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Abstract—It is shown in [1] that embedding information in
the (intentional) variation of the transmission media (end-to-
end channel) can offer significant gains vs. traditional SISO,
SIMO and MIMO systems. In particular, it is shown that using
a single transmit antenna and K receive antennas; significant
savings in energy vs. a K x K MIMO can be achieved [1]. This
article proves that, a 1 x K media-based modulation over a
static multi-path channel asymptotically achieves the capacity
of K parallel AWGN channels, where for each unit of energy
over the single transmit antenna, the effective energy for each
of the K AWGN channels is the statistical average of channel
fading. The rate of convergence is computed. Significant gains
can be realized even in a SISO media-based setup. An example
for the practical construction of the system and its realistic RF
simulation are presented. Issues of equalization and selection
gain are discussed.

I. INTRODUCTION

In [1], the author established the advantages of perturbing
the end-to-end channel, according to the input data, in a
wireless system with multi-path fading. These variations
are detected at the receiver end, resulting in a modulation
scheme with Additive White Gaussian Noise (AWGN). This
method was coined in [1] as Media-Based Modulation
(MBM). Assuming rich scattering, a small perturbation in
the propagation environment will be augmented by reflec-
tions, resulting in an independent channel. As a result, in rich
scattering, the MBM constellation size will be 2" where s
is the number of channel perturbations.

In [3] [4], data is embedded in two orthogonal antenna
beam-patterns, which transmit a binary signal set. Although
use of orthogonal basis is common in communications, it
usually does not bring any benefits on its own, it simplifies
detection by keeping the noise uncorrelated. This means
there are no clear advantages in designing the RF system
to support orthogonal patterns as used in [3] [4]. The moti-
vation in [3] [4] is to reduce the number of transmit chains
and no other benefits are discussed. Bains [5] discusses using
parasitic elements for data modulation, and shows limited
energy saving, which again is indirectly due to the effect
of classical RF beam-forming. Spatial Modulation (SM) [6]
uses multiple transmit antennas with a single RF chain,
where a single transmit antenna is selected according to the
input data, with the rest of the data modulating the signal
transmitted through the selected antenna. SM is in essence
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a diagonal space-time code, where the trade-off between
diversity and multiplexing gain has been in favour of the
latter. A shortcoming of SM is that the rate due to the spatial
portion increases with log, of the number of antennas, while
in MBM, it increases exponentially. As an example, in a
particular practical realization of MBM, a central antenna is
surrounded by 14 RF mirrors (same height as the main an-
tenna), resulting in 2'4 options, while for SM, this would be
log,(14). In SM, antennas should be sufficiently separated
to have independent fading, while in MBM, the RF mirrors
are placed side by side. In general, in MBM, the limit on
the physical separation to have independent fading is non-
existent. The switches used in SM are high power, which
means expensive and slow, or each antenna needs a separate
Power Amplifier (PA) with switches placed before PAs. The
switches used for RF mirrors in MBM are cheap, low power
and fast. The use of tuneable parasitic elements external to
antenna(s) for beam-forming is an old topic. In terms of
“varying the carrier after leaving the antenna”, this class
of beam-forming schemes share similarities with MBM.
However, the objective in parasitic antenna beam-forming is
“to focus” the energy, which realizes energy gain, but does
not realize the advantages of MBM, namely: (1) Additive
information over multiple receive antennas, (2) Mixing good
and bad channel conditions over a single constellation, which
essentially removes the bottleneck of deep fades in static
fading channels without compromising the rate.

Unveiling benefits of MBM (e.g., additivity of information
over multiple receive antennas, inherent diversity over a
signal constellation, exponential growth of data carrying op-
tions, etc.) and methods to realize them are the contributions
of the author in [1] continued in the current article.

II. SYSTEM MODEL

Figure 1 shows a 1 x K = (/2 SIMO-MBM. For simplic-
ity, the concept is explained by focusing only on the MBM
part of the transmission, and the combination with traditional
Source-Based Modulation (SBM) is straightforward.

