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Abstract—In this paper, we study the energy-efficient dis-
tributed estimation problem for a wireless sensor network where
a physical phenomena that produces correlated data is sensed
by a set of spatially distributed sensor nodes and the resulting
noisy observations are transmitted to a fusion center via noise-
corrupted channels. We assume a Gaussian network model where
(i) the data being sensed at different sensors are correlated and
the correlation structure (in the form of a correlation matrix) is
known at the fusion center, (ii) the links between the local sensors
and the fusion center are subject to multipath fading plus AWGN,
and the fading gains are available to the receiver node, and (iii)
the central node uses the squared error distortion metric. We
first determine the optimum power-distortion regions assuming
(i) a multiple-letter, and (ii) a single-letter square distortion
characterization. Next, for the two distortion characterization, we
investigate the performance of an uncoded transmission approach
where the noisy observations are only amplified-and-forwarded to
the fusion center. At the fusion center, two different estimators are
considered: (i) minimum mean-square error estimator (MMSE)
that exploits the correlation, and (ii) best linear unbiased esti-
mator (BLUE) that does not require or exploit the knowledge
of the correlation matrix. For both estimators, we solve for
the optimal power allocation that results in a minimum total
transmission power while satisfying some distortion level for
the estimate (for both multiple-letter and single-letter distortion
metrics). The numerical comparisons between the two schemes
indicate that the MMSE requires less power to attain the same
distortion provided by the BLUE. Furthermore, comparisons
between power-distortion region achieved by the theoretically
optimum system and the uncoded system indicates that the
performance gap between the two system becomes small for
low level of correlation between the sensor observations. If
observations at all sensor nodes are uncorrelated, the uncoded
system attains the theoretically optimum system performance.

I. INTRODUCTION

Wireless sensor networks (WSNs) enhance the system ca-
pabilities in many application areas including environment
monitoring, health, surveillance, etc. [1]. Networks of sensor
systems allow for many distributed processing and cooperative
communication techniques. In this paper, we focus on an
estimation problem where each sensor sends its observation
to a fusion center where a global estimation is made. Because
of the hard energy limitations, a significant research problem
is to develop schemes that minimize the transmission energy
while satisfying a certain distortion level.

Various approaches can be followed to solve this problem.
On the one hand, one can digitize all observed data at the local
sensors using distributed compression/coding algorithms and
transmit the digitized data to the fusion center. This is mainly
suggested by the aforementioned source-channel separation
theorem of Shannon [2]. With this view, this problem falls into

the multiterminal source coding problem where the main issue
is to characterize the rate-distortion region, i.e., to determine
all the rate vectors � � � � 
 
 
 � � � � at which the source samples
at all � sensors can be encoded separately and then decoded
jointly attaining a prespecified distortion level � � � � 
 
 
 � � � � .
Coding for multiterminal source-channel communications and
the associated rate-distortion region is extensively studied in
the literature and several partial solutions are reported to date
[3-7]. In [4], Slepian and Wolf consider lossless coding of
discrete memoryless correlated sources and show that it is
possible to attain the rate-distortion region of joint encod-
ing/decoding by the scheme where the sources are encoded
separately while decoded jointly. In [5], Wyner and Ziv initiate
the research on lossy source coding where they determine the
rate-distortion region for source coding with side information.
While the optimal solution for a general setting is not known
yet, for some of the special cases, e.g., [7], it is shown
that separate encoding/joint decoding might incur some rate
loss. An important class of the multi-terminal source/channel
coding problems is the Chief Executive Officer (CEO) problem
where a set of separate agents make noisy observations of a
common source and transmit a summary (encoded version) to
the CEO where the final decision (e.g., estimation) is made
[8–12].

