Problems of fourth tutorial session:

- 1. A gambling book recommends the following strategy for the game of roulette: Bet 1\$ on red, if red appears (which has probability of $\frac{18}{38}$), take the 1\$ profit and quit. If red doesn't appear and you lose this bet (which has probability of $\frac{20}{38}$), make additional 1\$ bets on red on each of the next two spins of the roulette wheel and then quit. Let "x" denote your winning when quit.
 - a) Find $P\{x>0\}$.
 - b) Find E(X).
- 2. The PMF of a random variable "X" is given by $P(X=k)=a.k.2^{-(k-1)}$, k=1,2,3,4
 - a) For what value of "a" is this a true PMF?
 - b) Find the variance of "x"
 - c) Find the expected value of random variable $Y = x \cdot \log_2 x$
 - d) Compute CDF of x ($F(x)=P(X \le x)$)
 - e) Compute the CDF of r.v Z=2x+3.
- 3. A box contains 5 red balls and 7 blue balls. Two balls are randomly withdrawn. If they are of the same color you win 1.10\$ otherwise you lose 1\$.
 - a) What is the expected value of the amount you win?
 - b) What is the variance of the amount you win?
- 4. Suppose that the probability that an item produced by a certain machine will be defective is .1. Find the probability that a sample of 10 items will contain at most 1 defective item.
- 5. Suppose that two teams play a series of games that ends when one of them has won *i* games. Suppose that each game played is, independently, won by team *A* with probability *p*. Find the expected number of games that are played when i=2. Also, show in both cases that this number is maximized when $p = \frac{1}{2}$.
- 6. A sample of 3 items is selected at random from a box containing 20 items of which 4 are defective. Find the expected number of defective items in the sample.
- 7. People enter a gambling casino at a rate of 1 every 2 minutes.
 - a) What is the probability that no one enters between 12:00 and 12:05?
 - b) What is the probability that at least 4 people enter the casino during that time