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Abstract— In Multi-Input Multi-Output (MIMO) systems,
Maximum-Likelihood (ML) decoding is equivalent to finding
the closest lattice point in an N -dimensional complex space. In
general, this problem is known to be NP hard. In this paper,
we propose a quasi-maximum likelihood algorithm based on
Semi-Definite Programming (SDP). We introduce several SDP
relaxation models for MIMO systems, with increasing complexity.
We use interior-point methods for solving the models and
obtain a near-ML performance with polynomial computational
complexity. Lattice basis reduction is applied to further reduce
the computational complexity of solving these models1.

I. INTRODUCTION

Recently, there has been a considerable interest in Multi-
Input Multi-Output (MIMO) antenna systems due to achieving
a very high capacity as compared to single-antenna systems
[1]. In MIMO systems, a vector is transmitted by the transmit
antennas. In the receiver, a corrupted version of this vector
affected by the channel noise and fading is received. Decoding
concerns the operation of recovering the transmitted vector
from the received signal. This problem is usually expressed in
terms of ”lattice decoding” which is known to be NP-hard.

In the last decade, Sphere Decoding (SD) is introduced as
a Maximum Likelihood (ML) decoding method for MIMO
systems with near-optimal performance [2]. The worst case
complexity of the sphere decoder is exponential. In [3], the
authors have claimed that the average complexity of this
algorithm is polynomial time (almost cubic) over a wide range
of SNR. However, recently, it has been shown that it is a
misconception that the expected number of operations in SD
asymptotically grows as a polynomial function of the problem
size [4] (reference [4] derives an exponential lower bound on
the average complexity of SD).

In [5], the authors introduce an efficient (polynominal com-
putational complexity) quasi-maximum likelihood detection
algorithm for lattice decoding based on a {−1, 1} program-
ming formulation and a semi-definite relaxation for rank one
matrices. However, the method proposed in [5] is limited to
Binary Phase Shift Keying (BPSK) modulation (as the input
constellation per each transmit antenna).

1This work is financially supported by Communications and Information
Technology Ontario (CITO), Nortel Networks, and Natural Sciences and
Engineering Research Council of Canada (NSERC).

In this work, we develop an efficient approximate ML
decoder for MIMO systems based on Semi-Definite Pro-
gramming (SDP). In the proposed method, the transmitted
vector is expanded as a linear combination (with zero-one
coefficients) of all the possible constellation points in each
dimension. Using this formulation, the distance minimization
in Euclidean space is expressed in terms of a binary quadratic
minimization problem. We derive a SDP relaxation using
Lagrangian duality [6] for this problem. This results in a
relaxation with many redundant constraints and with no strict
interior for the feasible set. The feasible set is projected
onto a face of the semi-definite cone, and, based on the
identified redundant constraints, the final form of the relaxation
is obtained. The relaxed problem has a polynomial time worst
case complexity. Simulation results show that Bit Error Rate
(BER) performance of the proposed algorithm is near optimal
for M-ary QAM or PSK constellation (for an arbitrary binary
labeling, say Gray labeling).

II. PROBLEM FORMULATION

A MIMO system with Ñ transmit antenna and M̃ receive
antenna is modeled as

ỹ =

√
SNR

M̃Ẽsav

H̃x̃ + ñ, (1)

where H̃ =
[
h̃ij

]
is the M̃ × Ñ channel matrix composed of

independent, identically distributed complex Gaussian random
elements with zero mean and unit variance, ñ is an M̃ × 1
complex additive white Gaussian noise vector with zero mean
and unit variance, and x̃ is an Ñ×1 data vector whose compo-
nents are selected from a complex set S̃ = {s̃1, s̃2, · · · , s̃K}
with an average energy of Ẽsav

. The parameter SNR in (1) is
the Signal to Noise Ratio (SNR) per receive antenna.

To avoid using complex matrices, the system model (1) is
represented by real matrices in (2).
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⇒ y = Hx + n, (2)



where R(.) and I(.) denote the real and imaginary parts of
a matrix, respectively, y is the received vector, and x is the
input vector.