The separate source-channel coding generally incurs large
delays and computation complexity. However, in some cases,
such as for a point-to-point communcation over an additive
white Gaussian noise channel, it is possible use a simple
amplify-and-forward approach [13-15] to achieve optimality.
For multiterminal source-channel communications, however,
it is not clear weather this approach performs better [12],
[16]. Nevertheless, since the information in sensor networks
is in general delay sensitive, and because of the bandwidth
and hard energy constraints in sensor networks, one requires
simple coding/processing methods, rather than relying on the
source-channel separation theorem. In [17], Cui et al. study a
simple uncoded analog transmission method for data gathering
in sensor network where it is assumed that the noise corrupted
version of the same signal is observed each local node and
a single-side band (SSB) analog transmission is employed
to transmit the real-valued observations to the fusion center.
This analog approach is very simple since it solely relies on
an amplify-and-forward technique. A similar approach is also
studied in [16] by Gastpar and Vetterli and it is shown that
the uncoded scheme results in a larger decay of the distortion
in the estimation, and as the number of sensor nodes goes to
infinity, this system attains the best estimation performance.

In sensor networks, the sensor observations are very likely
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to vary from one sensor to the other, but generally the ob-
servations might be strongly correlated, especially for a dense
sensor network [18]. Therefore, in this paper, we consider a
network where the sensor nodes observe spatially correlated
data and transmit their summary to a fusion center for the pur-
pose of distributed estimation. This problem is similar to the
Quadratic Gaussian CEO problem e.g., [9], with the exception
that instead of the assumption that the same signal is observed
by each agent, we assume that the agents (sensor nodes) are
exposed to a correlated data field. For this problem, we first
derive the rate-distorion and power-disrotion region that can be
attained by the theoretically optimum system. Next, we study
the performance of the simple uncoded transmission based on
amplify-and-forward transmission. In fact, such a transmission
approach can be imagined as a rate-1 joint source-channel
coding with separate encoders at different sensor nodes and
the estimation can be viewed as a joint decoding at the
fusion center. Here, we study the performance of two differ-
ent estimators: (i) minimum mean-square estimator (MMSE),
requiring and exploiting the knowledge of the correlation in
the observed field and (ii) minimum (best) linear unbiased
estimator (BLUE), free from any statistical information; and in
both cases, we consider two distortion measures: (i) the mean-
squared error distortion averaged across the sensor nodes as
a single-letter characterization of the distortion, and (ii) the
individual mean-squared error distortion for the estimation
quality of the signal from each sensor node as a multiple-
letter characterization of the distortion. The BLUE considered
in [17] is different from the one being considered here since
here we study the estimation of a spatially correlated field.
As we shall see in Section III, the solutions to these two
problems differ significantly from eachother. The numerical
optimization results indicate that the MMSE outperforms the
BLUE in terms of energy efficiency. Furthermore, performance
comparions between the theoretically optimum system and the
uncoded system with MMSE at the fusion center indicate that
for the case of low level correlation among sensor observa-
tions, the uncoded transmission performance gets close to the
optimum theoretical system performance.

The organization of the paper is as follows: In the next
section, we describe the sensor network model and specify the
parameters for analog transmission. In Section III, we briefly
summarize the estimator performance and derive the rate- and
power-disrotion regions for the theoretically optimum system
performance using the Shannon bounds. In this section, we
investigate the energy efficient distributed estimation problem
for the uncoded schemes employing the minimum mean-
square error estimator and the best linear unbiased estimator,
formulate the power optimization problems and solve them.
Section IV presents numerical results for the power allocation
problem, and finally Section V summarizes the results and
future directions.

II. SYSTEM MODEL

Assume that there are � sensors and the observation at the� th sensor at time � , � � � � � , is a random signal given by

� � � � � � 	 � � � �  � � � � � � � � � � � � � � � (1)

where 	 � � � � is the value of the observed field and � � � � � is
the additive white Gaussian (AWGN) noise with variance � �� .
Let � � � � � � 	 � � � � � � � � � 	 � � � � " and # � � � � � � � � � � � � � 
 � � � " .

