ECE316- Probability and Random Variables Winter 2009 In-term Exam 1

Time: 1 Hour 15 minutes

R. Mazumdar	Date : February	2,	2009
-------------	-----------------	----	------

INSTRUCTIONS

- Enter your name, student ID number, e-mail address and sign in the space provided at the bottom of this page.
- The exam is 1 hour and 15 mins long.
- DO ALL QUESTIONS. The weightage of each question is indicated.
- Some useful results and formulae are given on the last page.
- You are **not** allowed the use of calculators or crib sheets.
- Unless specifically mentioned to the contrary show all relevant work in the space provided. You may use the extra blank pages and the back of each page if necessary.

Name:		
Student ID #:		
E-mail:		
Signature:		

PART I

(20 %)

These are short problems. For problems involving TRUE or FALSE answers it is not necessary to justify your answers. Only correct answers count- no partial credit.

- 1. (4pts) Let A and B be two events defined on (Ω, \mathcal{F}, P) : Then:
 - a) $\Pr(A) + \Pr(B^c) \le 1$.

Answer:

True

False

b) $\Pr(A \cup B^c) \ge \max\{\Pr(A), 1 - \Pr(B)\}$

Answer:

True

False

- 2. (6pts) Suppose A, B, C are three events defined on the same probability space.
 - a) Find $P(A \cup B \cup C)$ if A, B, and C are mutually independent

b) If A and B are independent, show that A^c and B^c are independent.

3. (4 pts) Let A and B be two events with $\Pr(A)>0$ and $\Pr(B)>0$. Show that if $\Pr(A|B)\geq \Pr(A)$ then $\Pr(B|A)\geq \Pr(B)$.

- 4. (6pts) Express the following probabilities in terms of P(A), P(B) and $P(A \cap B)$
 - a) The event A occurs and B does not occur.
 - b) Exactly one of A or B occurs.
 - c) Neither A nor B occur.

PART II

For the problems in this section show all calculations in the space provided or at the back of the page. Justify all your answers.

Problem 1: (18 %)

Two numbers X and Y are selected at random between 0 and 1. Let the events A, B, and C be defined as follows: $A=\{X>\frac{1}{2}\}, B=\{Y<\frac{1}{2}\}$ and $C=\{X<\frac{1}{2} \ and \ Y<\frac{1}{2}\}\cup\{X>\frac{1}{2} and Y>\frac{1}{2}\}$

a) Are A and B independent? Why?

b) Are A and C independent? Why?

c) Are A, B and C independent? Why?

d) Find the probability that only one of the events A or B occur.

Problem 2: (20%)

a) Let A and B be two arbitrary events. Show that:

$$P(A) = P(A|B)P(B) + P(A|B^c)P(B^c)$$

- **b)** An urn contains M balls out of which only m are good. Two balls are drawn from the urn without replacement.
- i) Find the probability that the second ball is "good" given that the first ball is "bad".
- ii) Find the probability that the second ball is good.

Problem 3: (20 %)

Let $\{A_i\}_{i=1}^n$ denote a collection of events on a probability space (Ω, \mathcal{F}, P) a) Show that

$$P(\cap_{i=1}^n A_i) \ge 1 - \sum_{i=1}^n P(A_i^c)$$

b) Show the following formula holds:

c) Show for any events A,B and C with P(C)>0 show that:

$$P(A|C) = P(A|BC)P(B|C) + P(A|B^{c}C)P(B^{c}|C)$$

Problem 4: (22%)

a) Consider 3 events A, B and C. It is known that A is independent of B and A is independent of C.

Show that A is independent of $B \cup C$ if and only if A is independent of $B \cap C$.

- **b)** Consider an urn with two types of coins. One is a fair coin which has a probability $\frac{1}{2}$ of giving a Heads when tossed. The other is a biased coin that gives Heads with a probability of $\frac{1}{3}$ when tossed. There are a total of n fair coins and n biased coins.
 - a) A coin is chosen at random and tossed and gives a Heads. What is the probability that the coin is fair?
 - a) Two coins are chosen and tossed and both fall heads. What is the probability that both are biased?

Some useful formulae and notes

Some other elementary formulae

Given a collection of sets $\{A_i\}$ then De-Morgan's law states:

$$\left(\bigcup_{k=1}^{n} A_k\right)^c = \bigcap_{k=1}^{n} A_k^c$$

where $A_k^c = \Omega - A$ (the complement of A_k .

Probability axioms

- 1. $P(\Omega) = 1$, $P(\phi) = 0$, and for any event A $0 \le P(A) \le 1$.
- 2. The collection of events is a $\sigma field$ i.e. if $A \in \mathcal{F}$ then $A^C \in \mathcal{F}$ and for any countable collection of events $A_i \in \mathcal{F}$, $\cup_i A_i \in \mathcal{F}$.
- 3. If $\{A_i\}$ is a countable collection of disjoint events then: $P(\cup_n A_n) = \sum_n P(A_n)$. If the A_i 's are not disjoint then $P(\cup_i A_i) \leq \sum_i P(A_i)$

Exclusion-Inclusion Formula Given events $\{A_i\}_{i=1}^n$

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{i < j} P(A_i A_j) + \sum_{i < j < k} P(A_i A_j A_k) + (-1)^{k+1} \sum_{i_1 < i_2 \dots < i_k} P(A_{i_1} \dots A_{i_k}) + \cdots + (-1)^{n+1} P(A_1 A_2 \dots A_n)$$

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$
$$\sum_{k=0}^{N} r^{k} = \frac{1 - r^{N+1}}{1 - r}$$
$$\sum_{k=0}^{\infty} r^{k} = \frac{1}{1 - r} \quad if \ |r| < 1$$