There are M messages, m = 1, ..., M, selecting channel
realizations /(m) with components hg(m), d = 1,...,Q,
and m = 1,..,M. Elhq(m)|*> = 1 where E denotes
statistical averaging. AWGN 2 has independent identically
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Fig. 1: System block diagram.

distributed (i.i.d) components z4, d = 1, ..., K, E|z4|? = o2.
Although transmitter selects the channel realization h(m), it
is oblivious to its details. The receiver knows h(m) and
can perform reliable detection, if the mutual information
is sufficient. Receiver training is achieved by sending a
set of pilots for different channel realizations to measure
ha(m), Vd, ¥Ym. For a Rayleigh fading channel, hy(m) are
i.i.d complex Gaussian. As the transmitter is oblivious to the
details of h(m), an outage may occur. We have,
I(g;m) = I(§; h(m)) = h(§) — h(2) = h(§j) — K log,(neo?).
For low Signal to Noise Ratio (SNR), we have (see [2]):
lim 19 L@ (M2 - Mf) ,

e—0 € 2

where I(¢) is the mutual information per real dimension as a

function of a small increase in energy, €, starting from zero
energy, M;, My are the first and second sample moments
of the M-points constellation, respectively. The SBM part
of the modulation in its simplest form adds one bit of
information by negating each vector of constellation points
(180 degree phase shift applied to the carrier), resulting in
M; = 0. In this case,

I(e 2
2lum 2] - T
Although Ms is a random variable, its variance vanishes
as 1/M. However, in a K x K MIMO-SBM the scaling of
rate vs. SNR at low SNR is at best (i.e., assuming feedback
and water filling) limited to the largest eigenvalue of a K x
K random Wishart matrix, the expected value of which is
limited to 4 (approaches 4 as K — co) [7].

III. CONVERGENCE OF RAYLEIGH CHANNEL TO AWGN

For a channel with a random static gain, MBM reduces the
variance of the mutual information. It will be shown that this
effect asymptotically converts a static Rayleigh fading chan-
nel into an AWGN channel where the SNR is determined
by the statistical average of the channel gain. Assuming
Rayleigh fading, the components of the constellation points
are i.i.d. Gaussian. This is in agreement with random coding
over an AWGN channel. However, the constellation structure
in MBM remains the same over subsequent transmissions
instead of having independent realizations as is required in
random coding. This causes some loss in the achievable

rate as compared to the capacity of the underlying AWGN
channel, i.e, AWGN with an energy gain equal to the
statistical average of fading, which is normalized to one. It
is difficult to compute the mutual information. For a given
constellation, although the components are i.i.d. Gaussian,
as the structure is static, the channel output will not be Gaus-
sian. A method is presented to compute, on the average, the
loss in the capacity vs. an AWGN channel with a Gaussian
random code-book. Averaging is performed with respect to
all possible random code-books, each corresponding to a
realization of the constellation. It is shown this loss tends
to zero as (1/M)Y¥ for M — oo. Let us consider two
ensembles of random codes:

Ensemble I: Given a realization of the M-points con-
stellation as the underlying alphabet, construct an i.i.d.
random code-book of cardinality c. Let us form a Composite
Ensemble I by concatenating all such possible code-books.

Ensemble II: An ensemble of cardinality ¢ with i.i.d
Gaussian components of variance one. For Ensemble II, the
composite version will be a Gaussian code-book with the
same block length as Composite Ensemble I.

Note that both of the Composite Ensembles are Ergodic.
The statistical average of rate over different constellations is
equivalent to time average over Composite Ensemble 1. We
select ¢ to guarantee reliable communication for Composite
Ensemble I.