We assume that � � � � is an independently and identically
distributed Gaussian vector whose autocorrelation is given by( � � * � � � ,  �
The transmitted signal from sensor node

�
is given by- � � � � � / 0 � 	 � � � �

where 0 � is power scaling paramater. Thus, the average trans-
mission power is given by 0 � 3 5 6 where 3 5 6 � � ( � " � 8 �  � �� .
Assuming a flat fading channel with a gain factor of : � for
the

� th node, we can express the received signal as< � � � � � / 0 � : � 	 � � � �  / 0 � : � � � � � �  � ? 6 � � �
with � ? 6 � � � denoting the channel noise of variance @ �� . In
vector form, we have the input-output relation (for brevity,
we drop the time parameter)B � D �  G (2)

whereB � � < � � � � � � < 
 " H and � � � 	 � � � � � � 	 
 " � (3)

D � diag � / 0 � : � � � � � � / 0 
 : 
 � � (4)

G � diag � / 0 � : � � �  � ? � � � � � � / 0 
 : 
  � ? 
 � � (5)

Assuming independently and identically distributed additive
observation noise and the channel noise, we have the noise
covariance matrix( M � diag � 0 � : � � � �  @ �� � � � � � 0 
 : 
 � �
  @ �
 � (6)

where diag � Q � denotes a diagonal matrix formed from its vector
argument.

Let R� � T � � � denote any estimate of � . The error covariance
matrix is defined by

( V � * � � � X R� � � � X R� � H  . The Cramer-
Rao bound on

( V
for the signal model in (2) is given by

[19] ( V [ � D H ( \ �M D  ( \ �� � \ � � (7)

which can be attained by the linear minimum mean square
error estimator (MMSE) for a Gaussian signal model. Note
that the

� th diagonal entry of the error covariance matrix,� ( V " � � , is the squared error distortion at node
�
. In this paper,

we consider two distortion characterization: (i) multiple-letter
distortion metric ^

� � � � � � � � � � 
 " (8)

where � � � * � _ 	 � X R	 � _ �  � � ( V " � � , and (ii) a single-letter
distortion metric

� c � �
� tr � * � � � X R� � � � X R� � H  � (9)

� �
� tr � ( V � � (10)

This latter distortion is a measure of average mean squared-
error in the estimation across all sensor nodes.

III. ENERGY-EFFICIENT ESTIMATION

In this section, we first derive the power-distortion region
for the system described above. Then, we study the perfor-
mance of uncoded transmission and solve the optimum power
allocation problem with MMSE and BLUE.
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A. Shannon Bounds and Power-Distortion Region

The Cramer-Rao bound in (7) specify the best error-
covariance matrix attainable by any estimator for the pre-
scribed signal model in (2). The fundamental bounds on the
estimation quality can be derived by using the Shannon rate-
distortion and capacity formulas, which are originally derived
to assess the reconstruction quality for the source coding
with a fidelity criterion, and the ultimate transmission rate
over a given channel [14]. The rate-distortion region for the
problem at hand can be characterized by using a Gaussian test
channel [12], [10], [20]. First, we derive the

� � � -region
for multiple-letter distortion. The region to the single-letter
distortion will follow similarly. Let � � � � � � � � � � where� � � � is a zero mean Gaussian noise vector with covariance
matrix

	 � � diag � 	 
 � � � � � � 	 
� � and � � � � � � � � [12]. The
set of variances 	 � ,

� � � � � � � � 	 for which the mean-squared
error distortion at node

� � � � � � � � � � 	 � is less than 
 � is
given by�  � � � � � � � � � �    � � �$ � % & ( * , . � 1 3 5 1 7 � : � 5 1 : �; < : � = ( ( @  

(11)

Then, the rate-distortion region follows asA �
�

� � BC E FG � I I I � E FJ L N P Q C S L A �
� U 	 
� � � � � � 	 
� � (12)

whereV � � X � �� �    � � �$ � Y [\ ] � ^ � �    � ^ $ � % `a b d ^ a * e � f d X g d h g d i � j kl
for m n p r � , r � � � � � � � � � 	 � , and where s u and v � � �
denote the set

� s � x � z n � and the mutual informa-
tion, respectively. Combining this region with the Shannon
channel capacity for each sensor node (assuming a zero-
mean unit-variance additive white Gaussian channel noise),

 � | �
 ~ � � � � � � � � � � , we finally arrive at the power-distortion
region � �

�
� � BC E FG � I I I � E FJ L N P Q C S L � �

� U 	 
 � � � � � � 	 
� � (13)

where� � � � � FG � � � � � � FJ � � � �� ��
� � G � � � � � � J � � �� � � � G � �

� � � � � ��� ¡ ¢ £ � ¤ � i ¡ ¡ ¢ ¤ ¡¡ ¢ £ � ¤ ¡ ¡ ¢ ¤ � i ¡ ¥ ¦§ © ª �«�¬
(14)

for m n p r � where ° is the source/channel code rate (e.g.,
for uncoded transmission, ° � � ), s u G ² u F denotes the
vector formed by stacking the elements of s u G and ² u F , and	 ³ � G ´ � F denotes the corresponding covariance matrix. We
note that the determinants in (14) can be evaluated using the
determinant formula for the block matrices after reordering
the terms in the matrices with suitable permutation matrices
corresponding to the subsets n and n � .

Because the region
� �

�
� is convex, the power allocation

problem to achieve minimum transmission power can be cast
as

µ ¶ · ¸ �� ¹ � � �
s.t. � � � � � � � � � � � z � �

�
� � (15)

Note that the solution to this problem provides the power
vector that can attain the theoretical minimum transmission

power (within all possible coding/processing schemes) while
satisfying a prescribed distortion level

�
.

The analysis for the single-letter distortion metric is very
similar to the multiple-letter case above. We only need to
replace the region º ¼ �

�
� in (11) by� ½ � & ¿ � � � � � �� �    � � �$ � % & ¿ * ÁÂ tr

. � 1 3 5 1 7 � : � 5 1 : �; < : � @  
and

�
by 
 � in all subsequent equations (12)-(15)

B. Minimum Mean-Square Estimation and Optimal Power
Allocation

1) Individual Distortion Constraint: First, we assume that
the estimation error for the sample observed at node

�
is

constrained to be no more than 
 � . With the knowledge of
the correlation matrix  � , the MMSE for � in (1) is given by

�� � 	 � � � � � 	 � � � � 	  � ! � Ã
(16)

and the minimum mean-squared error covariance matrix is
given by	 " � 	 � � 	 � � � � � 	 � � � � 	  � ! � � 	 � (17)

where
" � � � �� . Let us denote the average transmit power at

node
�

by Ä 
� � � % � � ( 	 � ) � � � � + 
� � Then, we can express
the power optimization problem as follows:µ ¶ · ¸ �� ¹ � Ä 
� - �

s.t. ( 	 " ) � � | 
 � � � � � � � � � � 	 � (18)

The optimization in (18) finds the power gain allocations that
result in minimum total transmit power such that a maximum
distortion level of 
 � is allowed for node

�
. Using the matrix

inversion lemma and after some simple algebraic operations,
we can rewrite the optimization problem asµ ¶ · ¸ �� ¹ � Ä 
� - �

s.t. Å � � Ç � È � 	 ! �� � ! � É Å � | 
 � � � � � � � � � � 	 (19)

where È � � � 	 ! � � , and Å � is a 	 Ë � vector whose
� th

entry is one and all other entries are Ì . Note that the distributed
MMSE is efficient since the covariance matrix in (19) is equal
to the Cramer-Rao bound given in (7).

The constraint in (19) defines a convex set. However, the
optimization in (19) is not convex over - � ,

� � � � � � � � 	 . By
defining 1 � � - � � �

- � � � + 
� � 5 
�
we obtain an equivalent convex optimization problemµ ¶ · ¸ �� ¹ � Î F� Ï F�Ð � Ò Ó �� ! Ó � Ô F� Õ

s.t. Å � � � 	 � 	 ! �� � ! � Å � | 
 � � Ì | 1 � × �Ô F� � (20)

for
� � � � � � � � 	 , where

	 � diag
� 1 � � � � � � 1 � � . UsingØ ³ Ù GØ % Ú Û � � s ! � 6 Ó Ü s ! � , Å Ó Å � Ü � 6 Ó Ü , and Å � Ó s Å Ü � ( s ) Ó Ü ,we obtain the following KKT conditions:Þ �( ß �(à ( á ÁÁ â ä ( å �( æ � â $` ç è � é ç ê � 1 5 1 : �; � : � ë � ç ( Y ì

(21)í î( � 1 5 1 : �; � : � í ( Y & ( �
(22)

for Ì | 1 � | � ð + 
� � and
� � � � � � � � 	 � A closed form

expression for this problem is not tractable, however, we can
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resort to numerical techniques to solve for � � unknowns
� �

and � � . A simple and straightforward solution exists for the
case where local observations are independent, i.e.,

�
� is

diagonal. For a general correlation model, we present several
numerical results in Section IV.