Consider the case that different components of x̃ in (1),
corresponding to the two-dimensional sub-constellations, are
equal to the cartesian product of their underlying one-
dimensional sub-constellations, e.g. QAM signalling. In this
case, the components of x in (2) belong to the set S =
{s1, · · · , sK} with real elements, i.e.

xi = ui(1)s1 + ui(2)s2 + · · · + ui(K)sK , (3)

where only one of the ui(j) is 1 and the rest are zero.
Let N = 2Ñ , S = IN ⊗ [s1, · · · , sK ]. The vector u =

[u1(1) · · ·u1(K) · · ·uN(1) · · ·uN(K)]
T is an NK × 1 binary

vector such that Au = eN , where A = IN ⊗ eT
K . This

constraint states that among each K components of the binary
vector u, i.e. ui(1), · · · , ui(K), there is only one element
equal to ”1”. Then, the equation for the components of x in
(3) reduces to x = Su and the relationship for the MIMO
system model is

y = HSu + n. (4)

At the receiver, the Maximum-Likelihood (ML) decoding
rule is given by

x̂ = arg min
xi∈S

‖ŷ − Hx‖2, (5)

where x̂ is the most likely input vector and ŷ is the received
vector. Noting x = Su, this problem is equivalent to

min
Au=eN

uT ST HT HSu − 2ŷT HSu, (6)

where u is a binary vector. Let Q = ST HT HS, c =
−ST HT ŷ. Therefore, the ML decoding problem is formulated
as

min uT Qu + 2cT u

s.t. Au = eN

ui ∈ {0, 1}
n

, (7)

where n = NK . The formulation (7) is a quadratic mini-
mization problem with binary variables [6]. Recent studies on
solving binary quadratic minimization problems such as Graph
Partitioning [7] and Quadratic Assignment Problem [8], show
that semi-definite programming is a very promising approach
to provide tight relaxations for such optimization problems.
In the following, we derive several SDP relaxation models for
the minimization problem in (7).

III. SEMI-DEFINITE RELAXATION SOLUTION

Consider the minimization problem in (7). Since u is a
binary vector, the objective function is expressed as

uT Qu + 2cT u = trace

(
LQ

[
1 uT

u uuT

])
,

where LQ :=

[
0 cT

c Q

]
.

Let MK×N denote the space of K × N real matrices and
EK×N denote the set of all K×N binary matrices with column
sums equal to one, i.e.

EK×N =
{
X ∈ MK×N : eT

KX = eT
N , xij ∈ {0, 1} ∀i, j

}
. (8)

Since the constraints Au = eN , ui ∈ {0, 1}NK in (7) and
u = vec(U),U ∈ EK×N are equivalent, the minimization
problem (7) can be written as

min trace LQ

[
1 uT

u uuT

]
s.t. u = vec(U), U ∈ EK×N.

(9)

For any U ∈ EK×N , u = vec(U), the feasible points of (9)
are expressed by

Yu =

[
1
u

] [
1 uT

]
=

[
1 uT

u uuT

]
. (10)

The matrix Yu is a rank-one and positive semi-definite matrix,
i.e. Yu � 0. Also, we have

diag(Yu) = Yu0,:
= Yu:,0

,

where Yu0,:
(resp. Yu:,0

) denotes the first row (resp. the first
column)2 of Yu.

In order to obtain a tractable SDP relaxation of (9), we
remove the rank-one restriction from the feasible set. In fact,
the feasible set is approximated by another larger set , F ,
defined as

F := conv {Yu : u = vec(U), U ∈ EK×N} , (11)

where conv(.) denotes the convex hull of a set. This results
in our first relaxation model:

min traceLQY

s.t. Y ∈ F
(12)

It is clear that the matrices

Yu for u = vec(U), U ∈ EK×N

are the feasible points of F . Moreover, since these points are
rank-one matrices, they are contained in the set of extreme
points of F . In other words, if the matrix Y is restricted to be

rank-one in (12), i.e. Y =

[
1
u

] [
1 uT

]
, for some u ∈ R

n,

then the optimal solution of (12) provides the optimal solution,
u, for (7).

It can be shown that any feasible point for the SDP
relaxation (12) has to be singular, see [9]. This means that
there are numerical difficulties in computing the solution for
this problem. However, one can find a very simple structured
matrix in the relative interior of the feasible set in order to
project (and regularize) the problem into a smaller dimension.
This results in the next relaxation model.

2Matrix Yu is indexed from zero.



A. Geometry of the Relaxation

In order to approximate the feasible set F for solving the
problem, we elaborate more on the geometrical structure of
this set.

