ECE 316-Solutions of Mid Term 2

April 5, 2009

PART I

1.

a)

It can be a Probability Density Function. It cannot be a probability distribution function because it doesn't tends to 1 as $x - > \infty$ and it decreases.

b)

It can be a Probability distribution function. It cannot be a probability density function because the area inside is not equal to 1. In fact the area is infinity.

c)

Neither. Probability Density Function or a Probability Distribution Function cannot take negative values.

d)

Neither. The area is infinity, so not a density function. Not a Probability distribution function because the function decreases in between.

 $\mathbf{e})$

Neither. The area is infinity, so not a density function. Not a Probability distribution function because after the spike, the function starts from zero, in other words it decreases.

f)

Neither. The area is infinity, so not a density function. Not a Probability distribution function because the function decreases.

2.

$$P(A|B \cap C)P(B|C) = \frac{P(A \cap B \cap C)}{P(B \cap C)} \frac{P(B \cap C)}{P(C)}$$
$$= \frac{P(A \cap B \cap C)}{P(C)}$$
$$= P(A \cap B|C)$$

3.

Properties of F(x)

i)

$$F(x) = 1,$$
 $x \ge b$
 $F(x) = 0,$ $x \le a$

- ii) $\alpha > \beta \implies F(\alpha) \ge F(\beta)$. In other words F(x) is not decreasing.
- iii) F(x) is right continuous.

4.

Mean m=E(X)=1, $E(X^2)=2$. Therefore $Var(X)=E(X^2)-E(X)^2=2-1^2=1$, and $\sigma=\sqrt{1}=1$. Let Z is a standard normal variable (i.e. mean=0, and standard deviation=1).

$$P(X < 3) = P(Z < \frac{3-m}{\sigma})$$
$$= P(Z < \frac{3-1}{1})$$
$$= P(Z < 2)$$
$$= 0.9773$$

b)

$$P(0 < X < 3) = P\left(\frac{0-1}{1} < Z < \frac{3-1}{1}\right)$$

$$= P(-1 < Z < 2)$$

$$= P(Z < 2) - P(Z \le -1)$$

$$= P(Z < 2) - P(Z \ge 1)$$

$$= p(Z < 2) - (1 - P(Z < 1))$$

$$= 0.9773 - (1 - 0.8413)$$

$$= 0.8186$$

c)

$$P(X \le -2) = P(Z \le \frac{-2 - 1}{1})$$

$$= P(Z \le -3)$$

$$= P(Z \ge 3)$$

$$= 1 - P(Z < 3)$$

$$= 1 - 0.9987$$

$$= 0.0013$$

PART II

Problem 1

a) X has a Poisson distribution with parameter $\lambda > 0$. Therefore

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

$$P(X \text{ is even}) = P(X = 0) + P(X = 2) + P(X = 4) + \cdots$$

= $e^{-\lambda} \left(1 + \frac{\lambda^2}{2!} + \frac{\lambda^4}{4!} \cdots \right)$

Now

$$e^{\lambda} = 1 + \frac{\lambda}{1!} + \frac{\lambda^2}{2!} + \frac{\lambda^3}{3!} + \frac{\lambda^4}{4!} \cdots$$
$$e^{-\lambda} = 1 - \frac{\lambda}{1!} + \frac{\lambda^2}{2!} - \frac{\lambda^3}{3!} + \frac{\lambda^4}{4!} \cdots$$

Therefore

$$\frac{e^{\lambda} + e^{-\lambda}}{2} = 1 + \frac{\lambda^2}{2!} + \frac{\lambda^4}{4!} \cdots$$

and

$$P(X \text{ is even}) = e^{-\lambda} \left(\frac{e^{\lambda} + e^{-\lambda}}{2} \right) = \frac{1 + e^{-2\lambda}}{2}$$

b) Let N denotes the total number of coins and N_H the number of heads. Given that N is Poisson with parameter λ , i.e.

$$P(N=k) = \frac{e^{-\lambda}\lambda^k}{k!}$$

$$P(N_H = m) = \sum_{k=0}^{\infty} P(N_H = m|N = k)P(N = k)$$

$$= \sum_{k=m}^{\infty} P(N_H = m|N = k)P(N = k) \quad \text{Since } P(N_H = m|N = k) = 0 \text{ for } k < m$$

$$= \sum_{k=m}^{\infty} {k \choose m} p^m (1-p)^{k-m} \frac{e^{-\lambda} \lambda^k}{k!}$$

$$= \frac{e^{-\lambda p} (\lambda p)^m}{m!} \sum_{k=m}^{\infty} \frac{e^{-\lambda(1-p)} (\lambda(1-p))^{k-m}}{(k-m)!}$$

$$= \frac{e^{-\lambda p} (\lambda p)^m}{m!} \sum_{z=0}^{\infty} \frac{e^{-\lambda(1-p)} (\lambda(1-p))^z}{z!}$$

$$= \frac{e^{-\lambda p} (\lambda p)^m}{m!}$$

Problem 2

The pdf of X is given by

$$p_X(x) = e^{-2|x|}, \quad -\infty < x < \infty$$

The signal is passed through a square law detector whose output is $Y = 0.5X^2$ a)