Capital vectors in Fig. 2(a) correspond to composite code-
words, with the corresponding per code-book components
shown in Fig. 2(b). Let us select a code-book from each
of these two Composite Ensembles: For each code-word X
from Composite Ensemble I, find the code-word G from the
Composite Ensemble II that is at the minimum Euclidean
distance to X. Let us denote the corresponding vector of
quantization error by N,, ie. ]\7q = G — X, and its per
code-book components by iy, see Fig. 2. This setup allows
to tackle the bottleneck in providing a closed form solution
for the statistical average of mutual information, as é, and
consequently Y, in Fig. 2 have i.i.d. Gaussian components.
Two points should be mentioned: (1) Quantlzatlon noise, N, s
depends on X. (2) Mapping from X = G is not necessarily
one-to-one. As a result, elements of Y may occur with
non-equal probabilities. We have reliable transmission for
Composite Ensemble I if the mutual information from X to
Y is sufficient. Under these circumstances, as the receiver is

able to reliably detect X, it means that the probability that
multiple X are mapped to the same G has asymptotically
vanished. Note that if G's occur with slightly (asymptotically
vanishing) non-equal probabilities, this does not affect the
hardening effect in the Gaussian channel and Y will still
have a uniform distribution over a sphere which is the basis
for reliable transmission.

The following assumptions, which upper-bound the en-
tropy of 7, + Z, simplify the computations: (1) Dependency
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Fig. 2: (a) Block diagram for the composite Ensemble of code-
books, and (b) their per code-book components.

among components of 7, is ignored. (2) 71,4+ Z'is replaced by
1.1.d Gaussian, with a variance conditioned on the constella-
tion point. As G and Y will be i.i.d. Gaussian regardless of
these assumptions, entropy of the channel output in Fig. 2(a)
will not be affected. Overall, this results in a lower bound on
the mutual information. Appendix A, through establishing
an achievable rate for Composite Ensemble I, shows that
the statistical average of mutual information in Fig. 2(b),
and consequently log, c, can approach the capacity of K
parallel AWGN channels with K times energy saving with
a gap behaving as:

1\ VK
(M) — 0, as M — oo. (D

Interpretation of the mapping between two code-books
to induce Gaussian distribution: Let us assume transmitter
picks a code-word, and a third party maps it to a code-
word from the second code-book. Under proper conditions
on mutual information and cardinality of the sets, this
mapping can be based on minimum distance quantization
with a vanishing probability of ties. Transmitter and receiver
do not know the mapping rule. Such a mapping adds to
the confusion, but if the mutual information is sufficient,
its effect can be absorbed in the channel coding and the
transmitted code-word can be recovered. Up to this point,
computational complexity still remains intractable. However,
it turns out that by a sequence of boundings, the computation
reduces to finding the conditional variance of the quantiza-
tion noise. This computation, in the asymptotic case of large
constellation size, is tractable.

IV. ADDITIONAL REMARKS

Equalization: SBM exploits the LTI property and rely
on equalization to combat Inter Symbol Interference (ISI).
Due to ISI, the energy of a single symbol is spread over L
dimensions, where L is the length of the channel impulse
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response. In SBM, this L-D vector spans a single dimension.
In contrast, in MBM, the L-D vector spans an L dimensions.
As a result, a transmission in MBM can be followed by
L zeroes to clear channel memory without sacrificing the
dimensionality. An alternative would be to apply sequence
detection in time. MBM equalization is simpler in multi-
user setups, and in particular in networks using Orthog-
onal Frequency Division Multiple Access (OFDMA). In
OFDMA, different nodes use different tones. In this case, the
channel at each transmitter can be perturbed from OFDM
symbol to OFDM symbol. As the channel remains static
over each OFDM symbol, receivers can rely on a simple
single tap equalizer. Such a setup can be used if transmitters
are separated in space, e.g., in the uplink (transmitters
use different tones to send to a common receiver), and in
interfering links (each link uses an OFDM tone).