Example 1: Independent Observations: Let
�

� �
diag � � � � � � � � � � �� 	 . Then we have

� opt� �
� 	


 � 
 	� �� � � (23)

for 
 � � � �� � and

� opt� � � �� � opt�
� � � 	 
 � opt� � �� 	 (24)

Note that because of the observation noise, 
 � is lower
bounded by

� �� 
 ��� �� � 
 �� �
2) Average Distortion Constraint: If one seeks to satisfy

an average square error distortion across all sensor nodes, we
can express the power optimization problem as follows:� � � 	 �� � � � �� � �

s.t. �� tr � � � � � �
� 	 � � � 
 � (25)

where � � � � � � �� � . Note that the distributed MMSE is
efficient since the covariance matrix in (25) is equal to the
Cramer-Rao bound given in (7). Observing that tr � � � � 	 is
convex over the set of positive definite matrices

� � � � � � � ,
and that � � � � �

� � � , e.g., the sum of two positive definite
matrices is also a positive definite matrix, we conclude that
the constraint in (25) defines a convex set. Once again, we
define � � � � � � �

� � � � � �� � � ��
to convert the optimization in (25) to a convex one over � � ,� � 	 � � � � � � :� � � 	 �� � � � �� � ��� � � � �� � � � � �� �

s.t. �� tr � � � � � �
� 	 � � � 
 � � � � � � � �� �� (26)

where
� � diag

� � � � � � � � � � � . Now, we can use the Lagrangian
method where we can obtain KKT conditions as:� !" # !"$ " % && ( * " + !" , ! ( - . &0 1 2 4 6 4 8 9: ; 8 ! > " " @ A

(27)

&0 tr
2 4 6 4 8 9: ; 8 9 @ C .

(28)

for � � � � � 	 F � �� � Equations (27) and (28) define a set of
� � equations with � � unknowns and one can solve for the
unknowns with numerical techniques. If the local observations
are independent, i.e.,

�
� is diagonal, the optimization in (26)

assumes a closed form solution as shown in the following ex-
ample. For a general correlation model, we resort to numerical
techniques as shown in Section IV.

Example 2: Independent Observations: Let
�

� �
diag � � � � � � � � � � �� 	 , and without loss of generality, assume that� G � G � G 
 � G � � � � � � H � H � H 
 �H . We define

� � � 	 �
� 
 � 
 tr � �

� 	 � 	 �� � � 
 ��
 �� � � ��	 �� � � 
 �� � � � �I 
 �� � � �� J  � � (29)

and � � � 	 � � � � � � � 
 � � � � � 	 � and then determine the unique � �
such that � � � � 	 � 	 and � � � � � 	 	 � 	 . Simplifying the KKT
conditions in (27) and (28) and solving for � � , we finally arrive
at

� opt� � � ��
� 

� � " � $ � K � ' �� ) I � G J� �� � " � $ � K � ) I � G J * � 	 � � � � � � �
� * � � � � 	 � � � � � �

(30)

Therefore, we have the optimal power gains

� opt� � � ��
� � � opt�

	 
 � opt� � �� , (31)

A power-distortion region, in a similar fashion to the the
theoretically optimum power distortion region described in
Section III-A, can also be defined for the uncoded transmission
system with MMSE. For example, for the average distortion
characterization, we have- MMSE . / . 0 2 3 5 9 6 7 7 7 6 5 L 9 / . ; => tr . ? A C 8 9D 0 8 9 E

(32)

where " � � � � � $ �
� % � � � � �� 	 . In Section IV, several compari-

ons between the power-distortion regions achieved by different
schemes are also provided. We note that if the observations in
different sensor nodes are uncorrelated Gaussian, it is easy to
show that

M MMSE � 
 � 	 � M � 
 � 	 , i.e., uncoded transmission
with MMSE at the receiver achieves the theoretically optimum
performance.

