorem � � � which indicates that ��� are single bits. Permutation � acts on each

code-word �� as follows,

� � ��

� �� ��

� 
 (24)

� � ��

� �� ��

� � (25)

Assuming a memoryless time invariant channel, for each ���
 � � � 
��� we have,

� �����
 � � � 
������
	�
 � � � 
 
	��� � � ���
 � � � 
�� �
	�
 � � � 
 
	��


where ��
	�
 � � � 
 
	�� and ����
 � � � 
��� are obtained by applying permutation � to �
	�
 � � � 
 
	� � and

���
 � � � 
���, respectively. Applying permutation � to the terms of summations in (23) and replacing

���
 � � � 
��� � ����
 � � � 
��� reveals the one to one correspondence between terms within the summa-

tions in ���������� and �������� � as seen in (23) and (26),

�������� � � ��	

�
��	
�

�

��
���

���������

�
��	
�

�

��
���

���������

� (26)

The rest of the proof follows similar to the proof of theorem 1. This means for 
	� � 
	�, we have

�
���� � �
����. Using theorem 2, for the case of 
	� �� 
	�, it easily follows that �
���� � �
����� which

completes the proof.

We apply this result to the class of Quasi-Cyclic codes as an example for checking the existence of

the desired permutation. A code is Quasi-Cyclic if for any cyclic shift of a codeword by " positions, the

resulting word is also a code-word (" � � corresponds to a Cyclic code). It easily follows that in this

case transferring bit position � to  where �� �  � is an integer multiple of " is achievable by a cyclic

shift by " positions. Hence, such bit positions � and  satisfy the above sufficient condition. Cyclic and
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Quasi-Cyclic codes allow for linear time encoding and have recently received significant attention in the

context of LDPC codes (see [35]–[39] and their references).

On the other hand, the study of codes with Unequal Error Protection (UEP) property is a classical

problem in coding theory [42]. Although UEP may be desirable in some applications, in most cases it

is preferable to have a uniform level of error protection throughout the entire information sequence [40]

(page 586). In situations that UEP is desirable, one usually needs several classes of error protection where

the probability of error for bits within a given class are the same. It is known that codes with a pseudo-

random construction inherently produce UEP for different bit positions (see [41] and its references). Our

results above show that: (i) Quasi-Cyclic LDPC codes can be used to create several classes of error

protection with identical performance within each class, and (ii) Cyclic LDPC codes are good candidates

for situations that a uniform error protection is needed. This result is in contrast with [43] which presents

a method to construct Cyclic codes with several classes of UEP under hard decision decoding.

IV. SUMMARY

In this paper the probabilistic behavior of the bit ��� has been investigated over a general channel

model with discrete input and discrete or continuous output. We proved that under certain symmetry

conditions on the channel, the ��� of the bit ��� for a specific bit position is independent of the

transmitted code-word if the value of that bit position remains unchanged. It is also shown that a change

in the value of a bit position makes the ��� of that bit ��� reflect through the vertical axis. Finally, a

sufficient condition for two bit positions to have the same ��� for their bit ��� is presented.
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