Selection Gain: As the constellation points have equal
probability, selecting a subset can improve mutual infor-
mation. The optimum solution will be too complex. The
slope of the mutual information vs. energy at low SNR is
determined by the sample second moment of the selected
subset. This motivates selecting the highest energy points.
Figure 3 shows an example for the achievable gain. As very
low SNR, this slope scales with the maximum norm of the
constellation points. Reference [2] contains mathematical
derivations regarding this gain, which is similar to the
scheduling gain:

E [max (IR, .., IEADI?)] ~ AQ) + In(M + 1),

AQ) =2[(Q/2-1)In(Q/2 - 1) — InT(Q/2)].

Table I shows examples for values of A(Q). We have
A(Q) ~ K = 2Q for large K.

K=2Q 2 4 8 16 32 64
AQ) 0 15 5 127 284 60

TABLE I: Example for the values of A(Q).

Pros and Cons: Pros: Legacy schemes suffer from
imperfections such as I/Q imbalance, PA non-linearity, PA
efficiency, LNA non-linearity, etc. Most of these problems
disappear in MBM. Cons: In MBM, one needs training with
a complexity that grows with the constellation size. Two
bits of information can be embedded in the carrier sign
change and exchanging the role of I and Q, reducing the
required number of training symbols. Gradual movement of
constellation points over time can be partially tracked and
readjusted before next training phase.

Practical Implementation: A novel RF mirror using
a periodic switched structure [2] is used to perturb the
channel. There are 14 mirrors enabling 2'4 combinations.
The structure is very compact [2]. The system, including
antenna and RF mirrors, is designed both as a on a PCB
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as well as a three-dimensional structure. Figure 4 shows
examples of MBM constellations. Figure 5 shows the cor-
responding propagation environments, for indoor (a typical
house) and outdoor (a typical down-town). Simulations are
performed using HFSS to extract antenna patterns, which
are imported to Remcom Wireless Insite for ray tracing.
Switches are simple PIN diodes, and S1; (antenna efficiency)
is acceptable (below -10dB over a band of 100MHz around
2.4Ghz).

3.5F
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1.5F / — Subset of points with higher energy g
/ — Best selection of points
1k 16 PAM ]
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Fig. 3: Selection gain in a 256 points constellation.

—————— > [

Indoor Outdoor

Fig. 4: Examples of constellation points corresponding to propa-
gation environments in Fig. 5.

Indoor (residential building with dry-walls) Outdoor Model (down-town Ottawa)

Fig. 5: Indoor/Outdoor Propagation environments corresponding to
the MBM constellation points shown in Fig. 4
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APPENDIX A
From Fig. 2(b), we have,

I(h; §) = h(@) = h(F | h) = h(§) — h(iig + 2| h) @
= Klog(ﬂ'ea ) — h(iig + Z | ),
where o2 is the variance of elements of 7. To obtain a

lower bound, the entropy of 77, + Z is upper-bounded by an
i.i.d. Gaussian noise of the same conditional variance. This
results in:

E; {I(E; gj‘)\ﬁ] > K log (wea ) KE; [log (71'80’ + 7T€0‘ ) | h] 3)

2 _ 2 . . .
where o, = 1+ 07 (signal power is normalized to one) and

‘72(, is the variance of elements of 7,. Inequality (3) holds

n
since entropy of 7i,+ 7 is bounded by the entropy of an i.i.d.
Gaussian vector of the same variance. Due to concavity of

log function, we have

E; [log (7reo’ + 7T€0' ) | h] < log (Weof + Treaiqm) , where

o2 5= B [l 1 5]

For given h, let g denote to the Gaussian vector at the
minimum distance to &, ie., A is quantized to g. Let us
denote the () x 1 vector of real and imaginary parts of all
components of h and g by h and g g, respectively.

dg. “
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where f;(7) and fG q(7,7) are the marginal and joint
distribution of h and g, respectively. Note that power of
quantization noise will be averaged over all realizations
of the constellation, simplifying the computations. Let us
explicitly include the index of the selected constellation
point as a random variable,

=g | e

221 1fGHI(g’h Z)

4ex@ fa(h)

. Mfz g (&h,7)