C. Best Linear Unbiased Estimation and Optimal Power Al-
location

Note that MMSE requires the knowledge of the autocorre-
lation matrix

�
� . Therefore, MMSE can not be employed if

we are not able to estimate the source correlation matrix or
we do not have access to that information, that is, if we do not
have any statistical knowledge on the source. The best linear
unbiased estimator (BLUE) does not require the statistical
knowledge of � and is given by

'� � G � � � � �� � I � � � � � �� N �
The mean-squared error for this estimator can be obtained as

� + � G � � � � �� � I � �
(33)

� diag
� � �� � � ��

� � � � � � � � � � �� � � ��
� � � � � (34)

We will again seek the optimal power allcoation for the two
distortion criterion discussed above.

1) Individual Power Constraint:: The minimum-energy
power allocation problem based on BLUE can be expressed
as � � � 	 �� � � � �� � �

s.t. � �� � � ��� � J � � 
 � (35)

for � � 0 � ,
� � 	 � � � � � � . By defining � � � � �� � � ��� � J � , we

can convert this optimization problem to a convex one over� � : � � � 	 �� � � � �� � ��� � I � � � � �� J
s.t. � � � 
 � � � � 0 � �� � � � 	 � � � � � � � (36)
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for � � � � . Using Lagrangian method, we find the optimal
power allocation coefficients as

� � � � ��� � � � � �  �� �
(37)

Note that � � lies in the interval �  �� � � � because of the
observation noise.

2) Average Distortion Constraint: The minimum-energy
power allocation problem for this case can be expressed as

� � � � �� � � 	 �� � �
s.t. �

�
� �� � �  �� � 
 ��� � � �  � � (38)

for � � � � ,
� � � � � � � � � . Using � � �  �� � 
 ��� � � � we have

the equivalent problem

� � � � �� � � 	 �� 
 ��� � �
� � � � �� �

s.t.
�

�
� �� � �

� �  � � � � � �  �� �
� � � � � � � � � (39)

for � � � � . Computing the Lagrangian and after some
manipulations, we have

� opt� �
� 
 ��

�
�� � � � �� � � � �

�� 
 ��� �
� � � � � �� � �  �� (40)

We note that the estimation problem described here is
different from the one considered in [17]. In [17], the data
observed at each sensor node is assumed to be exactly the
same while here we consider spatially varying data. As a
result, the optimized power allocation for these two problems
has different solutions. In [17], the optimal power allocation
might result in turning off some of the sensors, while in
case of spatially varying data, each sensor has to transmit its
observation with a power proportional to the inverse of square
root of the channel � � � , where � � � � 	 �� � � � � �� �

IV. NUMERICAL EXAMPLES

In this section, we present numerical examples for the� � � -region and power allocation problems studied in
the previous sections. The power allocation problem for the
distributed MMSE estimation does not allow for a closed form
expression, so we resort to the numerical techniques to solve
for optimal � � and then find the optimal � � ,

� � � � � � � � � .
The optimization for the distributed BLUE has a closed from
solution and is given by (37) or (40).

We consider the spatial correlation model defined by a
correlation matrix

� � � � �  � � 
 � � � � � � 
 � � � (41)

This matrix has a symmetric tridiagonal inverse that can be
computed by

� � � �� � �  � � �����
����

�
� � � � � � � � � � �
�

�
� �

� � � � !  � � �  � � �� �
� � � � " � � � " � �

� " � � � " 	 �
(42)

Fig. 1 depicts the power-distortion region that can be
achieved by the optimum system and the uncoded system
with MMSE and BLUE assuming an average distortion level
of � � � � � ! with � � ! sensors when 
 � � � � . From

the figure, we observe that the MMSE performs significantly
better than the BLUE estimator. It is also clear that # � � � � �# MMSE � � � � � # BLUE � � � � . It is seen that we can satisfy
an average distortion level of � � ! when either # �

� � � , or# � � �
, and this can be achieved by an uncoded transmission

with MMSE at the receiver. This implies that explointing the
correlation between the observations we can estimate one of
them from the other one to attain a certain average distortion
level. In Fig. 2, we depict power-distortion regions for the
same system assuming a vector distortion level of

$
�� � � ! � � ! � � For this case, we also have # � � � � � # MMSE � � � � �# BLUE � � � � . A remarkable observation is that even if the

correlation coefficient between the sensor observations is as
high as 
 � � � � , and one seeks a certain distortion level for
each estimation, each sensor node should be transmitting at
a non-zero power level regardless of the power level of the
other one.

