ECE 316-Solutions of Mid Term 2

April 5, 2009

PART 1

1.
a)

It can be a Probability Density Function. It cannot be a probability distribution function because
it doesn’t tends to 1 as z— > oo and it decreases.

b)

It can be a Probability distribution function. It cannot be a probability density function because
the area inside is not equal to 1. In fact the area is infinity.

)

Neither. Probability Density Function or a Probability Distribution Function cannot take negative
values.

d)

Neither. The area is infinity, so not a density function. Not a Probability distribution function
because the function decreases in between.

e)

Neither. The area is infinity, so not a density function. Not a Probability distribution function
because after the spike, the function starts from zero, in other words it decreases.

f)

Neither. The area is infinity, so not a density function. Not a Probability distribution function
because the function decreases.
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Properties of F(x)
i)
Flx)=1, x>b
F(r)=0, =z<a
ii) a>p = F(a)> F(B). In other words F(x) is not decreasing.
iii) F(x) is right continuous.
4.

Mean m = E(X) = 1, E(X?) = 2. Therefore Var(X) = E(X?) - E(X)? =2-12 = 1, and
o0 =+/1=1. Let Z is a standard normal variable(i.e. mean= 0, and standard deviation=1).

a)

P(X <3)=P(Z <

-1
:P(Z<ST)

= P(Z<?2)
= 0.9773
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PO< X <3)= P( . Z<1>

=P(-1<Z<?2)
=P(Z<2)-P(Z<-1)
= P(Z<2)~P(Z>1)

=p(Z<2)—(1-P(Z<1))
= 0.9773 — (1 — 0.8413)
= 0.8186



P(X<-2)=P(Z< )
= P(Z < -3)
=P(Z >3)
=1-P(Z <3)
=1-—0.9987
= 0.0013
PART 11
Problem 1

a) X has a Poisson distribution with parameter A > 0. Therefore
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b) Let N denotes the total number of coins and Ny the number of heads.

Poisson with parameter A, i.e.
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Given that N is
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Problem 2

The pdf of X is given by

px(z)=e Wl — o<z < oo

The signal is passed through a square law detector whose output is Y = 0.5X?

a)

Therefore
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Alternatively you can find fy (y) by using the Leibniz Integral Rule which is
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Substituting x = 24/2y and therefore dz = \/7dy we have
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Note, if you are not asked to find put the density of Y, you can find out E(Y) as
E(Y) = FE(0.5X?)
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Problem 3
The pdf of X is given by

Px(z)=C(x—2%), a<z<p, C>0
a) Since pdf is non negative

x—mQZO
z(r—1)<0
—0<z<1
= 0<a<p<l1

To find out the value of C
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