[|h—gl|* —"——"dg ®)
J - o ®

gerRQ

where index i € {1,..., M} is used to reflect that the cor-
responding terms are all equal to each other, fz (& h,1)
is the joint distribution of the event: ith message is mapped

to the constellation point h, which is quantized to g. Note
that the event {G =g H="h,I =3} is equivalent to

{G=gh(i) =h, h(j) ¢ S°@ IIN—&ll), vj # i}, where  (6)

8@, r)={f R : || —d]| <r} 0]

is a sphere of radius r centered at ¢. Note that (6) captures
the operation of quantization. We can rewrite (5) as

M . ﬂzGﬁ
5 [ -l

gerQ@

dg, ®)

where f;(h ) and fz(g) are replaced by G(H) and G(g) to
emphasize Gaussian distribution. P(g, h) is the probability
of event {h € S¥(g,||h—g||)}, i.e., a Gaussian point falls in
a Q-dimensional hyper-sphere, S Q, centered at g with radius
r = ||h — g]|. This means,
P(g.h) = G(@)di ©
#eSQ@E |IF—gl))
Applying In(4) < A—1, VA > 0 to (8), results in
5 [ F-arfe@ (1-ram)" i@ <
gerQ
o [ F-are@es [-(v - vr@h] g ao

gerQ

The leading asymptotic behaviour of (10) is obtained using
the Laplace method. For integrals of form:

b
SO = [ b(a) exp [M(@)] da an

if the real continuous function ¢(z) has its maximum in
the interval a < x < b at an intermediate point x = ¢, then
it is only the immediate neighbour of x = ¢ that contributes
to asymptotic expansion of S(M). In our case,

san =5 [ G@IF -2l e [-01 - nr@m]a a2
geRrQ
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¢(.) = —P(g,h) is maximized at g = h. For large values
of M, the leading asymptotic behavior of the integral is
governed by g within a small sphere, say of radius r(, around
h. To find the first order term, we approximate (12) as
S(M) ~ M

EESQ(F,’V‘())

G@)IF - &|” exp [-(M — DPE )] dg (13)

where ¢ is small enough such that P(g, ﬁ) i.e., the integra-
tion of Gaussian distribution over hyper-sphere S%(h, ),

can be approximated with G(h) times the corresponding
volume. Due to spherical symmetry of Gaussian, o2

~ nq|ﬁ

only depends on norm ||h||, hence it suffices to compute
_ LAl

the conditional variance for h = \/@(1, ,1)o, where

(1,...,1)q is the all-one vector of size (). Therefore,

LM i [ (40— Il
S(M) = Qw/@ G () Kg ) ( Q) }

—xQ/3(M ~ )G(R) TR
eXP{W g1 — ﬁ + dgi...dgq

Applying change of variables, we obtain

M o2 g ﬂ—Q/z Q TrQ/z Q
are/k G(h)r” exp {f(M B Ty } reern "
o [s 2/Q h
_ % / G(h) [%] exp [7(1\/1 - 1)G(h)5} ds
SsER

~ i ) (14)

nq\ﬁ Q
() -G
o e — = = .
mqlh M M

Figure 6 shows accuracy of above approximations, com-
parison with 256QAM, and an indication of the achieved
energy saving due to inherent diversity.

s2 . 20R/Q+1) [F(Q/2+1)]2/Qexp (||H||2>

N M=256, Q=2
——Expression (5) | ___=-T 1
7F |- e-Actual Average 256 QAM at JPtad 1
@ Expression (13) SNR ZOdE .7

6 L
g 256 QAM at e

5"1':" SNR15dB >0’ 7]
E ’
St

4t g 1
=

3r 2 |
= Pl
= #" Approximate Gain vs. Static Rayleigh Fading

2k (gain due to Inherent Diversity): B

RX=20dB, P(outage)=0.1, TX=30dB, Gain=10dB
I RX=20dB, P(outage)=0.01, TX=40dB, Gain=20dB |
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Fig. 6: Example of the accuracy of approximations, comparison
with 256QAM, and an indication of the achieved energy saving
due to inherent diversity.