0 5 10 15
0

5

10

15

P
1

P
2

P(D
0
)

PMMSE(D
0
)

PBLUE(D
0
)

Fig. 1. Comparison of power-distortion regions attained by the optimum
system and the uncoded transmission for the single-letter distortion case.
Simulation parameters are

� � �
,

 !" �  !! � # % # & , � � � # % � ' &  ,( * � # % �
, ! � # % "

.

Next, we provide a representative example for the optimum
power allocation problem solved in Section III. We assume
the following values for the parameters in our simulations:
The observation noise variance,  �� � � � � � , and the channel
noise variance, � �� � � for - �

. The correlation matrix of the
observations is given by (41), e.g., 
 �� � � ,

� � � � � � � � � .
In Figure 3, for a network with ! sensor nodes, we illustrate
the power vs. distortion performance for three cases: (i) The
theoretically possible minimum power level obtained by (15)
to satisfy the average distortion level of � � � � � ! � (ii) the
minimum power required with MMSE, and (ii) the minimum
power required with BLUE. The optimal power gains are
obtained by solving (27) and (28). It is seen that, to satisfy
some mean-squared error level � � , the MMSE requires less
transmission power than the BLUE does at all distortion levels.
We also observe that at sufficiently large transmission power
(to achieve distorion levels less than � � � ! ), the amplify-and-
forward approach attains the distortion level of the optimum
scheme (the difference becomes negligible). From the curves
for 
 � � � # and 
 � � � � , there is some gap between the

5

977



0 5 10 15
0

5

10

15

P
1

P
2

P(D
0
)

PMMSE(D
0
)

PBLUE(D
0
)

Fig. 2. Comparison of power-distortion regions attained by the optimum
system and the uncoded transmission for the multiple-letter distortion case.
Simulation parameters are

� � �
,

� �� � � �� � � � � 	 , � � � � � � � 	 � , � �
� � � � � � � � , � � � � �

.

performance of the optimum uncoded scheme and that of
a theoretically optimal scheme, and this performance gap is
small for lower � values. As mentioned earlier, if � � � , e.g.,
when the observations are uncorrelated, this gap disappears
and the uncoded transmission achieves best performance.
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vs.
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for distributed estimation of of a correlated field with
optimal power allocation with MMSE and BLUE. Simulation parameters:� �� � � � � 	 , � �� � 	 , � � � � �

and
� � �

,
� � �

, � � � � � � 	 �

V. CONCLUSIONS

In this paper, we addressed the energy-efficient distributed
estimation problem for correlated data in sensor networks.
We derived the achievable power-distortion region for the
distributed estimation problem where a fusion center tries
to estimate a distributed field by a network of sensor nodes
distributed in a terrain. We considered two different distortion

characterization (a single- and a multiple-letter distortion mea-
sures) and and studied an uncoded analog transmission scheme
where the noise-corrupted sensor observations are simply
amplified and forwarded to the fusion center through the noisy
flat-fading channel. Two different estimation techniques are
investigated for the fusion center: (i) the minimum mean-
square error estimation, which requires the knowledge of the
correlation matrix, and (ii) minimum linear unbiased estima-
tion, which does not require/exploit any statistical knowledge.
For both estimation techniques, we determined the optimal
power allocation scheme and the minimum required power
with which one can satisfy a certain mean-squared error dis-
tortion level. Performance comparisons of the various schemes
indicate that one needs to exploit the intersensor correlations
for better energy efficiency. Comparison with optimal schemes
indicate that as correlations between the sensor observation
becomes small, the performance gap between the uncoded
scheme and the theoretically optimum scheme decreases.
Furthermore, comparions between the MMSE and BLUE
performance indicates that exploiting the correlation among
sensor observations (by MMSE) reduces the required power
to attain some distortion level.
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