Theorem 1: Let

VK =

[
IK−1

−eT
K−1

]
∈ MK×(K−1) (13)

and

V̂ =

[
1 0T

N(K−1)
1
K

(eNK − (IN ⊗ VK)e(K−1)N ) IN ⊗ VK

]
, (14)

where V̂ ∈ M(NK+1)×((K−1)N+1). For any Y ∈ F there
exists a symmetric matrix R of order N(K − 1)+ 1, indexed
from 0 to N(K − 1), such that

Y = V̂RV̂T , R � 0, and r00 = 1, rii = r0i, ∀i. (15)

Also, if Y is an extreme point of F , then rij ∈ {0, 1},
otherwise rij ∈ [0, 1] for i, j ∈ {0, . . . , N(K − 1)}.

Proof: see [9].
Using Theorem 1, we can show that the set Fr contains F :

Fr =
{
Y ∈ SNK+1 : ∃R ∈ S(K−1)N+1, R � 0, R00 = 1,

Y = V̂RV̂T , diag(Y) = Y0,:

}
. (16)

Therefore, the feasible set in (12) is approximated by Fr and
the second relaxation model is expressed by

min trace (V̂TLQV̂)R

s.t. diag(V̂RV̂
T
) = (1, (V̂RV̂

T
)0,1:n)T

R � 0. (17)

Solving the relaxation model in (12) over F results in
the optimal solution of the original problem in (9), but this
problem is NP-hard. Solving the relaxation model in (17) over
Fr results in a weaker bound for the optimal solution of (9).

B. Tightening the Relaxation by Gangster Operator

In the following, we extract a condition which is implicit
in the matrix Yu and explicitly add it to the relaxation model
(17). Subsequently, some redundant constraint are removed
and this results in an improved relaxation model.

Theorem 2: Let U denote the set of all binary vectors
u = vec(U), U ∈ EK×N. Define the barycenter point, Ŷ, as
the convex hull of all the feasible points in the minimization
problem (9); therefore,

Ŷ =
1

KN

∑
u∈U

Yu =
1

KN

∑
u∈U

[
1 uT

u uuT

]
. (18)

Then Ŷ has (i) the value of 1 as its (0, 0) element, (ii) N
blocks of dimension K ×K which are diagonal matrices with
elements 1/K , and (iii) the first row and first column equal to

the vector of its diagonal elements. The rest of the matrix is
composed of K ×K blocks with all elements equal to 1/K2:

Ŷ =




1 1
K

eT
n

1
K

en

1
K

IK
1

K2 EK · · · 1
K2 EK

...
...

. . .
...

...
...

. . .
...

1
K2 EK · · · 1

K2 EK
1
K

IK




.

Proof: see [9].
Theorem 2 suggests a zero pattern for the elements of F .
We use a Gangster Operator [7] to represent these constraints
more efficiently. Let J be a set of indices, then this operator
is defined as

(GJ(Y))ij =

{
Yij if (i, j) or (j, i) ∈ J
0 otherwise. (19)

Considering the barycenter point, we have GJ (Ŷ) = 0 for

J = {(i, j) : i = K(p − 1) + q, j = K(p − 1) + r, q < r,

q, r ∈ {1, · · · , K}, p ∈ {1, · · · , N}} . (20)

Since Ŷ is a convex combination of all matrices in U with
entries either 0 or 1; hence, from (20), we have GJ(Yu) = 0.
Also, all the points inside the feasible set F are the convex
combination of Yu. Therefore,

GJ (Y) = 0, ∀Y ∈ F . (21)

The feasible set of the projected SDP in (17) is tightened
by adding the constraints GJ (Y) = 0. By combining these
constraints and (17), we note that there are some redundant
constraints that can be removed to enhance the relaxation
model. This is expressed in the following lemma.

Lemma 3: Let R be an arbitrary (N(K−1)+1)×(N(K−
1) + 1) symmetric matrix with

R =




r00 R01 · · · R0N

R10 R11 · · · R1N

...
. . . . . .

...
RN0 RN1 · · · RNN


 , (22)

where r00 is a scalar, Ri0, for i = 1, · · · , N are (K − 1)× 1
vectors and Rij , for i, j = 1, · · · , N , are (K − 1)× (K − 1)
blocks of R. Theorem 1 states that Y = V̂RV̂T . We can
partition Y as

Y =




y00 Y01 · · · Y0N

Y10 Y11 · · · Y1N

...
. . . . . .