$$F_Y(y) = P(Y \le y)$$

$$= P(0.5X^2 \le y)$$

$$= P(X^2 \le 2y)$$

$$= P(-\sqrt{2y} \le X \le \sqrt{2y})$$

$$= \int_{-\sqrt{2y}}^{\sqrt{2y}} e^{-2|x|} dx$$

$$= \int_{-\sqrt{2y}}^{0} e^{-2|x|} dx + \int_{0}^{\sqrt{2y}} e^{-2|x|} dx$$

$$= \int_{-\sqrt{2y}}^{0} e^{2x} dx + \int_{0}^{\sqrt{2y}} e^{-2x} dx$$

$$= \left[\frac{e^{2x}}{2} \right]_{-\sqrt{2y}}^{0} + \left[\frac{e^{-2x}}{-2} \right]_{0}^{-\sqrt{2y}}$$

$$= 1 - e^{-2\sqrt{2y}}$$

Therefore

$$f_Y(y) = \frac{d}{dy}(1 - e^{-2\sqrt{2y}}) = \sqrt{\frac{2}{y}}e^{-2\sqrt{2y}}, \ y \ge 0$$

Alternatively you can find $f_Y(y)$ by using the Leibniz Integral Rule which is

$$\frac{d}{dz} \int_{a(z)}^{b(x)} f(x,z) dx = \int_{a(z)}^{b(x)} \frac{d}{dz} f(x,z) dx + f(b(z),z) \frac{db}{dz} - f(a(z),z) \frac{da}{dz}$$

Therefore

$$f_Y(y) = \frac{d}{dy} \int_{-\sqrt{2y}}^{\sqrt{2y}} e^{-2|x|} dx = e^{-2\sqrt{2y}} \frac{1}{\sqrt{2y}} - e^{-2\sqrt{2y}} \frac{-1}{\sqrt{2y}} = \sqrt{\frac{2}{y}} e^{-2\sqrt{2y}}, \quad y \ge 0$$

b)

$$E(Y)=\int_{y=0}^{\infty}y\sqrt{\frac{2}{y}}e^{-2\sqrt{2y}}dy$$
 Substituting $x=2\sqrt{2y}$ and therefore $dx=\sqrt{\frac{2}{y}}dy$ we have
$$E(Y)=\frac{1}{8}\int_{0}^{\infty}x^{2}e^{-x}dx$$

$$=\frac{1}{4}$$

Note, if you are not asked to find put the density of Y, you can find out E(Y) as

$$E(Y) = E(0.5X^{2})$$

$$= \int_{-\infty}^{\infty} 0.5x^{2}e^{-2|x|}dx$$

$$= \frac{1}{4}$$

Problem 3

The pdf of X is given by

$$P_X(x) = C(x - x^2), \quad \alpha < x < \beta, \quad C > 0$$

a) Since pdf is non negative

$$x - x^{2} \ge 0$$

$$x(x - 1) \le 0$$

$$\implies 0 \le x \le 1$$

$$\implies 0 \le \alpha < \beta \le 1$$

To find out the value of C

$$\int_{\alpha}^{\beta} C(x - x^2) dx = 1$$

$$C\left[\frac{x^2}{2} - \frac{x^3}{3}\right]_{\alpha}^{beta} = 1$$

$$C\left(\frac{\beta^2 - \alpha^2}{2} - \frac{\beta^3 - \alpha^3}{3}\right) = 1$$

$$C = \frac{1}{\frac{\beta^2 - \alpha^2}{2} - \frac{\beta^3 - \alpha^3}{3}}$$

Similarly

$$\begin{split} E(X) &= \int_{\alpha}^{\beta} x C(x - x^2) dx \\ &= C \left(\frac{\beta^3 - \alpha^3}{3} - \frac{\beta^4 - \alpha^4}{4} \right) \\ &= \left(\frac{1}{\frac{\beta^2 - \alpha^2}{2} - \frac{\beta^3 - \alpha^3}{3}} \right) \left(\frac{\beta^3 - \alpha^3}{3} - \frac{\beta^4 - \alpha^4}{4} \right) \end{split}$$

and

$$\begin{split} E(X^2) &= \int_{\alpha}^{\beta} x^2 C(x - x^2) dx \\ &= C \left(\frac{\beta^4 - \alpha^4}{4} - \frac{\beta^5 - \alpha^5}{5} \right) \\ &= \left(\frac{1}{\frac{\beta^2 - \alpha^2}{2} - \frac{\beta^3 - \alpha^3}{3}} \right) \left(\frac{\beta^4 - \alpha^4}{4} - \frac{\beta^5 - \alpha^5}{5} \right) \end{split}$$

$$Var(X) = E(X^{2}) - E(X)^{2}$$

$$= \left(\frac{1}{\frac{\beta^{2} - \alpha^{2}}{2} - \frac{\beta^{3} - \alpha^{3}}{3}}\right) \left(\frac{\beta^{4} - \alpha^{4}}{4} - \frac{\beta^{5} - \alpha^{5}}{5}\right) - \left(\left(\frac{1}{\frac{\beta^{2} - \alpha^{2}}{2} - \frac{\beta^{3} - \alpha^{3}}{3}}\right) \left(\frac{\beta^{3} - \alpha^{3}}{3} - \frac{\beta^{4} - \alpha^{4}}{4}\right)\right)^{2}$$