University of Waterloo Department of Electrical and Computer Engineering

E&CE-316 – Introduction to Probability Theory <u>Midterm Examination</u> June 9, 2006

Instructors: A. K. Khandani Time allowed: 1.5 hours.

Closed book. One sheet of $8\frac{1}{2} \times 11$ review sheet (one side) allowed. Answer all three questions. The parts with * sign are more difficult.

Questions and parts within questions are of equal value.

- 1. Assume that 5 items are in an urn, numbered 1,2,3,4,5. Suppose that 2 items are white and 3 items are black.
- 1.1 (mark=2.5) Compute the probability that in a draw of 2 items (without replacement) we obtain 2 white items.
- 1.2 (mark=2.5) Compute the probability that in a draw of 2 items (without replacement) we obtain 2 black items.
- 1.3 (mark=2.5) Compute the probability that in a draw of 2 items (without replacement) we obtain one white and one black item.
- 1.4 (mark=2.5) Compute the probability that in a draw of 2 items (with replacement) we obtain 2 white items.
 - 2. In a factory, units are manufactured by machines H_1, H_2, H_3 in the proportions 25:35:40. The percentages 5%, 4% and 2%, respectively, of the manufactured units are defective. The units are mixed and sent to the customers.
- 2.1 (mark=2.5) Find the probability that a randomly chosen unit is defective.
- 2.2 (mark=2.5) Suppose that a customer discovers that a certain unit is defective. What is the probability that it has been manufactured by machine H_1 ?
- 2.3 (mark=2.5) Suppose that a customer buys units until he/she discovers a defective item and then stops buying that product. What is the probability that the customer buys more than 5 items before discovering a defective item.
- 2.4 (mark=2.5) *Suppose that a customer discovers that a certain unit is defective and we know that it is not produced by H_2 , then what is the probability that it has been manufactured by machine H_1 ?
 - 3. We know that there are $\binom{n+r-1}{r-1}$ distinct integer-valued vectors (x_1, x_2, \dots, x_r) satisfying:

$$x_1 + x_2 + \dots + x_r = n \qquad \qquad x_i \ge 0, i = 1, \dots, r$$

3.1 (mark=5) What is the number of distinct integer-valued vectors (x_1, x_2, \ldots, x_5) satisfying:

$$x_1 + x_2 + \dots + x_5 = 15$$
 $x_i \ge 2, i = 1, \dots, 5$

3.2 (mark=5) *What is the number of distinct integer-valued vectors (x_1, x_2, \ldots, x_5) satisfying:

$$x_1 + x_2 + \dots + x_5 = 13$$
 $4 > x_i > 1, i = 1, \dots, 5$