...
YN0 YN1 · · · YNN


 , (23)

where y00 is a scalar, Yi0, for i = 1, · · · , N are K×1 vectors
and Yij , for i, j = 1, · · · , N , are K ×K blocks of Y. Then,

1) y00 = r00 and Y0ieK = r00, for i = 1, · · · , N .
2) Y0j = eT

KYij for i, j = 1, · · · , N .

Proof: see [9].



If the Gangster operator is applied to (17), it results in the
following redundant constraint

diag(V̂RV̂
T
) = (1, (V̂RV̂

T
)0,1:n)T .

Note that using Lemma 3, Y0j = eT
KYjj for j = 1, · · · , N

and the off-diagonal entries of each Yjj are zeros. Therefore,
by defining a new set J̄ = J ∪ {0, 0} and eliminating the
redundant constraints, we obtain a new SDP relaxation model:

min trace(V̂TLQV̂)R

s.t. GJ̄ (V̂RV̂T) = E00

R � 0, (24)

where R is an (N(K−1)+1)×(N(K−1)+1) matrix and E00

is an (NK +1)⊗(NK+1) all zero matrix except for a single
element equal to 1 in its (0, 0)th entry. With this new index set
J̄ , we are able to remove all the redundant constraints while
maintaining the SDP relaxation. The relaxation model in (24)
corresponds to a tighter lower bound and has an interior point
in its feasible set [9].

The relaxation in (24) is further tightened by considering the
non-negativity constraints [8]. All the elements of the matrix
Y which are not covered by the Gangster operator are greater
than or equal to zero. These inequalities can be added to the
set of constraints in (24), resulting in a stronger relaxation
model:

min trace(V̂TLQV̂)R

s.t. GJ̄(V̂RV̂T) = E00

G
Ĵ
(V̂RV̂T) ≥ 0

R � 0, (25)

where the set Ĵ indicates those indices which are not covered
by J̄ .

Note that this model is considerably stronger than model
(24) because non-negativity constraints are also imposed in the
model. The advantage of this formulation is that the number
of inequalities can be adjusted to provide a trade-off between
the performance and complexity. The larger the model is, the
better it approximates the optimization problem (9).

The most common methods for solving SDP problems of
moderate sizes are IPMs, whose computational complexities
are polynomial. There are a large number of IPM-based solvers
to handle SDP problems, e.g., DSDP [10], SeDuMi [11],
SDPA [12], etc. In our numerical experiments, we use DSDP
and SDPA for solving (24), and SeDuMi is implemented for
solving (25). Note that adding the non-negativity constraints
increases the computational complexity of the model. Since
the problem sizes of our interest are moderate, the complexity
of solving (25) with IPM solvers is tractable.

IV. COMPLEXITY REDUCTION USING LATTICE BASIS
REDUCTION

Lattice structures have been used frequently in different
communication applications such as quantization or MIMO
decoding. A real lattice Λ is a discrete set of M -dimensional

vectors in the real Euclidean M -space, R
M , that forms a

group under the ordinary vector addition. Every lattice Λ is
generated by the integer linear combinations of a set of linearly
independent vectors {b1, · · · ,bN}, where bi ∈ Λ, and the
integer N(≤ M) is called the dimension of the lattice3. The
set of vectors {b1, · · · ,bN} is called a basis of Λ, and the
N×M matrix B = [b1, · · · ,bN ]T which has the basis vectors
as its rows is called the basis matrix (or generator matrix) of
Λ.

The basis for representing a lattice is not unique. Usually a
basis consisting relatively short and nearly orthogonal vectors
is desirable. The procedure of finding such a basis for a lattice
is called Lattice Basis Reduction. Several distinct notions of
reduction have been studied, including Lenstra-Lenstra and
Lovasz (LLL) reduced basis [13], which can be computed in
polynomial time.

An initial solution for the lattice decoding problem can
be computed using one of the simple sub-optimal algorithms
such as zero forcing decoder or channel inversion, e.g. s′ =[
H−1y

]
. If the channel is not ill-conditioned, i.e. the columns

of the channel matrix are nearly orthogonal and short, it
is most likely that the ML solution of the lattice decoding
problem is around s′. In the case of orthogonal basis for the
channel, the ML solution is exactly s′. Therefore, using a
reduced basis for the lattice, each xi in (3) can be expressed
by a few points in S around s′i, not all the points in S.

Let L = HQ be the LLL reduced basis for the channel
matrix H, where Q is a unimodular matrix. The MIMO system
model in (2) can be written as

y = LQ−1x + n (26)

Consider the QAM signaling. Without loss of generality, we
can assume coordinates of x are in the integer grid. Since
Q is a unimodular matrix, the coordinates of a new variable
defined as x′ = Q−1x are also in the integer grid. Therefore,
the system in (26) is modelled by y = Lx′ + n. Note that by
multiplying x by Q−1 the constellation boundary will change.
However, it is shown that in the lattice decoding problem with
finite constellations the best approach is to ignore the boundary
and compute the solution [14]. If the solution is outside the
region, it is considered as an error.

In order to implement the proposed method using LLL
basis reduction, each component of x′ is expressed by a linear
combination (with zero-one coefficients) of L (usually much
smaller than K) integers around s′i, where s′ =

[
L−1y

]
. Then,

the proposed algorithm can be applied to this new model.
The importance of this new model is recognized with large
constellations. It is worth to emphasis that the dimension of
the semi-definite matrix Y is N ∗ (K − 1)+ 1. Therefore, the
LLL reduction decreases the dimension of the matrix Y, and
consequently, decreases the computational complexity of the
proposed algorithm. The performance of this method is shown
in the simulation results.

3Without loss of generality, we assume that N = M .



V. SIMULATION RESULTS

We simulate the two proposed model for decoding in
MIMO systems with QAM and PSK constellations. Fig. 1
demonstrates that the proposed quasi-ML method using model
(24) and the randomization procedure achieves near ML-BER
performance with hard output in uncoded MIMO channels,
which consist of Ñ = 4 transmit antennas and M̃ = 4 receive
antennas and which are modulated with 16-QAM or 16-PSK
constellations. It exhibits that the model in (25) is stronger
than the model proposed in (24).

VI. COMPLEXITY ANALYSIS

Semi-definite programs of reasonable size can be solved in
polynomial time within any specified accuracy by IPMs. IPMs
are iterative algorithms which use a Newton-like method to
generate search directions to find an approximate solution to
the nonlinear system. The IPMs converge vary fast and an ap-
proximately optimal solution is obtained within a polynomial
number of iterations. In the sequel, we provide an analysis for
the worst case complexity of solving models (24) and (25) by
IPMs.

Since the SDP relaxation (24) contains O(K2N) equality
constraints, it follows that a solution to (24) can be found in at
most O(N4.5K6.5 log(1/ε)) arithmetics operations where ε is
a given accuracy [9]. SDP relaxation (25) contains O(K2N)
equations and O(K2N2) sign constraints. In order to solve
relaxation (25) we formulate the SDP model as a standard
linear cone program by adding slack variables, and solve
the linear conic problem by using the optimization software
SeDuMi [11]. The additional inequality constraints make the
model in (25) considerably stronger than the model in (24) (see
numerical results), but also more difficult to solve. An interior
point method for solving SDP model (25) within a tolerance
ε, requires O(N 6.5K6.5 log(1/ε)) arithmetics operations [9].
Since the problem sizes of our interest are moderate, the
problem in (25) is tractable. However, a trade-off between the
strength of the bounds and the computational effort for solving
these two models is notable.

The randomization procedure that we perform in order
to strengthen the bound obtained form the model (24) is
negligible compared with that of solving the problem itself.
Namely if we denote by Nrand the number of randomization,
then the worst case complexity is O(NKNrand).

The problems (24) and (25) are polynomially solvable.
These problem have many variables, contain sparse low rank
constraint matrices. However, exploiting the structure and
sparsity characteristic of semi-definite programs can be critical
to the efficient computation of their solution. All the constraint
matrices in relaxation models (24) and (25) are rank-one
[9]. In [15], it is shown that rank one matrices reduce the
complexity of interior point algorithms for positive semi-
definite programming by a factor of NK . Also, it converges
linearly and has a saving in computation time and memory
requirements.
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Fig. 1. Symbol Error Rates for the proposed algorithm and ML Decoding




